R = = e Y s OO B3
0Nl E E B B B L e

- oo) o e f e e f s o e
IIEIEIIEIEII]
- linlunlﬁ

5 U e BEIEE Hm l---l
| - O EEEEED m B | o=

Composed by Vladimir Ulogov

BUND language programming in 10
minutes

This book briefly introduces a new concatenative programming language based on a
paradigm of multiple stacks.

[want to thank my first teacher, who imparted the
knowledge and guidance necessary to develop my
first programs for the PDP-11 computer.

Introduction

I will introduce a new concatenative programming language called
BUND in this work. What is a concatenative language, and how does
it differ from the programming languages you’re likely familiar with?
You're likely acquainted with applicative programming languages like
Python, C, or Java. Alternatively, you may have discovered functional
programming languages such as Lisp, Haskell, or ML, other examples of
applicative programming languages. This category is defined by the way
functions are viewed and handled. In applicative languages, a function
is treated as a mathematical primitive that computes based on passed
arguments and returns a value. In contrast, concatenative programming
languages pass a data context from one function to another, external to
the function itself. While the stack is the most common method for pass-
ing such context, there are concatenative languages that don’t utilize a
stack. Passing data context enables the concatenation of data processing.
Concatenative languages are less known in the software development
communities, but you might have heard of languages such as Forth, Post-
Script, and Factor.

The stack is utilized in many but not all concatenative languages, while
applicative languages often use stack structures internally to aid com-
putation. Stacks are indispensable for recursive computation, passing
return values computed by functions and storing references to an exe-
cution context. What distinguishes concatenative stack-based languages
from applicative counterparts is the use of the stack for input data, com-
putational context, and result storage. In essence, everything in concate-
native stack-based languages is stored in the stack. In some cases, com-
putational instructions are also stored alongside data on the stack. Since
everything, including the context for functions, is stored on the stack,
functions in concatenative stack-based languages do not have conven-

tional arguments. Although they function as such, they are often referred
to as “words,” as was defined in one of the first concatenative languages
to gain popularity - Forth. Another characteristic of concatenative stack-
based languages is their reliance on the stack’s Last In, First Out (LIFO)
nature. They often employ Reverse Polish Notation (RPN).

So, what will might surprise you in concatenative stack-based language?

« We already mentioned that the functions do not have arguments and
no dedicated return value. All input and output data passed to and from
the function are passed through the stack.

 You are responsible for ensuring the correct order of the values passed
in the data context to the function, as this context is on the stack.

« You are also responsible for interpreting return data placed on the
stack. Unlike in the functional language paradigm, there could be more
than one return value, depending on your function (or “word”).

« There are no variables. All data are stored on the stack.

« There are no global constants, variables, or values. Everything is on
the stack.

« Due to the LIFO nature of the stack, you will deal with RPN.

Why bother?

The concatenative stack-based language might appear unfamiliar at first.
The syntax and concepts may seem cryptic, and you must take extra
care when preparing the computational context, which could feel like
additional effort without clear benefits. However, this class of languages
offers substantial benefits that greatly simplify the development and ex-
ecution of specific computations. It’s important to note that there’s no
such thing as a “one size fits all” solution. So, here is my arguments in
favor for this concept.
« The concatenative stack-based language promotes the concept of con-
tinuation. Your computation flow operates on datasets that are piped
to each other. You don’t need variables and constants that you have to

define and babysit all assignments properly. The output of one func-
tion, stored on the stack, becomes the input for another function. This
approach eliminates the need for curly braces that we all know and
love and nested function calls, which are prone to errors. By using con-
catenative language, you have complete ownership of the data context.
Concatenative languages feature a straightforward syntax that doesn’t
necessitate delving into the complexities and mystique often found in
applicative languages. I can provide a concise explanation of the fun-
damentals of BUND syntax in a short amount of time.

No “goto”. We don’t need it. Honestly!

BUND language, as well as many other concatenative languages, sup-
ports metaprogramming. You can treat your code as data, and your
data may become your code. You can dynamically create anonymous
lambda functions and store them as named functions.

You can create and define lambda functions at runtime and replace al-
ready defined ones without restarting your program. With great power
comes great responsibility.

You can redefine system’s “words” with your defined lambda functions.
Thanks to its simple syntax, concatenative programming allows for
highly concise code. Minimal effort is needed for data definition or
code factoring. Compact, clean code results in programs that are easier
to understand, maintain, and debug.

Concatenative languages are highly interactive and encourage exper-
imentation with the code. Try this out with Java.

Show me the code!

The “Hello World!” program is often the initial program created in any
programming language. It aims to display the “Hello World!” message to
the standard output. This example illustrates the stack-based nature of
BUND. Initially, a string containing the message is placed on the stack.
Subsequently, a function is invoked to retrieve the single element from
the stack and print it to the standard output (STDOUT).

// Bund
// This is faimous HelloWorld program written in Bund

//

"Hello world!" println

What does the word “bund” mean?

The term “bund” | derived from German or Yiddish, can be translated to

sin-
gular
Bun-
des,
plural
Bunde

mean “association”, “bundle”, or “bunch”. Throughout history, this word
has been used in various contexts. In the context of the multi-stack con-
catenative programming language, “bund” refers to the capability of the
BUND language to separate data and computation across different and
distinct storages and execution contexts instead of dealing with a single
data source or context.

Conception of stack

A stack is a fundamental data structure used in computing. It stores val-
ues using the Last In, First Out (LIFO) principle, which means that the
last data stored will be the first to be retrieved. Stacks are highly effi-
cient for storing data intended for batch processing, as the storage and
retrieval process does not require searching or addressing. A stack is a
linked list where each element contains references to the previous and
next elements in storage, making access to the stored data in the stack
linear. Unlike hash tables, the performance of a stack is not degraded
with the growth of the number of elements stored. This is a benefit of
using a stack, but it also means that all control over data logic is passed
to the application developer, which is a limitation of this type of data
storage.

BUND is a concatenative, stack-based, dynamically typed, interpreted
programming language. Its multi-stack paradigm sets BUND apart from
Forth and other similar programming languages. In BUND, the core stack
contains references to the stacks that hold the data contexts, which can
be anonymous or named. The BUND VM includes a global data stack
called the Workbench to facilitate data exchange between stacks. This
stack is exclusively used for temporary data storage during computations
in different stacks, akin to computations in different data contexts.

You can push data to different stacks and set a stack as the current one
using rotation functions or direct positioning. Additionally, you can cre-
ate new stacks and add them to the stack-of-stacks. It’s also possible to
push and pull data to and from the current stack and perform various
stack operations such as rotation, duplication, and swapping. BUND of-
fers comprehensive support for stack-based data storage while enhanc-
ing the stack concept with data context separation.

10

The concept of Multi-stack

A multi-stack data structure comprises multiple stacks arranged in a cir-
cular queue. The elements of this structure store references to data stacks.
The current stack is positioned at the end of the queue, with the top of
the queue corresponding to the stack on the left of the current one. This
configuration enables data to be accessed using a reference to the cur-
rent stack. Programmatically, the ring of stacks can be rotated to the left
or right if needed. A specific stack can also be designated as the current
stack by its name, although a user can create “anonymous” stacks where
names are randomly generated. This type of structure is commonly called
a “stack of stacks” When a new stack is created, it is pushed to the top
of the “stack of stacks” and becomes the new current stack.

Current stack

11

The concept of a data stack

The data stack structure is represented by a stack containing dynamically
typed values. References on data stacks are stored in “stack of stacks”
structure. There are no predetermined requirements on how different

see
pre-
vious
chap-
ter

data types must be allocated so that you can store data of any kind ac-
cording to your data processing logic. The data stack resembles the “stack
of stacks” structure and acts similarly to a ring buffer that can be rotated
to the left and the right. In addition, it possesses all the properties of a
LIFO queue. The end of the queue represents the “top of the stack,” and
the beginning stores the stack’s oldest element. An element is stored on
top of the stack during the PUSH operation, while the PULL operation
removes an element from the top.

Value on top of the stack

12

Syntax of the BUND lan-
guage

BUND is a concatenative, stack-based programming language inspired

by Forth. I've also borrowed a few features from other languages.

« Metaprogramming feature was incluenced by Factor programming
language.

« The idea of compiling a portable byte code was adopted from Python
or Erlang.

« Code-as-data and data-as-code concepts was influenced by Lisp.

« The concept of patching code at runtime was adopted from Erlang.

A sequence of terms represents the BUND program. Terms can be loosely
distinguished into two categories:

« Data terms, representing data, sored into stack.

+ Code terms, representing the data values related to computation.

The distinction between these two categories is very loose due to
metaprogramming.

TERM
/\

DATA CODE
/\ /\

SIMPLE CONTAINER LAMBDA WORDS
—

NAME PTR

13

BUND simple data types

BUND data values are represented by following dynamic types:

Integer values, internally represented by 164 integer number.
Float-point values, internally represented by f64

Binary values is BLOB’s, containing a platform-independent bytecode
compiled representation of all supported datatypes.

Boolean values is a TRUE/FALSE data types, internally represented by
bool.

All STRING values internally represented by String.

DATA
|
SIMPLE
NUMERIC BINARY BOOLEAN STRING
/\
INTEGER FLOAT
SIMPLE
|
STRING

-

STRING ATOM LITERAL TEXTBUFFER

14

Here is an example of simple data types defined for the BUND program-

ming language.

// This is example of integer numeric value Bund
42

3.14 // This is an example of float-point value
true // Those are examples of boolean value

false

"Hello World!" // Unicode string

'MpuBet Mup!' // Unicode literal

// This data type is great for metaprogramming
:StringAtom // Unicode atom

This example will push to the current stack three values: Integer, Float

and String

// Bund
// Pushing data to the stack starting from 42

//

42 3.14 "Hello World!'"

This snippet will leave three values in the stack with string “Hello
World!” on top of the stack.

Empty TEXTBUFFER value could be created with the help from word
text

// This snippet will create a text buffer Bund
// that contains space separated words "Hello World!"
text "Hello" , "World!" ,

15

BUND container data types

BUND language supports datatype that could be associated with more

than a single data value:

« LIST is a classic in-memory list structure, that can contain any number
of SIMPLE, CONTAINER or CODE values.

« PAIR is a limited list, that contains only two values.

« LAMBDA is a special type of LIST, treated by BUND VM as a structure
that containing a sequence of instructions passed to VM.

DATA
|
CONTAINER
—_ Y

LIST TABLE
- |

LIST PAIR LAMBDA DICT

Let me provide an example of how you can create a list and populate it
with values. A list is created by enclosing values in square brackets.

// Bund
// This snippet will create a list value,

// containing three values

// list[0] = 42, list[1l] = 3.14, list[2] = "Hello"

//

[42 3.14 "Hello"]

16

There is no specific syntax similar to creation of the list, designed for

creating dictionaries; however, you can create a new empty dictionary
using the dict" word and then populate it using the “set” word. Here is
an example.

// Bund
// This snippet will create a Dictionary,
// and then adds association ANSWER=>42
//
dict
:ANSWER 42 set

You can retrieve a value from a dictionary using the “get” word.

// First, we will create and polpulate dictionary Bund
dict
:ANSWER 42 set
// And sinct now dictionary is
// on top of the stack, we can simply
// get the value from it.
:ANSWER get

As the result of this snippet execution, we will have a number 42 on top
of the stack.

17

BUND code data types

BUND language supports following datatype categories that could be as-

sociated with execution context:

« “WORDS?” refer to data types that act as proper execution references
to the system or user-defined functions, also known as “words.” User-
defined lambda functions can be either named or anonymous. An ex-
ample of an anonymous user-defined function is when data values of
type LAMBDA are stored on the stack. Conversely, an example of a
named user-defined “word” is when a LAMBDA value is associated
with a specific name.

VM-related data types encompass CONTEXT, which are data values
instructing the VM to set the current stack to a stack with a specific
name, and COMMAND, which denotes data values referring to instruc-
tions that alter the state of the VM rather than processing data.

DATA
CODE
WORDS VM
NAME LAMBDA POINTER COMMAND CONTEXT

/\
ANONYMOUS NAMED

You already seenn the examples of a NAME values ether being stored in
the stack, or just passed to VM for exaluation.

// Bund
// This code snippet will perform mathematical add

// and leave numeric INTEGER value "4" on top

// of the stack

//

22+

18

In this example, the first two data values are of type INTEGER, and the
third is a NAME reference to the function “+” that performs a math op-
eration.

Sometimes, it’s necessary to refer to a function without executing it. This
reference is known as a POINTER. When passed to a VM, the referred
function isn’t immediately executed; instead, it’s treated as regular data
until you explicitly call for its execution. You can define pointer placing
LISP-style “backtick” in the front of the function name.

// Bund
// Unline in previous example, "+" is not a function

// but pointer to the function

//

22+

The actual “+” function will not be executed in this example. Instead, the
pointer to the “+” function will be stored on top of the stack. You can use
the “execute” function or the word “!” to execute the function referred to
by the pointer. These will take a POINTER (or LAMBDA) from the stack
and execute it.

// Bund
// Now we executing "word" using POINTER

// stored on top of the stack

//

22 "+ !

This snippet will leave INTEGER with value “4” on top of the stack.

19

You can dynamically create pointers without verifying if the function

even exists by using the word “ptr”.

// Bund
// In this example, we creating POINTER

// by porovidin string to the word

// ptr

// stored on top of the stack

//

2 2 :+ ptr !

To ensure that the function you are pointing in your pointer to exists,

you can use “resolve” This will raise an error if you try to point to a

function that doesn’t exist.

// Bund
// In this example, we creating POINTER

// by porovigin string to the word

// resolve that will create POINTER

// only if function exists

//

2 2 :+ resolve !

20

Next, I'd like to discuss switching between different data contexts in
the BUND language. As you learned earlier, BUND operates on a con-
catenative stack-based Virtual Machine with a multi-stack paradigm. In
contrast to classic Forth-style VMs and languages, BUND operates on
multiple named stacks, also referred to as “contexts,” with their refer-
ences stored in a “stack-of-stacks.” Switching between named contexts is
simple: you provide the stack’s name, prepended with “@”. This action
makes a stack with this name the “current stack.

// Bund
// This is demonstration of swiching between
// named stacks, also known as "context"
//
@A // Making stack with name "A" current.
// Create it if necessary
1 23 // Three INTEGER values goes into

// stack "A"
@B // Make stack "B" current
42 // Push number 42 on top
// stack "B"

Data in different stacks are isolated from each other.

21

All about anonymous and named lambdas

Metaprogramming allows to to treat a programs as data and I already
mentioned, that the LAMBDA functions is just a specail sub-type of a
LIST data type. Therefore, you can treat your function, just as data and
create lambdas by pushing values into it

// Bund
// You can create lambda functions on-the-fly

//

lambda 42 + !

This code snippet creates an empty lambda function that pushes the in-
teger value 42 to the current stack and executes it. As a result, the num-
ber 42 will be on top of the stack after the snippet is executed. However,
creating the lambda function using specialized “syntax sugar” would be
more convenient.

// Bund
// There is a better way to create and execute lambda
functions

//

{ 42 } !

Any content enclosed within curly braces will be incorporated into
an anonymous lambda function stored on the stack. This code snippet
achieves the same functionality as the previous one but is more aesthet-
ically pleasing and concise.

22

Anonymous lambdas play a crucial role in the logical functionality of the
BUND. For instance, when using conditional execution with “IF,” a TRUE
or FALSE boolean condition is computed and stored on the stack, along
with a LAMBDA function that will be executed if the condition is TRUE.
Here is an example:

// Bund
// There is a better way to create and execute lambda
functions

//
42 42 == "Yes, 42 is equal to 42" println } if

In this example, we start by pushing two integer numbers to the stack
and then perform an arithmetic comparison, which will place a boolean
outcome on the stack. The “IF” function will take two values from the
stack - a lambda function and a condition. If the condition is TRUE, the
lambda is executed.

23

I want to present a method for converting an anonymous lambda, cur-
rently stored on the stack, into a named lambda that can be stored in
a table of lambda functions. This enables you to refer to or execute the
lambda by name at any time.

// Bund
// This is how you declare a named function
//
:FourtyTwo {
42 // We leave 42 on stack
} register

// Then we can execute
// the named lambda as any other function
FourtyTwo

24

Function aliases

BUND provides the capability to create an alias for a function name.

Aliases do not alter the function but allow assigning alternative names

to them.

// Bund
// This is how you declare a named function
// and then create an alias
//
:FourtyTwo {
42 // We leave 42 on stack
} register
// After registering, we can create alias
// to the function
:FourtyTwo :answer alias
// Then we can call the funciton by it's alias
answer

The outcome of this snippet will be registering both, named lambda and

the alias for the named lambda.

25

Autoadd feature of BUND VM

Now, let’s delve into the BUND language’s auto-add feature. When ap-
plying a value to the BUND VM, one of two outcomes occurs: the value
is either pushed to the stack or treated as a function call, and the func-
tion is executed. But what if you want to modify the values already on
the stack? The dynamic values of BUND support the inner PUSH opera-
tion, allowing you to push data inside values of CONTAINER types. To
facilitate these operations, BUND provides two words that do not push
data to the stack or execute words but alter the VM machine’s behavior.
The word “:” activates the auto-add feature. With auto-add turned on,
the VM checks if a value that supports the inner PUSH operation is on
top of the stack. If it is, instead of executing or pushing data to the stack,
the BUND VM performs an inner PUSH, pushing data inside the CON-
TAINER value. The word “;” deactivates auto-add and restores the VM to
its normal state.

// Bund
// First, let's place an empty list on the stack
//
list : // Then when we call ":",
// we do turn on auto-add
1 2 3 // The values are
// list[0] =1
// list[1] 2
// list[2] 3
// pushed to the LIST object.
// This is an inner PUSH operation
; // Then we turn off auto-add

The provided code snippet leads to placing a LIST object containing val-
ues [1, 2, 3] at the top of the stack.

26

Basic functions from
BUND's standard library

The scope of this manual will not allow me to cover the entire library,

which is already quite extensive in the early stages of the project and

will continue to grow. However, this brief introduction to some functions
will help you grasp the essence of the language and hopefully spark your
interest. You have already been introduced to some functions, such as:

Word | Description

list Adding an empty LIST value to the top of the stack

dict Adding an empty DICTIONARY value to the top of the stack

lambda | Adding an empty LAMBDA value to the top of the stack

text Adding an empty TEXTBUFFER value to the top of the stack

if Performing conditional execution of the anonymous lambda

println | Removing value from top of the stack and printing it to STD-
OuT

, Perform inner PUSH to a TEXTBUFFER object with added
spaces

register | Register anonymous lambda function as named lambda

alias Create function alias

set Set value inside DICTIONARY

get Get data from DICTIONARY

Turn auto-add ON

Turn auto-add OFF

27

The “words,” also referred to as functions defined within the standard

compile-in library, can be categorized as follows:

Category

Description

VM words

Words that alter the behavior of the BUND Vir-
tual Machine. Currently, only functions associ-
ated with the auto-add feature fall within this cat-

egory.

Data creation

Words that creating a values on top of the stack

I/O category

Words providing means to exchange information
with outside world

Stack management

Managing stacks list, stack state and values on the
stack

Application logic

Conditionals, loops and other functions for main-
taining an execution logic of a program

Data processing

Words that are handling and processing the data
that is stored on the stack

In the next stage, I aim to present an example of a function from each
category. I will at some point in the future will develop a thorough BUND
Standard Library manual. Until then, I encourage you to review the code.

28

VM word: Auto-add on

The word “:” will enable auto-add feature for BUND VM. It doesn’t
change the state of the stack, but alter state of the VM.

1: function :()

2 > Changing state of BUND VM

3 if VM::autoadd = FALSE then

4: VM::autoadd <— TRUE

5 else

6 return Error(“Nested auto-add is not supported”)

VM word: Auto-add off

The word “;” will restore auto-add status of the VM to default state

1: function ;()

2 > Changing state of BUND VM

3 if VM::autoadd = TRUE then

4: VM::autoadd < FALSE

5 else

6 return Error(“Nested auto-add is not supported”)

29

Data creation word: Creating an empty LIST

The word “list” will return an empty value of LIST type on top of the
stack.

1: function LisT()
2: > Add an empty LIST value
3: current stack <— Value::list()

30

I/0 word: printing the value taken from stack

The word “println” will take a value from the stack and print it to STD-
OUT. No value returned to the stack.

1: function PRINTLN()

2 > Print value to STDOUT

3 Value < current stack

4 if Value = None then

5: return Error(“Stack is too shallow”)
6 Output < Value::conv (STRING)

7 if Output = None then

8 return Error(“Conversion error”)

9 PRINT(Output)

31

Stack management word: duplicating data on the stack

The function “dup” will duplicate alue located on top of the stack. Two
values, original one and duplicated are returned to the stack.

1: function pup()

2 > Duplicating value that is on top of the stack
3 Value < current stack

4 if Value = None then

5: return Error(“Stack is too shallow”)

6 Value2 < Value::dup (Value)

7 current stack < Value

8 current stack <— Value2

32

Application logic word: the “loop” function

The “loop” function retrieves two values from the stack: an anonymous
lambda function and a list. Subsequently, it iterates through the list of
elements, pushing each element to the stack and executing the lambda
function after each push.

function roop()
> Get the anonymous lambda from stack
l < current stack
> Get the list of values from stack

1:

2

3

4

5: v < current stack
6 while e < v do

7 > Push value from list to the stack
8 current stack < e

9

> Execute anonymous lambda function

16: 1)

33

Data processing word: the “string.upper” function

Word “string.upper” as name suggests converts the case of string value to
uppercase. The string value is taken from stack and string value returned
to stack.

function STRING.UPPER()
> Get string value from stack

1:

2

3: v < current stack

4 > Return converted value to the stack
5

current stack < string.upper (v)

34

Conclusion

BUND is a very new language. It is currently in its early stages of devel-
opment, and the language’s runtime has many limitations. The standard
library requires improvement, and the author or contributor must ad-
dress several potential bugs. However, the bundcore crate and its depen-
dencies have successfully passed all their test cases, which is a promis-
ing sign. Although the language is simple and its underlying dependen-
cies are generally stable, there are no guarantees against critical bugs.
The license is attached for reference. While concatenative, stack-based
programming languages are not widely used in general programming
practices, they have stood the test of time and deserve more attention
from the software development community. BUND aims to address de-
sign gaps in this concept, and the author hopes to spark interest with his
ideas and inspirations that brought BUND into existence.

You can get in touch with my via Bl my LinkedIn profile.
The BUND project is hosted on my GitHub page © vulogov

35

https://www.linkedin.com/in/vladimirulogov/
https://github.com/vulogov/

36

License

Apache License Version 2.0, January 2004 http://www.apache.org/
licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRI-
BUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other en-
tities that control, are controlled by, or are under common control with
that entity. For the purposes of this definition, “control” means (i) the
power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty per-
cent (50%) or more of the outstanding shares, or (iii) beneficial ownership
of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising per-
missions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation source,
and configuration files.

“Object” form shall mean any form resulting from mechanical transfor-
mation or translation of a Source form, including but not limited to com-
piled object code, generated documentation, and conversions to other
media types.

“Work” shall mean the work of authorship, whether in Source or Object
form, made available under the License, as indicated by a copyright no-

37

http://www.apache.org/licenses/
http://www.apache.org/licenses/

tice that is included in or attached to the work (an example is provided
in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the edi-
torial revisions, annotations, elaborations, or other modifications repre-
sent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the origi-
nal version of the Work and any modifications or additions to that Work
or Derivative Works thereof, that is intentionally submitted to Licensor
for inclusion in the Work by the copyright owner or by an individual or
Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, “submitted” means any form of electronic,
verbal, or written communication sent to the Licensor or its representa-
tives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are
managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicu-
ously marked or otherwise designated in writing by the copyright owner
as “Not a Contribution”

“Contributor” shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and sub-
sequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright li-
cense to reproduce, prepare Derivative Works of, publicly display, pub-
licly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable (except as

38

stated in this section) patent license to make, have made, use, offer to sell,
sell, import, and otherwise transfer the Work, where such license applies
only to those patent claims licensable by such Contributor that are nec-
essarily infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including
a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contrib-
utory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation
is filed.

4. Redistribution. You may reproduce and distribute copies of the

Work or Derivative Works thereof in any medium, with or without mod-
ifications, and in Source or Object form, provided that You meet the fol-
lowing conditions:

(a) You must give any other recipients of the Work or Derivative Works
a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating
that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain
to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution,
then any Derivative Works that You distribute must include a readable
copy of the attribution notices contained within such NOTICE file, ex-
cluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within
a display generated by the Derivative Works, if and wherever such third-
party notices normally appear. The contents of the NOTICE file are for
informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You dis-

39

tribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such De-
rivative Works as a whole, provided Your use, reproduction, and distrib-
ution of the Work otherwise complies with the conditions stated in this
License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work by
You to the Licensor shall be under the terms and conditions of this Li-
cense, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any sepa-
rate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor, ex-
cept as required for reasonable and customary use in describing the ori-
gin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each Contribu-
tor provides its Contributions) on an “AS IS” BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-
TICULAR PURPOSE. You are solely responsible for determining the ap-
propriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise, unless re-
quired by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for dam-

40

ages, including any direct, indirect, special, incidental, or consequential
damages of any character arising as a result of this License or out of the
use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer, and
charge a fee for, acceptance of support, warranty, indemnity, or other lia-
bility obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boil-
erplate notice, with the fields enclosed by brackets “[]” replaced with
your own identifying information. (Don’t include the brackets!) The text
should be enclosed in the appropriate comment syntax for the file format.
We also recommend that a file or class name and description of purpose
be included on the same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software dis-
tributed under the License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or im-

41

http://www.apache.org/licenses/LICENSE-2.0

plied. See the License for the specific language governing permissions
and limitations under the License.

42

43

44

Content

INELOAUCTION w.cvreiiieiiicici ettt 3
WhY DOtRET? ... 4
Show me the code ! ..o 6
What does the word “bund” mean?cccocvevenineinenenenenenenenns 7

Conception Of SLACKcccueiriieeiriiccr s 9
The concept of Multi-stackcccoeeurecirivcienccnicnccnecrcreenee 11
The concept of a data Stackcccoeoeeerrrrcnieceere e 12

Syntax of the BUND languagec.cooeecueurinecueinneccienecceneecieeseeeennn. 13
BUND simple data typescccocoeeeeeeueeeeeeieeeeieeeeseeseseeeeeeene 14
BUND container data typesccoeveevereeereieiennnnennceceieeieeeeeen. 16
BUND code data tyPesccceveeeeereneeeiririeieirieeinenceieeseee e 18

All about anonymous and named lambdascccccceviuennee. 22
Function aliasescoveeveverereirinccinncerecereeeseee e 25
Autoadd feature of BUND VMccccooemninnnccnnecieineeennenes 26

Basic functions from BUND’s standard librarycccooveeinnnnnnnnn. 27
VM word: Auto-add On ... 29
VM word: Auto-add offcccceuviencciiccceecreceececene 29
Data creation word: Creating an empty LISTc.cccccovvnneecnenee. 30
I/O word: printing the value taken from stackcccccoevvnicuenencs 31
Stack management word: duplicating data on the stack 32
Application logic word: the “loop” functionccccccveveeivenreneeneen. 33
Data processing word: the “string.upper” functionccccoeeuuece. 34

CONCIUSION ..ttt et 35

LICEIISE .t 37

45

46

47

	Introduction
	Why bother?
	Show me the code !
	What does the word "bund" mean?

	Conception of stack
	The concept of Multi-stack
	The concept of a data stack

	Syntax of the BUND language
	BUND simple data types
	BUND container data types
	BUND code data types
	All about anonymous and named lambdas
	Function aliases
	Autoadd feature of BUND VM

	Basic functions from BUND's standard library
	VM word: Auto-add on
	VM word: Auto-add off
	Data creation word: Creating an empty LIST
	I/O word: printing the value taken from stack
	Stack management word: duplicating data on the stack
	Application logic word: the "loop" function
	Data processing word: the "string.upper" function

	Conclusion
	License

