use rust_bert::mbart::{ MBartConfig, MBartConfigResources, MBartModel, MBartModelResources, MBartVocabResources, }; use rust_bert::pipelines::common::ModelType; use rust_bert::pipelines::translation::{Language, TranslationModelBuilder}; use rust_bert::resources::{RemoteResource, ResourceProvider}; use rust_bert::Config; use rust_tokenizers::tokenizer::{MBart50Tokenizer, Tokenizer, TruncationStrategy}; use tch::{nn, Device, Tensor}; #[test] fn mbart_lm_model() -> anyhow::Result<()> { // Resources paths let config_resource = Box::new(RemoteResource::from_pretrained( MBartConfigResources::MBART50_MANY_TO_MANY, )); let vocab_resource = Box::new(RemoteResource::from_pretrained( MBartVocabResources::MBART50_MANY_TO_MANY, )); let weights_resource = Box::new(RemoteResource::from_pretrained( MBartModelResources::MBART50_MANY_TO_MANY, )); let config_path = config_resource.get_local_path()?; let vocab_path = vocab_resource.get_local_path()?; let weights_path = weights_resource.get_local_path()?; // Set-up masked LM model let device = Device::Cpu; let mut vs = nn::VarStore::new(device); let tokenizer = MBart50Tokenizer::from_file(vocab_path.to_str().unwrap(), false)?; let config = MBartConfig::from_file(config_path); let mbart_model = MBartModel::new(&vs.root() / "model", &config); vs.load(weights_path)?; // Define input let input = ["One two three four"]; let tokenized_input = tokenizer.encode_list(&input, 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input .iter() .map(|input| input.token_ids.len()) .max() .unwrap(); let tokenized_input = tokenized_input .iter() .map(|input| input.token_ids.clone()) .map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }) .map(|input| Tensor::from_slice(&(input))) .collect::>(); let input_tensor = Tensor::stack(tokenized_input.as_slice(), 0).to(device); // Forward pass let model_output = mbart_model.forward_t(Some(&input_tensor), None, None, None, None, None, false); assert_eq!(model_output.decoder_output.size(), vec!(1, 5, 1024)); assert_eq!( model_output.encoder_hidden_state.unwrap().size(), vec!(1, 5, 1024) ); assert!((model_output.decoder_output.double_value(&[0, 0, 0]) - -0.8936).abs() < 1e-4); Ok(()) } #[test] fn mbart_translation() -> anyhow::Result<()> { let model = TranslationModelBuilder::new() .with_device(Device::cuda_if_available()) .with_model_type(ModelType::MBart) .create_model()?; let source_sentence = "This sentence will be translated in multiple languages."; let mut outputs = Vec::new(); outputs.extend(model.translate(&[source_sentence], Language::English, Language::French)?); outputs.extend(model.translate(&[source_sentence], Language::English, Language::Spanish)?); outputs.extend(model.translate(&[source_sentence], Language::English, Language::Hindi)?); assert_eq!(outputs.len(), 3); assert_eq!( outputs[0], " Cette phrase sera traduite en plusieurs langues." ); assert_eq!( outputs[1], " Esta frase será traducida en múltiples idiomas." ); assert_eq!(outputs[2], " यह वाक्य कई भाषाओं में अनुवाद किया जाएगा."); Ok(()) }