// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. extern crate anyhow; use rust_bert::bert::{BertConfigResources, BertModelResources, BertVocabResources}; use rust_bert::pipelines::common::{ModelResource, ModelType}; use rust_bert::pipelines::masked_language::{MaskedLanguageConfig, MaskedLanguageModel}; use rust_bert::resources::RemoteResource; fn main() -> anyhow::Result<()> { // Set-up model let config = MaskedLanguageConfig::new( ModelType::Bert, ModelResource::Torch(Box::new(RemoteResource::from_pretrained( BertModelResources::BERT, ))), RemoteResource::from_pretrained(BertConfigResources::BERT), RemoteResource::from_pretrained(BertVocabResources::BERT), None, true, None, None, Some(String::from("")), ); let mask_language_model = MaskedLanguageModel::new(config)?; // Define input let input = [ "Hello I am a student", "Paris is the of France. It is in Europe.", ]; // Run model let output = mask_language_model.predict(input)?; for sentence_output in output { println!("{sentence_output:?}"); } Ok(()) }