extern crate anyhow; extern crate dirs; use rust_bert::bert::{ BertConfig, BertConfigResources, BertForMaskedLM, BertForMultipleChoice, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertModelResources, BertVocabResources, }; use rust_bert::pipelines::common::{ModelResource, ModelType}; use rust_bert::pipelines::masked_language::{MaskedLanguageConfig, MaskedLanguageModel}; use rust_bert::pipelines::ner::NERModel; use rust_bert::pipelines::question_answering::{ QaInput, QuestionAnsweringConfig, QuestionAnsweringModel, }; use rust_bert::resources::{RemoteResource, ResourceProvider}; use rust_bert::Config; use rust_tokenizers::tokenizer::{BertTokenizer, MultiThreadedTokenizer, TruncationStrategy}; use rust_tokenizers::vocab::Vocab; use std::collections::HashMap; use tch::{nn, no_grad, Device, Tensor}; #[test] fn bert_masked_lm() -> anyhow::Result<()> { // Resources paths let config_resource = RemoteResource::from_pretrained(BertConfigResources::BERT); let vocab_resource = RemoteResource::from_pretrained(BertVocabResources::BERT); let weights_resource = RemoteResource::from_pretrained(BertModelResources::BERT); let config_path = config_resource.get_local_path()?; let vocab_path = vocab_resource.get_local_path()?; let weights_path = weights_resource.get_local_path()?; // Set-up masked LM model let device = Device::Cpu; let mut vs = nn::VarStore::new(device); let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?; let config = BertConfig::from_file(config_path); let bert_model = BertForMaskedLM::new(vs.root(), &config); vs.load(weights_path)?; // Define input let input = [ "Looks like one thing is missing", "It\'s like comparing oranges to apples", ]; let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let mut tokenized_input = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }) .collect::>(); // Masking the token [thing] of sentence 1 and [oranges] of sentence 2 tokenized_input[0][4] = 103; tokenized_input[1][6] = 103; let tokenized_input = tokenized_input .iter() .map(|input| Tensor::from_slice(input)) .collect::>(); let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device); // Forward pass let model_output = no_grad(|| { bert_model.forward_t( Some(&input_tensor), None, None, None, None, None, None, false, ) }); // Print masked tokens let index_1 = model_output .prediction_scores .get(0) .get(4) .argmax(0, false); let index_2 = model_output .prediction_scores .get(1) .get(6) .argmax(0, false); let word_1 = tokenizer.vocab().id_to_token(&index_1.int64_value(&[])); let word_2 = tokenizer.vocab().id_to_token(&index_2.int64_value(&[])); assert_eq!("person", word_1); // Outputs "person" : "Looks like one [person] is missing" assert_eq!("orange", word_2); // Outputs "pear" : "It\'s like comparing [pear] to apples" Ok(()) } #[test] fn bert_masked_lm_pipeline() -> anyhow::Result<()> { // Set-up model let config = MaskedLanguageConfig::new( ModelType::Bert, ModelResource::Torch(Box::new(RemoteResource::from_pretrained( BertModelResources::BERT, ))), RemoteResource::from_pretrained(BertConfigResources::BERT), RemoteResource::from_pretrained(BertVocabResources::BERT), None, true, None, None, Some(String::from("")), ); let mask_language_model = MaskedLanguageModel::new(config)?; // Define input let input = [ "Hello I am a student", "Paris is the of France. It is in Europe.", ]; // Run model let output = mask_language_model.predict(input)?; assert_eq!(output.len(), 2); assert_eq!(output[0].len(), 1); assert_eq!(output[0][0].id, 2267); assert_eq!(output[0][0].text, "college"); assert!((output[0][0].score - 8.0919).abs() < 1e-4); assert_eq!(output[1].len(), 2); assert_eq!(output[1][0].id, 3007); assert_eq!(output[1][0].text, "capital"); assert!((output[1][0].score - 16.7249).abs() < 1e-4); assert_eq!(output[1][1].id, 2284); assert_eq!(output[1][1].text, "located"); assert!((output[1][1].score - 9.0452).abs() < 1e-4); Ok(()) } #[test] fn bert_for_sequence_classification() -> anyhow::Result<()> { // Resources paths let config_resource = RemoteResource::from_pretrained(BertConfigResources::BERT); let vocab_resource = RemoteResource::from_pretrained(BertVocabResources::BERT); let config_path = config_resource.get_local_path()?; let vocab_path = vocab_resource.get_local_path()?; // Set-up model let device = Device::Cpu; let vs = nn::VarStore::new(device); let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?; let mut config = BertConfig::from_file(config_path); let mut dummy_label_mapping = HashMap::new(); dummy_label_mapping.insert(0, String::from("Positive")); dummy_label_mapping.insert(1, String::from("Negative")); dummy_label_mapping.insert(3, String::from("Neutral")); config.id2label = Some(dummy_label_mapping); config.output_attentions = Some(true); config.output_hidden_states = Some(true); let bert_model = BertForSequenceClassification::new(vs.root(), &config)?; // Define input let input = [ "Looks like one thing is missing", "It\'s like comparing oranges to apples", ]; let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let tokenized_input = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }) .map(|input| Tensor::from_slice(&(input))) .collect::>(); let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device); // Forward pass let model_output = no_grad(|| bert_model.forward_t(Some(&input_tensor), None, None, None, None, false)); assert_eq!(model_output.logits.size(), &[2, 3]); assert_eq!( config.num_hidden_layers as usize, model_output.all_hidden_states.unwrap().len() ); assert_eq!( config.num_hidden_layers as usize, model_output.all_attentions.unwrap().len() ); Ok(()) } #[test] fn bert_for_multiple_choice() -> anyhow::Result<()> { // Resources paths let config_resource = RemoteResource::from_pretrained(BertConfigResources::BERT); let vocab_resource = RemoteResource::from_pretrained(BertVocabResources::BERT); let config_path = config_resource.get_local_path()?; let vocab_path = vocab_resource.get_local_path()?; // Set-up model let device = Device::Cpu; let vs = nn::VarStore::new(device); let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?; let mut config = BertConfig::from_file(config_path); config.output_attentions = Some(true); config.output_hidden_states = Some(true); let bert_model = BertForMultipleChoice::new(vs.root(), &config); // Define input let input = [ "Looks like one thing is missing", "It\'s like comparing oranges to apples", ]; let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let tokenized_input = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }) .map(|input| Tensor::from_slice(&(input))) .collect::>(); let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0) .to(device) .unsqueeze(0); // Forward pass let model_output = no_grad(|| bert_model.forward_t(&input_tensor, None, None, None, false)); assert_eq!(model_output.logits.size(), &[1, 2]); assert_eq!( config.num_hidden_layers as usize, model_output.all_hidden_states.unwrap().len() ); assert_eq!( config.num_hidden_layers as usize, model_output.all_attentions.unwrap().len() ); Ok(()) } #[test] fn bert_for_token_classification() -> anyhow::Result<()> { // Resources paths let config_resource = RemoteResource::from_pretrained(BertConfigResources::BERT); let vocab_resource = RemoteResource::from_pretrained(BertVocabResources::BERT); let config_path = config_resource.get_local_path()?; let vocab_path = vocab_resource.get_local_path()?; // Set-up model let device = Device::Cpu; let vs = nn::VarStore::new(device); let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?; let mut config = BertConfig::from_file(config_path); let mut dummy_label_mapping = HashMap::new(); dummy_label_mapping.insert(0, String::from("O")); dummy_label_mapping.insert(1, String::from("LOC")); dummy_label_mapping.insert(2, String::from("PER")); dummy_label_mapping.insert(3, String::from("ORG")); config.id2label = Some(dummy_label_mapping); config.output_attentions = Some(true); config.output_hidden_states = Some(true); let bert_model = BertForTokenClassification::new(vs.root(), &config)?; // Define input let input = [ "Looks like one thing is missing", "It\'s like comparing oranges to apples", ]; let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let tokenized_input = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }) .map(|input| Tensor::from_slice(&(input))) .collect::>(); let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device); // Forward pass let model_output = no_grad(|| bert_model.forward_t(Some(&input_tensor), None, None, None, None, false)); assert_eq!(model_output.logits.size(), &[2, 11, 4]); assert_eq!( config.num_hidden_layers as usize, model_output.all_hidden_states.unwrap().len() ); assert_eq!( config.num_hidden_layers as usize, model_output.all_attentions.unwrap().len() ); Ok(()) } #[test] fn bert_for_question_answering() -> anyhow::Result<()> { // Resources paths let config_resource = RemoteResource::from_pretrained(BertConfigResources::BERT); let vocab_resource = RemoteResource::from_pretrained(BertVocabResources::BERT); let config_path = config_resource.get_local_path()?; let vocab_path = vocab_resource.get_local_path()?; // Set-up model let device = Device::Cpu; let vs = nn::VarStore::new(device); let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?; let mut config = BertConfig::from_file(config_path); config.output_attentions = Some(true); config.output_hidden_states = Some(true); let bert_model = BertForQuestionAnswering::new(vs.root(), &config); // Define input let input = [ "Looks like one thing is missing", "It\'s like comparing oranges to apples", ]; let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let tokenized_input = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }) .map(|input| Tensor::from_slice(&(input))) .collect::>(); let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device); // Forward pass let model_output = no_grad(|| bert_model.forward_t(Some(&input_tensor), None, None, None, None, false)); assert_eq!(model_output.start_logits.size(), &[2, 11]); assert_eq!(model_output.end_logits.size(), &[2, 11]); assert_eq!( config.num_hidden_layers as usize, model_output.all_hidden_states.unwrap().len() ); assert_eq!( config.num_hidden_layers as usize, model_output.all_attentions.unwrap().len() ); Ok(()) } #[test] fn bert_pre_trained_ner() -> anyhow::Result<()> { // Set-up model let ner_model = NERModel::new(Default::default())?; // Define input let input = [ "My name is Amy. I live in Paris.", "Paris is a city in France.", ]; // Run model let output = ner_model.predict(&input); assert_eq!(output.len(), 2); assert_eq!(output[0].len(), 2); assert_eq!(output[1].len(), 2); assert_eq!(output[0][0].word, "Amy"); assert!((output[0][0].score - 0.9986).abs() < 1e-4); assert_eq!(output[0][0].label, "I-PER"); assert_eq!(output[0][1].word, "Paris"); assert!((output[0][1].score - 0.9986).abs() < 1e-4); assert_eq!(output[0][1].label, "I-LOC"); assert_eq!(output[1][0].word, "Paris"); assert!((output[1][0].score - 0.9981).abs() < 1e-4); assert_eq!(output[1][0].label, "I-LOC"); assert_eq!(output[1][1].word, "France"); assert!((output[1][1].score - 0.9984).abs() < 1e-4); assert_eq!(output[1][1].label, "I-LOC"); Ok(()) } #[test] fn bert_pre_trained_ner_full_entities() -> anyhow::Result<()> { // Set-up model let ner_model = NERModel::new(Default::default())?; // Define input let input = ["Asked John Smith about Acme Corp", "Let's go to New York!"]; // Run model let output = ner_model.predict_full_entities(&input); assert_eq!(output.len(), 2); assert_eq!(output[0][0].word, "John Smith"); assert!((output[0][0].score - 0.9872).abs() < 1e-4); assert_eq!(output[0][0].label, "PER"); assert_eq!(output[0][1].word, "Acme Corp"); assert!((output[0][1].score - 0.9622).abs() < 1e-4); assert_eq!(output[0][1].label, "ORG"); assert_eq!(output[1][0].word, "New York"); assert!((output[1][0].score - 0.9991).abs() < 1e-4); assert_eq!(output[1][0].label, "LOC"); Ok(()) } #[test] fn bert_question_answering() -> anyhow::Result<()> { // Set-up question answering model let config = QuestionAnsweringConfig { model_type: ModelType::Bert, model_resource: ModelResource::Torch(Box::new(RemoteResource::from_pretrained( BertModelResources::BERT_QA, ))), config_resource: Box::new(RemoteResource::from_pretrained( BertConfigResources::BERT_QA, )), vocab_resource: Box::new(RemoteResource::from_pretrained(BertVocabResources::BERT_QA)), lower_case: false, strip_accents: Some(false), add_prefix_space: None, device: Device::Cpu, ..Default::default() }; let qa_model = QuestionAnsweringModel::new(config)?; // Define input let question = String::from("Where does Amy live ?"); let context = String::from("Amy lives in Amsterdam"); let qa_input = QaInput { question, context }; let answers = qa_model.predict(&[qa_input], 1, 32); assert_eq!(answers.len(), 1usize); assert_eq!(answers[0].len(), 1usize); assert_eq!(answers[0][0].start, 13); assert_eq!(answers[0][0].end, 22); assert!((answers[0][0].score - 0.9806).abs() < 1e-4); assert_eq!(answers[0][0].answer, "Amsterdam"); Ok(()) }