/*- * Copyright 2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ /* #include "bsdtar_platform.h" */ #include #if !defined(WINDOWS_OS) #include #ifndef HAVE_MMAP #define HAVE_MMAP 1 #endif #endif #include #include #include #include #include "cpusupport.h" #include "sha256.h" #include "crypto_scrypt_smix.h" #include "crypto_scrypt_smix_sse2.h" #include "crypto_scrypt.h" #include "warnp.h" static void (*smix_func)(uint8_t *, size_t, uint64_t, void *, void *) = NULL; /** * _crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen, smix): * Perform the requested scrypt computation, using ${smix} as the smix routine. */ static int _crypto_scrypt(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p, uint8_t * buf, size_t buflen, void (*smix)(uint8_t *, size_t, uint64_t, void *, void *)) { void * B0, * V0, * XY0; uint8_t * B; uint32_t * V; uint32_t * XY; size_t r = _r, p = _p; uint32_t i; /* Sanity-check parameters. */ #if SIZE_MAX > UINT32_MAX if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { errno = EFBIG; goto err0; } #endif if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { errno = EFBIG; goto err0; } if (((N & (N - 1)) != 0) || (N < 2)) { errno = EINVAL; goto err0; } if ((r > SIZE_MAX / 128 / p) || #if SIZE_MAX / 256 <= UINT32_MAX (r > (SIZE_MAX - 64) / 256) || #endif (N > SIZE_MAX / 128 / r)) { errno = ENOMEM; goto err0; } /* Allocate memory. */ #ifdef HAVE_POSIX_MEMALIGN if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) goto err0; B = (uint8_t *)(B0); if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) goto err1; XY = (uint32_t *)(XY0); #if !defined(MAP_ANON) || !defined(HAVE_MMAP) if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) goto err2; V = (uint32_t *)(V0); #endif #else if ((B0 = malloc(128 * r * p + 63)) == NULL) goto err0; B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) goto err1; XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); #if !defined(MAP_ANON) || !defined(HAVE_MMAP) if ((V0 = malloc(128 * r * N + 63)) == NULL) goto err2; V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); #endif #endif #if defined(MAP_ANON) && defined(HAVE_MMAP) if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, #ifdef MAP_NOCORE MAP_ANON | MAP_PRIVATE | MAP_NOCORE, #else MAP_ANON | MAP_PRIVATE, #endif -1, 0)) == MAP_FAILED) goto err2; V = (uint32_t *)(V0); #endif /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ (smix)(&B[i * 128 * r], r, N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); /* Free memory. */ #if defined(MAP_ANON) && defined(HAVE_MMAP) if (munmap(V0, 128 * r * N)) goto err2; #else free(V0); #endif free(XY0); free(B0); /* Success! */ return (0); err2: free(XY0); err1: free(B0); err0: /* Failure! */ return (-1); } #define TESTLEN 64 static struct scrypt_test { const char * passwd; const char * salt; uint64_t N; uint32_t r; uint32_t p; uint8_t result[TESTLEN]; } testcase = { .passwd = "pleaseletmein", .salt = "SodiumChloride", .N = 16, .r = 8, .p = 1, .result = { 0x25, 0xa9, 0xfa, 0x20, 0x7f, 0x87, 0xca, 0x09, 0xa4, 0xef, 0x8b, 0x9f, 0x77, 0x7a, 0xca, 0x16, 0xbe, 0xb7, 0x84, 0xae, 0x18, 0x30, 0xbf, 0xbf, 0xd3, 0x83, 0x25, 0xaa, 0xbb, 0x93, 0x77, 0xdf, 0x1b, 0xa7, 0x84, 0xd7, 0x46, 0xea, 0x27, 0x3b, 0xf5, 0x16, 0xa4, 0x6f, 0xbf, 0xac, 0xf5, 0x11, 0xc5, 0xbe, 0xba, 0x4c, 0x4a, 0xb3, 0xac, 0xc7, 0xfa, 0x6f, 0x46, 0x0b, 0x6c, 0x0f, 0x47, 0x7b, } }; static int testsmix(void (*smix)(uint8_t *, size_t, uint64_t, void *, void *)) { uint8_t hbuf[TESTLEN]; /* Perform the computation. */ if (_crypto_scrypt( (const uint8_t *)testcase.passwd, strlen(testcase.passwd), (const uint8_t *)testcase.salt, strlen(testcase.salt), testcase.N, testcase.r, testcase.p, hbuf, TESTLEN, smix)) return (-1); /* Does it match? */ return (memcmp(testcase.result, hbuf, TESTLEN)); } static void selectsmix(void) { #ifdef CPUSUPPORT_X86_SSE2 /* If we're running on an SSE2-capable CPU, try that code. */ if (cpusupport_x86_sse2()) { /* If SSE2ized smix works, use it. */ if (!testsmix(crypto_scrypt_smix_sse2)) { smix_func = crypto_scrypt_smix_sse2; return; } warn0("Disabling broken SSE2 scrypt support - please report bug!"); } #endif /* If generic smix works, use it. */ if (!testsmix(crypto_scrypt_smix)) { smix_func = crypto_scrypt_smix; return; } warn0("Generic scrypt code is broken - please report bug!"); /* If we get here, something really bad happened. */ abort(); } /** * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2 greater than 1. * * Return 0 on success; or -1 on error. */ int crypto_scrypt(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t _r, uint32_t _p, uint8_t * buf, size_t buflen) { if (smix_func == NULL) selectsmix(); return (_crypto_scrypt(passwd, passwdlen, salt, saltlen, N, _r, _p, buf, buflen, smix_func)); }