#include "TinyRenderer.h" #include #include #include #include #include "../CommonInterfaces/CommonFileIOInterface.h" #include "../OpenGLWindow/ShapeData.h" #include "../Utils/b3BulletDefaultFileIO.h" #include "../Utils/b3ResourcePath.h" #include "Bullet3Common/b3Logging.h" #include "Bullet3Common/b3MinMax.h" #include "LinearMath/btAlignedObjectArray.h" #include "LinearMath/btVector3.h" #include "geometry.h" #include "model.h" #include "our_gl.h" #include "tgaimage.h" using namespace TinyRender; struct DepthShader : public IShader { Model* m_model; Matrix& m_modelMat; Matrix m_invModelMat; Matrix& m_projectionMat; Vec3f m_localScaling; Matrix& m_lightModelView; float m_lightDistance; mat<2, 3, float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader mat<4, 3, float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS mat<3, 3, float> varying_nrm; // normal per vertex to be interpolated by FS DepthShader(Model* model, Matrix& lightModelView, Matrix& projectionMat, Matrix& modelMat, Vec3f localScaling, float lightDistance) : m_model(model), m_modelMat(modelMat), m_projectionMat(projectionMat), m_localScaling(localScaling), m_lightModelView(lightModelView), m_lightDistance(lightDistance) { m_nearPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] - 1); m_farPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] + 1); m_invModelMat = m_modelMat.invert_transpose(); } virtual Vec4f vertex(int iface, int nthvert) { Vec2f uv = m_model->uv(iface, nthvert); varying_uv.set_col(nthvert, uv); varying_nrm.set_col(nthvert, proj<3>(m_invModelMat * embed<4>(m_model->normal(iface, nthvert), 0.f))); Vec3f unScaledVert = m_model->vert(iface, nthvert); Vec3f scaledVert = Vec3f(unScaledVert[0] * m_localScaling[0], unScaledVert[1] * m_localScaling[1], unScaledVert[2] * m_localScaling[2]); Vec4f gl_Vertex = m_projectionMat * m_lightModelView * embed<4>(scaledVert); varying_tri.set_col(nthvert, gl_Vertex); return gl_Vertex; } virtual bool fragment(Vec3f bar, TGAColor& color) { Vec4f p = varying_tri * bar; color = TGAColor(255, 255, 255) * (p[2] / m_lightDistance); return false; } }; struct Shader : public IShader { Model* m_model; Vec3f m_light_dir_local; Vec3f m_light_color; Matrix& m_modelMat; Matrix m_invModelMat; Matrix& m_modelView1; Matrix& m_projectionMat; Vec3f m_localScaling; Matrix& m_lightModelView; Vec4f m_colorRGBA; Matrix& m_viewportMat; Matrix m_projectionModelViewMat; Matrix m_projectionLightViewMat; float m_ambient_coefficient; float m_diffuse_coefficient; float m_specular_coefficient; b3AlignedObjectArray* m_shadowBuffer; int m_width; int m_height; int m_index; mat<2, 3, float> varying_uv; // triangle uv coordinates, written by the vertex shader, read by the fragment shader mat<4, 3, float> varying_tri; // triangle coordinates (clip coordinates), written by VS, read by FS mat<4, 3, float> varying_tri_light_view; mat<3, 3, float> varying_nrm; // normal per vertex to be interpolated by FS mat<4, 3, float> world_tri; // model triangle coordinates in the world space used for backface culling, written by VS Shader(Model* model, Vec3f light_dir_local, Vec3f light_color, Matrix& modelView, Matrix& lightModelView, Matrix& projectionMat, Matrix& modelMat, Matrix& viewportMat, Vec3f localScaling, const Vec4f& colorRGBA, int width, int height, b3AlignedObjectArray* shadowBuffer, float ambient_coefficient = 0.6, float diffuse_coefficient = 0.35, float specular_coefficient = 0.05) : m_model(model), m_light_dir_local(light_dir_local), m_light_color(light_color), m_modelMat(modelMat), m_modelView1(modelView), m_projectionMat(projectionMat), m_localScaling(localScaling), m_lightModelView(lightModelView), m_colorRGBA(colorRGBA), m_viewportMat(viewportMat), m_ambient_coefficient(ambient_coefficient), m_diffuse_coefficient(diffuse_coefficient), m_specular_coefficient(specular_coefficient), m_shadowBuffer(shadowBuffer), m_width(width), m_height(height) { m_nearPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] - 1); m_farPlane = m_projectionMat.col(3)[2] / (m_projectionMat.col(2)[2] + 1); //printf("near=%f, far=%f\n", m_nearPlane, m_farPlane); m_invModelMat = m_modelMat.invert_transpose(); m_projectionModelViewMat = m_projectionMat * m_modelView1; m_projectionLightViewMat = m_projectionMat * m_lightModelView; } virtual Vec4f vertex(int iface, int nthvert) { //B3_PROFILE("vertex"); Vec2f uv = m_model->uv(iface, nthvert); varying_uv.set_col(nthvert, uv); varying_nrm.set_col(nthvert, proj<3>(m_invModelMat * embed<4>(m_model->normal(iface, nthvert), 0.f))); Vec3f unScaledVert = m_model->vert(iface, nthvert); Vec3f scaledVert = Vec3f(unScaledVert[0] * m_localScaling[0], unScaledVert[1] * m_localScaling[1], unScaledVert[2] * m_localScaling[2]); Vec4f gl_Vertex = m_projectionModelViewMat * embed<4>(scaledVert); varying_tri.set_col(nthvert, gl_Vertex); Vec4f world_Vertex = m_modelMat * embed<4>(scaledVert); world_tri.set_col(nthvert, world_Vertex); Vec4f gl_VertexLightView = m_projectionLightViewMat * embed<4>(scaledVert); varying_tri_light_view.set_col(nthvert, gl_VertexLightView); return gl_Vertex; } virtual bool fragment(Vec3f bar, TGAColor& color) { //B3_PROFILE("fragment"); Vec4f p = m_viewportMat * (varying_tri_light_view * bar); float depth = p[2]; p = p / p[3]; float index_x = b3Max(float(0.0), b3Min(float(m_width - 1), p[0])); float index_y = b3Max(float(0.0), b3Min(float(m_height - 1), p[1])); int idx = int(index_x) + int(index_y) * m_width; // index in the shadowbuffer array float shadow = 1.0; if (m_shadowBuffer && idx >=0 && idx size()) { shadow = 0.8 + 0.2 * (m_shadowBuffer->at(idx) < -depth + 0.05); // magic coeff to avoid z-fighting } Vec3f bn = (varying_nrm * bar).normalize(); Vec2f uv = varying_uv * bar; Vec3f reflection_direction = (bn * (bn * m_light_dir_local * 2.f) - m_light_dir_local).normalize(); float specular = std::pow(b3Max(reflection_direction.z, 0.f), m_model->specular(uv)); float diffuse = b3Max(0.f, bn * m_light_dir_local); color = m_model->diffuse(uv); color[0] *= m_colorRGBA[0]; color[1] *= m_colorRGBA[1]; color[2] *= m_colorRGBA[2]; color[3] *= m_colorRGBA[3]; for (int i = 0; i < 3; ++i) { int orgColor = 0; float floatColor = (m_ambient_coefficient * color[i] + shadow * (m_diffuse_coefficient * diffuse + m_specular_coefficient * specular) * color[i] * m_light_color[i]); if (floatColor==floatColor) { orgColor=int(floatColor); } color[i] = b3Min(orgColor, 255); } return false; } }; TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray& depthBuffer, b3AlignedObjectArray* shadowBuffer) : m_model(0), m_rgbColorBuffer(rgbColorBuffer), m_depthBuffer(depthBuffer), m_shadowBuffer(shadowBuffer), m_segmentationMaskBufferPtr(0), m_userData(0), m_userIndex(-1), m_objectIndex(-1), m_doubleSided(false) { Vec3f eye(1, 1, 3); Vec3f center(0, 0, 0); Vec3f up(0, 0, 1); m_lightDirWorld.setValue(0, 0, 0); m_lightColor.setValue(1, 1, 1); m_localScaling.setValue(1, 1, 1); m_modelMatrix = Matrix::identity(); m_lightAmbientCoeff = 0.6; m_lightDiffuseCoeff = 0.35; m_lightSpecularCoeff = 0.05; } TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray& depthBuffer, b3AlignedObjectArray* shadowBuffer, b3AlignedObjectArray* segmentationMaskBuffer, int objectIndex, int linkIndex) : m_model(0), m_rgbColorBuffer(rgbColorBuffer), m_depthBuffer(depthBuffer), m_shadowBuffer(shadowBuffer), m_segmentationMaskBufferPtr(segmentationMaskBuffer), m_userData(0), m_userIndex(-1), m_objectIndex(objectIndex), m_linkIndex(linkIndex), m_doubleSided(false) { Vec3f eye(1, 1, 3); Vec3f center(0, 0, 0); Vec3f up(0, 0, 1); m_lightDirWorld.setValue(0, 0, 0); m_lightColor.setValue(1, 1, 1); m_localScaling.setValue(1, 1, 1); m_modelMatrix = Matrix::identity(); m_lightAmbientCoeff = 0.6; m_lightDiffuseCoeff = 0.35; m_lightSpecularCoeff = 0.05; } TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray& depthBuffer) : m_model(0), m_rgbColorBuffer(rgbColorBuffer), m_depthBuffer(depthBuffer), m_shadowBuffer(0), m_segmentationMaskBufferPtr(0), m_userData(0), m_userIndex(-1), m_objectIndex(-1), m_doubleSided(false) { Vec3f eye(1, 1, 3); Vec3f center(0, 0, 0); Vec3f up(0, 0, 1); m_lightDirWorld.setValue(0, 0, 0); m_lightColor.setValue(1, 1, 1); m_localScaling.setValue(1, 1, 1); m_modelMatrix = Matrix::identity(); m_lightAmbientCoeff = 0.6; m_lightDiffuseCoeff = 0.35; m_lightSpecularCoeff = 0.05; } TinyRenderObjectData::TinyRenderObjectData(TGAImage& rgbColorBuffer, b3AlignedObjectArray& depthBuffer, b3AlignedObjectArray* segmentationMaskBuffer, int objectIndex) : m_model(0), m_rgbColorBuffer(rgbColorBuffer), m_depthBuffer(depthBuffer), m_shadowBuffer(0), m_segmentationMaskBufferPtr(segmentationMaskBuffer), m_userData(0), m_userIndex(-1), m_objectIndex(objectIndex), m_doubleSided(false) { Vec3f eye(1, 1, 3); Vec3f center(0, 0, 0); Vec3f up(0, 0, 1); m_lightDirWorld.setValue(0, 0, 0); m_lightColor.setValue(1, 1, 1); m_localScaling.setValue(1, 1, 1); m_modelMatrix = Matrix::identity(); m_lightAmbientCoeff = 0.6; m_lightDiffuseCoeff = 0.35; m_lightSpecularCoeff = 0.05; } void TinyRenderObjectData::loadModel(const char* fileName, CommonFileIOInterface* fileIO) { //todo(erwincoumans) move the file loading out of here char relativeFileName[1024]; if (!fileIO->findResourcePath(fileName, relativeFileName, 1024)) { printf("Cannot find file %s\n", fileName); } else { m_model = new Model(relativeFileName); } } void TinyRenderObjectData::registerMeshShape(const float* vertices, int numVertices, const int* indices, int numIndices, const float rgbaColor[4], unsigned char* textureImage, int textureWidth, int textureHeight) { if (0 == m_model) { { B3_PROFILE("setColorRGBA"); m_model = new Model(); m_model->setColorRGBA(rgbaColor); } if (textureImage) { { B3_PROFILE("setDiffuseTextureFromData"); m_model->setDiffuseTextureFromData(textureImage, textureWidth, textureHeight); } } else { /*char relativeFileName[1024]; if (b3ResourcePath::findResourcePath("floor_diffuse.tga", relativeFileName, 1024)) { m_model->loadDiffuseTexture(relativeFileName); } */ } { B3_PROFILE("reserveMemory"); m_model->reserveMemory(numVertices, numIndices); } { B3_PROFILE("addVertex"); for (int i = 0; i < numVertices; i++) { m_model->addVertex(vertices[i * 9], vertices[i * 9 + 1], vertices[i * 9 + 2], vertices[i * 9 + 4], vertices[i * 9 + 5], vertices[i * 9 + 6], vertices[i * 9 + 7], vertices[i * 9 + 8]); } } { B3_PROFILE("addTriangle"); for (int i = 0; i < numIndices; i += 3) { m_model->addTriangle(indices[i], indices[i], indices[i], indices[i + 1], indices[i + 1], indices[i + 1], indices[i + 2], indices[i + 2], indices[i + 2]); } } } } void TinyRenderObjectData::registerMesh2(btAlignedObjectArray& vertices, btAlignedObjectArray& normals, btAlignedObjectArray& indices, CommonFileIOInterface* fileIO) { if (0 == m_model) { int numVertices = vertices.size(); int numIndices = indices.size(); m_model = new Model(); char relativeFileName[1024]; if (fileIO->findResourcePath("floor_diffuse.tga", relativeFileName, 1024)) { m_model->loadDiffuseTexture(relativeFileName); } for (int i = 0; i < numVertices; i++) { m_model->addVertex(vertices[i].x(), vertices[i].y(), vertices[i].z(), normals[i].x(), normals[i].y(), normals[i].z(), 0.5, 0.5); } for (int i = 0; i < numIndices; i += 3) { m_model->addTriangle(indices[i], indices[i], indices[i], indices[i + 1], indices[i + 1], indices[i + 1], indices[i + 2], indices[i + 2], indices[i + 2]); } } } void TinyRenderObjectData::createCube(float halfExtentsX, float halfExtentsY, float halfExtentsZ, CommonFileIOInterface* fileIO) { b3BulletDefaultFileIO defaultFileIO; if (fileIO==0) { fileIO = &defaultFileIO; } m_model = new Model(); char relativeFileName[1024]; if (fileIO->findResourcePath("floor_diffuse.tga", relativeFileName, 1024)) { m_model->loadDiffuseTexture(relativeFileName); } int strideInBytes = 9 * sizeof(float); int numVertices = sizeof(cube_vertices_textured) / strideInBytes; int numIndices = sizeof(cube_indices) / sizeof(int); for (int i = 0; i < numVertices; i++) { m_model->addVertex(halfExtentsX * cube_vertices_textured[i * 9], halfExtentsY * cube_vertices_textured[i * 9 + 1], halfExtentsZ * cube_vertices_textured[i * 9 + 2], cube_vertices_textured[i * 9 + 4], cube_vertices_textured[i * 9 + 5], cube_vertices_textured[i * 9 + 6], cube_vertices_textured[i * 9 + 7], cube_vertices_textured[i * 9 + 8]); } for (int i = 0; i < numIndices; i += 3) { m_model->addTriangle(cube_indices[i], cube_indices[i], cube_indices[i], cube_indices[i + 1], cube_indices[i + 1], cube_indices[i + 1], cube_indices[i + 2], cube_indices[i + 2], cube_indices[i + 2]); } } TinyRenderObjectData::~TinyRenderObjectData() { delete m_model; } static bool equals(const Vec4f& vA, const Vec4f& vB) { return false; } static void clipEdge(const mat<4, 3, float>& triangleIn, int vertexIndexA, int vertexIndexB, b3AlignedObjectArray& vertices) { Vec4f v0New = triangleIn.col(vertexIndexA); Vec4f v1New = triangleIn.col(vertexIndexB); bool v0Inside = v0New[3] > 0.f && v0New[2] > -v0New[3]; bool v1Inside = v1New[3] > 0.f && v1New[2] > -v1New[3]; if (v0Inside && v1Inside) { } else if (v0Inside || v1Inside) { float d0 = v0New[2] + v0New[3]; float d1 = v1New[2] + v1New[3]; float factor = 1.0 / (d1 - d0); Vec4f newVertex = (v0New * d1 - v1New * d0) * factor; if (v0Inside) { v1New = newVertex; } else { v0New = newVertex; } } else { return; } if (vertices.size() == 0 || !(equals(vertices[vertices.size() - 1], v0New))) { vertices.push_back(v0New); } vertices.push_back(v1New); } static bool clipTriangleAgainstNearplane(const mat<4, 3, float>& triangleIn, b3AlignedObjectArray >& clippedTrianglesOut) { //discard triangle if all vertices are behind near-plane if (triangleIn[3][0] < 0 && triangleIn[3][1] < 0 && triangleIn[3][2] < 0) { return true; } //accept triangle if all vertices are in front of the near-plane if (triangleIn[3][0] >= 0 && triangleIn[3][1] >= 0 && triangleIn[3][2] >= 0) { clippedTrianglesOut.push_back(triangleIn); return false; } Vec4f vtxCache[5]; b3AlignedObjectArray vertices; vertices.initializeFromBuffer(vtxCache, 0, 5); clipEdge(triangleIn, 0, 1, vertices); clipEdge(triangleIn, 1, 2, vertices); clipEdge(triangleIn, 2, 0, vertices); if (vertices.size() < 3) return true; if (equals(vertices[0], vertices[vertices.size() - 1])) { vertices.pop_back(); } //create a fan of triangles for (int i = 1; i < vertices.size() - 1; i++) { mat<4, 3, float>& vtx = clippedTrianglesOut.expand(); vtx.set_col(0, vertices[0]); vtx.set_col(1, vertices[i]); vtx.set_col(2, vertices[i + 1]); } return true; } void TinyRenderer::renderObject(TinyRenderObjectData& renderData) { B3_PROFILE("renderObject"); int width = renderData.m_rgbColorBuffer.get_width(); int height = renderData.m_rgbColorBuffer.get_height(); Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0], renderData.m_lightDirWorld[1], renderData.m_lightDirWorld[2]); Vec3f light_color = Vec3f(renderData.m_lightColor[0], renderData.m_lightColor[1], renderData.m_lightColor[2]); float light_distance = renderData.m_lightDistance; Model* model = renderData.m_model; if (0 == model) return; //discard invisible objects (zero alpha) if (model->getColorRGBA()[3] == 0) return; renderData.m_viewportMatrix = viewport(0, 0, width, height); b3AlignedObjectArray& zbuffer = renderData.m_depthBuffer; b3AlignedObjectArray* shadowBufferPtr = renderData.m_shadowBuffer; int* segmentationMaskBufferPtr = (renderData.m_segmentationMaskBufferPtr && renderData.m_segmentationMaskBufferPtr->size()) ? &renderData.m_segmentationMaskBufferPtr->at(0) : 0; TGAImage& frame = renderData.m_rgbColorBuffer; { // light target is set to be the origin, and the up direction is set to be vertical up. Matrix lightViewMatrix = lookat(light_dir_local * light_distance, Vec3f(0.0, 0.0, 0.0), Vec3f(0.0, 0.0, 1.0)); Matrix lightModelViewMatrix = lightViewMatrix * renderData.m_modelMatrix; Matrix modelViewMatrix = renderData.m_viewMatrix * renderData.m_modelMatrix; Vec3f localScaling(renderData.m_localScaling[0], renderData.m_localScaling[1], renderData.m_localScaling[2]); Matrix viewMatrixInv = renderData.m_viewMatrix.invert(); btVector3 P(viewMatrixInv[0][3], viewMatrixInv[1][3], viewMatrixInv[2][3]); Shader shader(model, light_dir_local, light_color, modelViewMatrix, lightModelViewMatrix, renderData.m_projectionMatrix, renderData.m_modelMatrix, renderData.m_viewportMatrix, localScaling, model->getColorRGBA(), width, height, shadowBufferPtr, renderData.m_lightAmbientCoeff, renderData.m_lightDiffuseCoeff, renderData.m_lightSpecularCoeff); { B3_PROFILE("face"); for (int i = 0; i < model->nfaces(); i++) { for (int j = 0; j < 3; j++) { shader.vertex(i, j); } if (!renderData.m_doubleSided) { // backface culling btVector3 v0(shader.world_tri.col(0)[0], shader.world_tri.col(0)[1], shader.world_tri.col(0)[2]); btVector3 v1(shader.world_tri.col(1)[0], shader.world_tri.col(1)[1], shader.world_tri.col(1)[2]); btVector3 v2(shader.world_tri.col(2)[0], shader.world_tri.col(2)[1], shader.world_tri.col(2)[2]); btVector3 N = (v1 - v0).cross(v2 - v0); if ((v0 - P).dot(N) >= 0) continue; } mat<4, 3, float> stackTris[3]; b3AlignedObjectArray > clippedTriangles; clippedTriangles.initializeFromBuffer(stackTris, 0, 3); bool hasClipped = clipTriangleAgainstNearplane(shader.varying_tri, clippedTriangles); if (hasClipped) { for (int t = 0; t < clippedTriangles.size(); t++) { triangleClipped(clippedTriangles[t], shader.varying_tri, shader, frame, &zbuffer[0], segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex + ((renderData.m_linkIndex + 1) << 24)); } } else { triangle(shader.varying_tri, shader, frame, &zbuffer[0], segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex + ((renderData.m_linkIndex + 1) << 24)); } } } } } void TinyRenderer::renderObjectDepth(TinyRenderObjectData& renderData) { int width = renderData.m_rgbColorBuffer.get_width(); int height = renderData.m_rgbColorBuffer.get_height(); Vec3f light_dir_local = Vec3f(renderData.m_lightDirWorld[0], renderData.m_lightDirWorld[1], renderData.m_lightDirWorld[2]); float light_distance = renderData.m_lightDistance; Model* model = renderData.m_model; if (0 == model) return; renderData.m_viewportMatrix = viewport(0, 0, width, height); float* shadowBufferPtr = (renderData.m_shadowBuffer && renderData.m_shadowBuffer->size()) ? &renderData.m_shadowBuffer->at(0) : 0; int* segmentationMaskBufferPtr = 0; TGAImage depthFrame(width, height, TGAImage::RGB); { // light target is set to be the origin, and the up direction is set to be vertical up. Matrix lightViewMatrix = lookat(light_dir_local * light_distance, Vec3f(0.0, 0.0, 0.0), Vec3f(0.0, 0.0, 1.0)); Matrix lightModelViewMatrix = lightViewMatrix * renderData.m_modelMatrix; Matrix lightViewProjectionMatrix = renderData.m_projectionMatrix; Vec3f localScaling(renderData.m_localScaling[0], renderData.m_localScaling[1], renderData.m_localScaling[2]); DepthShader shader(model, lightModelViewMatrix, lightViewProjectionMatrix, renderData.m_modelMatrix, localScaling, light_distance); for (int i = 0; i < model->nfaces(); i++) { for (int j = 0; j < 3; j++) { shader.vertex(i, j); } mat<4, 3, float> stackTris[3]; b3AlignedObjectArray > clippedTriangles; clippedTriangles.initializeFromBuffer(stackTris, 0, 3); bool hasClipped = clipTriangleAgainstNearplane(shader.varying_tri, clippedTriangles); if (hasClipped) { for (int t = 0; t < clippedTriangles.size(); t++) { triangleClipped(clippedTriangles[t], shader.varying_tri, shader, depthFrame, shadowBufferPtr, segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex); } } else { triangle(shader.varying_tri, shader, depthFrame, shadowBufferPtr, segmentationMaskBufferPtr, renderData.m_viewportMatrix, renderData.m_objectIndex); } } } }