mod common; if_std! { extern crate rust2fun_laws; use std::collections::LinkedList; use std::iter::repeat; use proptest::collection::linked_list; use proptest::prelude::*; use rust2fun::prelude::*; use rust2fun_laws::applicative_laws::*; use rust2fun_laws::apply_laws::*; use rust2fun_laws::flatmap_laws::*; use rust2fun_laws::functor_laws::*; use rust2fun_laws::invariant_laws::*; use rust2fun_laws::monad_laws::*; use rust2fun_laws::monoid_laws::*; use rust2fun_laws::semigroup_laws::*; use rust2fun_laws::semigroupal_laws::*; use crate::common::{parse, print}; proptest! { #[test] fn test_invariant(fa: LinkedList) { prop_assert!(invariant_identity(fa.clone()).holds()); prop_assert!(invariant_composition(fa, print, parse, parse::, print).holds()); } #[test] fn test_functor(fa: LinkedList) { prop_assert!(covariant_identity(fa.clone()).holds()); prop_assert!(covariant_composition(fa.clone(), print, parse::).holds()); prop_assert!(lift_identity(fa.clone()).holds()); prop_assert!(lift_composition(fa, print, parse::).holds()); } #[test] fn test_semigroup(fa: LinkedList, fb: LinkedList, fc: LinkedList) { prop_assert!(repeat_0(fa.clone()).holds()); prop_assert!(repeat_1(fb.clone()).holds()); prop_assert!(semigroup_associativity(fa, fb, fc).holds()); } #[test] fn test_monoid(fa: LinkedList) { prop_assert!(monoid_left_identity(fa.clone()).holds()); prop_assert!(monoid_right_identity(fa.clone()).holds()); prop_assert!(is_id(fa).holds()); } #[test] fn test_semigroupal(fa: LinkedList, fb: LinkedList, fc: LinkedList>) { prop_assert!(semigroupal_associativity(fa, fb, fc).holds()); } #[test] fn test_apply(fa: LinkedList, fb: LinkedList) { prop_assert!(map2_product_consistency(fa.clone(), fb.clone(), |a, b| a.len() == b).holds()); prop_assert!(product_r_consistency(fa.clone(), fb.clone()).holds()); prop_assert!(product_l_consistency(fa, fb).holds()); } #[test] fn test_applicative(a: bool, fa in linked_list(any::(), 0..=1)) { let ff= repeat(print).take(fa.len()).collect::>(); prop_assert!(applicative_identity(fa.clone()).holds()); prop_assert!(applicative_homomorphism::, _, _>(a, print).holds()); prop_assert!(applicative_map(fa.clone(), print).holds()); prop_assert!(ap_product_consistent(fa, ff).holds()); prop_assert!(applicative_unit::>(a).holds()); } #[test] fn test_flatmap(fa in linked_list(any::(), 0..=1)) { let ff= repeat(print).take(fa.len()).collect::>(); prop_assert!(flat_map_associativity(fa.clone(), |x| LinkedList::pure(print(x)), |s| LinkedList::pure(parse::(s))).holds()); prop_assert!(flat_map_associativity(fa.clone(), |_| LinkedList::new(), |s| LinkedList::pure(parse::(s))).holds()); prop_assert!(flat_map_associativity(fa.clone(), |x| LinkedList::pure(print(x)), |_| LinkedList::::new()).holds()); prop_assert!(flat_map_associativity(fa.clone(), |_| LinkedList::new(), |_: String| LinkedList::::new()).holds()); prop_assert!(flat_map_consistent_apply(fa.clone(), ff).holds()); prop_assert!(m_product_consistency(fa.clone(), |x| LinkedList::pure(print(x))).holds()); prop_assert!(m_product_consistency(fa, |_| LinkedList::::new()).holds()); } #[test] fn test_monad(a: bool, fa: LinkedList) { prop_assert!(monad_left_identity::, _, _>(a, |x| LinkedList::pure(print(x))).holds()); prop_assert!(monad_left_identity::, _, _>(a, |_| LinkedList::::new()).holds()); prop_assert!(monad_right_identity(fa.clone()).holds()); prop_assert!(map_flat_map_coherence(fa, print).holds()); } } }