// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. extern crate anyhow; use rust_bert::pipelines::question_answering::{QaInput, QuestionAnsweringModel}; fn main() -> anyhow::Result<()> { // Set-up Question Answering model let qa_model = QuestionAnsweringModel::new(Default::default())?; // Define input let question_1 = String::from("Where does Amy live ?"); let context_1 = String::from("Amy lives in Amsterdam"); let question_2 = String::from("Where does Eric live"); let context_2 = String::from("While Amy lives in Amsterdam, Eric is in The Hague."); let qa_input_1 = QaInput { question: question_1, context: context_1, }; let qa_input_2 = QaInput { question: question_2, context: context_2, }; // Get answer let answers = qa_model.predict(&[qa_input_1, qa_input_2], 1, 32); println!("{answers:?}"); Ok(()) }