// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use rust_bert::bert::{BertConfigResources, BertModelResources, BertVocabResources}; use rust_bert::pipelines::common::{ModelResource, ModelType}; use rust_bert::pipelines::ner::NERModel; use rust_bert::pipelines::token_classification::{ LabelAggregationOption, TokenClassificationConfig, }; use rust_bert::resources::RemoteResource; fn main() -> anyhow::Result<()> { // Load a configuration let config = TokenClassificationConfig::new( ModelType::Bert, ModelResource::Torch(Box::new(RemoteResource::from_pretrained( BertModelResources::BERT_NER, ))), RemoteResource::from_pretrained(BertConfigResources::BERT_NER), RemoteResource::from_pretrained(BertVocabResources::BERT_NER), None, //merges resource only relevant with ModelType::Roberta false, //lowercase false, None, LabelAggregationOption::Mode, ); // Create the model let token_classification_model = NERModel::new(config)?; let input = [ "My name is Amélie. I live in Москва.", "Chongqing is a city in China.", ]; let token_outputs = token_classification_model.predict(&input); for token in token_outputs { println!("{token:?}"); } Ok(()) }