
Composed by Vladimir Ulogov

The art of stack operations
This book is a part of the BUND language programming series and introduces the

principles of stack operations.

1

I want to thank my first teacher, who imparted the
knowledge and guidance necessary to develop my

first programs for the PDP-11 computer.

2

Introduction

The BUND programming language is a member of the concatenative
language family. A notable characteristic of concatenative languages is
the presence of a computational context external to the code itself. All
computations carried out by the functions, referred to as “words” in con-
catenative language terminology, are performed over this external con-
text. This differs from the concepts commonly encountered in applicative
languages, where function parameters are part of the function context.
The computational context is typically structured as a Last In, First Out
(LIFO) stack in concatenative languages. However, BUND distinguishes
itself from most concatenative languages by having a more sophisticated
concept of the computational context.

3

Circular data stack

Instead of using simple LIFO stacks, BUND stores data in multiple named
circular buffers, also known as stacks. When you push data to the stack,
the circular buffer expands, and when you pull or consume data from
the stack, the buffer contracts. While the data buffer is circular, there
is always a pointer that refers to the value located on top of the stack.
Although you can rotate the buffer in the left or right direction, data is
consumed in a single direction only.

Value on top of the stack

Value
[0]

Value
[-1]

Value
[-6]

Value
[-2]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

4

Stack-of-stacks references

The next level of abstraction is a circular stack that refers to named data
stacks while functioning just like a standard data stack in all other as-
pects. The stack referred to by the “top of the stack” reference is con-
sidered the “current stack,” and all operations are by default performed
within this data context. When creating a new stack, the reference moves
to the top of the stack. When positioning a named stack to become the
current stack, the buffer rotates to bring the required stack to the proper
position at the “top of the stack.”

Current stack

Stack
A

Stack
B

Stack
H

Stack
C

Stack
D

Stack
E

Stack
F

Stack
G

5

Workbench

The workbench, an integral component of the BUND virtual machine,
is a circular stack that temporarily holds and transfers values between
computations conducted in various data contexts. Despite its functional
significance, this circular stack does not carry a specific name.

6

Show me the code !

The “Hello World!” program is often the initial program created in any
programming language. It aims to display the “Hello World!” message to
the standard output. This example illustrates the stack-based nature of
BUND. Initially, a string containing the message is placed on the stack.
Subsequently, a function is invoked to retrieve the single element from
the stack and print it to the standard output (STDOUT).

1 // Bund
2 // This is faimous HelloWorld program written in Bund
3 //
4 "Hello world!" println

7

8

Pushing data to the stack

Like other concatenative languages, BUND does not have specific opera-
tions for storing data in the computational context or data stack. Defining
a data item in your application’s source code instructs the BUND virtual
machine to push that value to the top of the current stack. BUND is a
dynamically typed language, and this feature provides several properties
in the design of the virtual machine that performs actual computations.

• When pushing an item to the stack in BUND, there’s no need to specify
the data type, as BUND will intelligently determine the actual type of
the data.

• It’s important to note that data types in BUND are static. Changing
the data type is impossible once you define a data item with a specific
data type. However, BUND provides conversion functions (words) for
converting data between different data types.

• In BUND, data types can be categorized as atomic or container. Atomic
data types can only hold a single data type, such as numeric, string,
or boolean. On the other hand, container data types can have other
atomic or container data items. Examples of container types include
lists, dictionaries, lambdas, and pairs.

• BUND is a dynamically typed language whose functions, or “words,”
can detect data types and perform operations accordingly. For exam-
ple, the “+” or “add” function can seamlessly handle various numeric
and non-numeric data types to produce the most optimal outcome.
Nevertheless, this feature does not exempt the BUND language from
errors associated with dynamic typing. Therefore, programmers must
be mindful of this design decision and exercise caution when dealing
with dynamic typing.

• The distinction between data and function in BUND is relatively thin
due to its metaprogramming feature. If you decide to utilize metapro-

9

gramming in your BUND application, please exercise caution and en-
sure you are familiar with this aspect of the language beforehand.

Numeric data types

There are two types of numeric data - INTEGER and FLOAT. Both of them
internally represented by 64-bit signed integers or floats respectfully.

1 // Bund
2 // Pushing two FLOAT values to the stack
3 // One is in conventional format another
4 // is in scientific format
5 //
6 3.14 +2e100

You can convert values to INTEGER or to FLOAT by using convert.to_int
or convert.to_float respectfully

1 // Bund
2 // Converting integer value 42 to float
3 // and pushing it to the stack
4 //
5 42 convert.to_float

10

String data type

There are three distinct ways to declare string values, all of which result
in the creation of an atomic STRING value:
• Regular string: a set of UNICODE characters enclosed between double

quotes.
• Literal string: a set of UNICODE characters enclosed between single

quotes.
• Atom string: a set of UNICODE characters, excluding spaces or new-

lines, preceded by a colon.

1 // Bund
2 // Example of the regular string
3 //
4 "This is a string"

Literal string is designed for better handling of the formatting notation

1 // Bund
2 // Example of the literal string
3 //
4 'Это литерал'

And Atoms are great for the metaprogramming and definition of the
string values where is no spaces.

1 // Bund
2 // Example of the atom
3 //
4 :This_is_atom

11

Library function convert.to_string will try to convert any value to it’s
string representation

1 // Bund
2 // Converting float value to string representation
3 //
4 42.0 convert.to_string

12

Boolean data type

Boolean data type is an atomic data type internally represented by
BOOLEAN value that can take TRUE or FALSE values.

1 // Bund
2 // Pushing TRUE value to the stack
3 //
4 true

You can convert non-boolean values to Boolean data types by using con-
vert.to_bool function.

1 // Bund
2 // Converting string value "false" to bool value
3 // and pushing it to the stack
4 //
5 :FALSE convert.to_bool

13

Pointer data type

In the context of metaprogramming in BUND, a function pointer plays a
vital role. It is declared by prefixing the function name with a backtick
and placing a PTR data object on the stack. This enables you to execute
the function the pointer references later after declaration. The PTR object
can be handled similarly to any other data value.

1 // Bund
2 // Example of use PTR object
3 //
4 "world!" `println // Here we placing two data objects
5 // On the stack. One is string
6 // Another one is a pointer to
7 // println function
8 "Hello " print // Taking single element
9 // from the stack and printing it
10 // and this will be string with
11 // "Hello " string
12 // Now, we have a PTR object on top of the stack
13 ! // And we are executing it
14 // The outcome is "Hello world!" is printed on terminal

You can also create PTR object dynamically by taking STRING value from
the stack with help of ptr function

1 // Bund
2 // Example of creating PTR object
3 //
4 "Hello world" :println ptr !

14

List data type

A list is an example of a container data type. As previously mentioned,
unlike atomic data types, container data types act as containers for hold-
ing other container and nuclear data types. A list is a sequential vector
that has a collection of data values. You can define a list by declaring the
values between square brackets. Due to the dynamically typed nature of
the BUND programming language, you do not need to declare the types
of data that a list can hold. It can have any data supported by BUND.

1 // Bund
2 // Here is an example of declaration of LIST value
3 // in the BUND programming language
4 //
5 [
6 42 // First element in the list
7 // is an INTEGER
8 "Hello world!" // then a string
9 [1.0 2.0 3.0] // then a LIST
10]

15

Lambda data type

A lambda function is anonymous, meaning it does not have a name. The
data value containing instructions that comprise the function’s body can
be stored on the stack and plays a vital role in BUND metaprogramming.
Even though lambdas are anonymous and ephemeral by nature, you can
register them to turn the lambda function into a named function. Named
functions are global and not tied to a particular data context. You can
declare a lambda function by specifying data and execution instructions
between curly brackets.

1 // Bund
2 // Here is an example of declaration of
3 // anonymous function - lambda
4 //
5 {
6 "Hello world!"
7 println
8 }
9 //
10 // This function will print "Hello world!"
11 // on terminal
12 //

16

Stack-related functions

The BUND programming language incorporates a key design feature: the
data context located in circular stacks. While BUND offers a wide vari-
ety of functions, including internal parts of the standard library, named
functions, and anonymous lambda functions, it does not provide a con-
text specific to the function. Instead, it offers a unified data storage con-
text through named and anonymous circular stacks. Functions can re-
trieve data from the stack and store results in the stacks according to the
function’s design. Additionally, BUND provides a library of functions for
managing data context and contexts, which we will explore further in
the following chapters.

17

Functions for the “stack of stacks”

This chapter explores the functions of the “stack-of-stacks” data struc-
ture. This structure consists of a circular buffer containing references to
other circular buffers holding the data. The functions are specifically de-
signed to manage the list of stacks, including adding new ones, removing
stacks, and positioning the list of stacks.

Current stack

Stack
A

Stack
B

Stack
H

Stack
C

Stack
D

Stack
E

Stack
F

Stack
G

18

Stacks management word: making named stack current

The function ensure_stack will set the named stack as current. If the stack
does not exist, it will be created.

1: function ensure_stack()
2: ▷ Making named stack current
3: X ← current stack
4: if X = None then
5: return Error(“Stack is too shallow”)
6: if Stack.Not.Exists X then
7: CreateStack(X)
8: MakeStackCurrent(X)

1 // Bund
2 // This snippet will make stack TEST current
3 //
4 :TEST ensure_stack

Current stack

TEST AG

B

CDE

F

19

Stacks management word: check if stack exists

The function stack_exists will return TRUE value to the current stack if
named stack exists. FALSE - otherwise.

1: function stack_exists()
2: ▷ Check if stack exitst
3: X ← current stack
4: if X = None then
5: return Error(“Stack is too shallow”)
6: if Stack.Not.Exists X then
7: current stack ← FALSE
8: else
9: current stack ← TRUE

1 // Bund
2 // This snippet will check if named stack exists
3 //
4 :TEST stack_exists

Value on top of the stack

TRUE or
FALSE

Value
[-1]

Value
[-7]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

Value
[-6]

20

Stacks management word: rotate left

The function <- will rotate stacks circular buffer to the left.

1: function stacks_left()
2: ▷ Rotate stacks circular buffer left
3: Stacks_Left()

1 // Bund
2 // This snippet will rotate stacks circular buffer left
3 //
4 <-

Current stack

A BH

C

DEF

G

Current stack

B CA

D

EFG

H

21

Stacks management word: rotate right

The function -> will rotate stacks circular buffer to the right.

1: function stacks_right()
2: ▷ Rotate stacks circular buffer right
3: Stacks_Right()

1 // Bund
2 // This snippet will rotate stacks
3 // circular buffer to the right
4 //
5 ->

Current stack

A BH

C

DEF

G

Current stack

H AG

B

CDE

F

22

Managing data on stack

In this chapter, we will explore the fundamental functions, referred to as
“words” in concatenative languages, for managing circular stacks con-
taining data. We have previously examined how to add data to the stack,
so this chapter will teach you how to manipulate the existing data on the
stack and the stack itself.

Value on top of the stack

Value
[0]

Value
[-1]

Value
[-6]

Value
[-2]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

23

Stack management word: duplicating data on the stack

The function “dup” will duplicate value located on top of the stack. Two
values, original one and duplicated are returned to the stack.

1: function dup()
2: ▷ Duplicating value that is on top of the stack
3: Value ← current stack
4: if Value = None then
5: return Error(“Stack is too shallow”)
6: Value2 ← Value::dup (Value)
7: current stack ← Value
8: current stack ← Value2

1 // Bund
2 // This snippet will duplicate value on top of the stack
3 //
4 42 dup

Value on top of the stack

Value
[0]

Value
[-1]

Value
[-7]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

Value
[-6]

Value on top of the stack

Value
[0]

Value
[0]

Value
[-6]

Value
[-1]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

24

Stack management word: dropping data from stack

The function “drop” will remove current value from the stack

1: function drop()
2: ▷ Dropping value that is on top of the stack
3: Value ← current stack
4: if Value = None then
5: return Error(“Stack is too shallow”)

1 // Bund
2 // This snippet will remove value 42 from stack
3 // leaving 41 on top of current stack
4 //
5 41 42 drop

Value on top of the stack

Value
[0]

Value
[-1]

Value
[-7]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

Value
[-6]

Value on top of the stack

Value
[-1]

Value
[-2]

Value
[-8]

Value
[-3]

Value
[-4]

Value
[-5]

Value
[-6]

Value
[-7]

25

Stack management word: swapping two values.

The function “swap” will swap two values on top of current stack

1: function swap()
2: ▷ Swapping values that is on top of the stack
3: X ← current stack
4: if X = None then
5: return Error(“Stack is too shallow”)
6: Y ← current stack
7: if Y = None then
8: return Error(“Stack is too shallow”)
9: current stack ← Y
10: current stack ← X

1 // Bund
2 // This snippet will swap values 42 and 41 on stack
3 // leaving 42 on top of current stack
4 //
5 42 41 swap

Value on top of the stack

Value
[0]

Value
[-1]

Value
[-7]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

Value
[-6]

Value on top of the stack

Value
[-1]

Value
[0]

Value
[-7]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

Value
[-6]

26

Stack management word: rotate left

The function <-- will rotate current stack to the right.

1: function stack_left()
2: ▷ Rotate stack circular buffer right
3: Stack_Left()

1 // Bund
2 // This snippet will rotate current stack
3 // circular buffer to the left
4 //
5 <--

Current value

Value
[0]

Value
[1]

Value
[7]

Value
[2]

Value
[3]

Value
[4]

Value
[5]

Value
[6]

Current value

Value
[0]

Value
[1]

Value
[7]

Value
[2]

Value
[3]

Value
[4]

Value
[5]

Value
[6]

27

Stack management word: rotate right

The function --> will rotate current stack to the right.

1: function stack_right()
2: ▷ Rotate stack circular buffer right
3: Stack_Right()

1 // Bund
2 // This snippet will rotate current stack
3 // circular buffer to the right
4 //
5 -->

Current value

Value
[0]

Value
[1]

Value
[7]

Value
[2]

Value
[3]

Value
[4]

Value
[5]

Value
[6]

Current value

Value
[7]

Value
[0]

Value
[6]

Value
[1]

Value
[2]

Value
[3]

Value
[4]

Value
[5]

28

Managing data on workbench

The workbench is a dedicated circular stack that temporarily holds data
between computations in named and anonymous data contexts. Its spe-
cific purpose is not defined, allowing developers to use it as they see
fit. The workbench can be used as temporary storage for intermediate
computations, passing data between data contexts, or holding permanent
data useful for computations in different contexts. There are indeed no
limitations to its use.

Value on top of the workbench

Value
[0]

Value
[-1]

Value
[-6]

Value
[-2]

Value
[-2]

Value
[-3]

Value
[-4]

Value
[-5]

29

Workbench management word: taking value from stack to work-
bench.

This function will take value from top of the stack and push to a work-
bench

1: function return()
2: ▷ Pushing value to a workbench
3: X ← current stack
4: if X = None then
5: return Error(“Stack is too shallow”)
6: workbench ← X

1 // Bund
2 // This snippet will send value to a workbench
3 //
4 42 .

30

Workbench management word: taking value from workbench to
stack.

This function will take value from workbench and push to a top of cur-
rent stack

1: function take()
2: ▷ Pushing value to a workbench
3: X ← workbench
4: if X = None then
5: return Error(“Workbench is too shallow”)
6: current stack ← X

1 // Bund
2 // This snippet will send value to stack
3 //
4 42 . // First, let's populate workbench
5 take // Then move value back to stack

31

32

Conclusion
BUND is a very new language. It is currently in its early stages of devel-
opment, and the language’s runtime has many limitations. The standard
library requires improvement, and the author or contributor must ad-
dress several potential bugs. However, the bundcore crate and its depen-
dencies have successfully passed all their test cases, which is a promis-
ing sign. Although the language is simple and its underlying dependen-
cies are generally stable, there are no guarantees against critical bugs.
The license is attached for reference. While concatenative, stack-based
programming languages are not widely used in general programming
practices, they have stood the test of time and deserve more attention
from the software development community. BUND aims to address de-
sign gaps in this concept, and the author hopes to spark interest with his
ideas and inspirations that brought BUND into existence.

You can get in touch with my via my LinkedIn profile.
The BUND project is hosted on my GitHub page vulogov

33

https://www.linkedin.com/in/vladimirulogov/
https://github.com/vulogov/

34

License
Apache License Version 2.0, January 2004 http://www.apache.org/
licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRI-
BUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the
copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all other en-
tities that control, are controlled by, or are under common control with
that entity. For the purposes of this definition, “control” means (i) the
power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty per-
cent (50%) or more of the outstanding shares, or (iii) beneficial ownership
of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising per-
missions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation source,
and configuration files.

“Object” form shall mean any form resulting from mechanical transfor-
mation or translation of a Source form, including but not limited to com-
piled object code, generated documentation, and conversions to other
media types.

“Work” shall mean the work of authorship, whether in Source or Object
form, made available under the License, as indicated by a copyright no-

35

http://www.apache.org/licenses/
http://www.apache.org/licenses/

tice that is included in or attached to the work (an example is provided
in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the edi-
torial revisions, annotations, elaborations, or other modifications repre-
sent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the origi-
nal version of the Work and any modifications or additions to that Work
or Derivative Works thereof, that is intentionally submitted to Licensor
for inclusion in the Work by the copyright owner or by an individual or
Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, “submitted” means any form of electronic,
verbal, or written communication sent to the Licensor or its representa-
tives, including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems that are
managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicu-
ously marked or otherwise designated in writing by the copyright owner
as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on
behalf of whom a Contribution has been received by Licensor and sub-
sequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable copyright li-
cense to reproduce, prepare Derivative Works of, publicly display, pub-
licly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual, world-
wide, non-exclusive, no-charge, royalty-free, irrevocable (except as

36

stated in this section) patent license to make, have made, use, offer to sell,
sell, import, and otherwise transfer the Work, where such license applies
only to those patent claims licensable by such Contributor that are nec-
essarily infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including
a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contrib-
utory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation
is filed.

4. Redistribution. You may reproduce and distribute copies of the

Work or Derivative Works thereof in any medium, with or without mod-
ifications, and in Source or Object form, provided that You meet the fol-
lowing conditions:

(a) You must give any other recipients of the Work or Derivative Works
a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating
that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain
to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution,
then any Derivative Works that You distribute must include a readable
copy of the attribution notices contained within such NOTICE file, ex-
cluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or, within
a display generated by the Derivative Works, if and wherever such third-
party notices normally appear. The contents of the NOTICE file are for
informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You dis-

37

tribute, alongside or as an addendum to the NOTICE text from the Work,
provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions for use,
reproduction, or distribution of Your modifications, or for any such De-
rivative Works as a whole, provided Your use, reproduction, and distrib-
ution of the Work otherwise complies with the conditions stated in this
License.

5. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work by
You to the Licensor shall be under the terms and conditions of this Li-
cense, without any additional terms or conditions. Notwithstanding the
above, nothing herein shall supersede or modify the terms of any sepa-
rate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor, ex-
cept as required for reasonable and customary use in describing the ori-
gin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each Contribu-
tor provides its Contributions) on an “AS IS” BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-
TICULAR PURPOSE. You are solely responsible for determining the ap-
propriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise, unless re-
quired by applicable law (such as deliberate and grossly negligent acts)
or agreed to in writing, shall any Contributor be liable to You for dam-

38

ages, including any direct, indirect, special, incidental, or consequential
damages of any character arising as a result of this License or out of the
use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any
and all other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer, and
charge a fee for, acceptance of support, warranty, indemnity, or other lia-
bility obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on
Your sole responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boil-
erplate notice, with the fields enclosed by brackets “[]” replaced with
your own identifying information. (Don’t include the brackets!) The text
should be enclosed in the appropriate comment syntax for the file format.
We also recommend that a file or class name and description of purpose
be included on the same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may
not use this file except in compliance with the License. You may obtain
a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software dis-
tributed under the License is distributed on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or im-

39

http://www.apache.org/licenses/LICENSE-2.0

plied. See the License for the specific language governing permissions
and limitations under the License.

40

41

42

Content
Introduction ... 3

Circular data stack .. 4
Stack-of-stacks references ... 5
Workbench .. 6
Show me the code ! ... 7

Pushing data to the stack ... 9
Numeric data types ... 10
String data type ... 11
Boolean data type .. 13
Pointer data type ... 14
List data type .. 15
Lambda data type .. 16

Stack-related functions ... 17
Functions for the “stack of stacks” .. 18

Stacks management word: making named stack current 19
Stacks management word: check if stack exists 20
Stacks management word: rotate left .. 21
Stacks management word: rotate right 22

Managing data on stack ... 23
Stack management word: duplicating data on the stack 24
Stack management word: dropping data from stack 25
Stack management word: swapping two values. 26
Stack management word: rotate left .. 27
Stack management word: rotate right 28

Managing data on workbench ... 29
Workbench management word: taking value from stack to

workbench. .. 30
Workbench management word: taking value from workbench

to stack. ... 31
Conclusion ... 33
License .. 35

43

44

45

	Introduction
	Circular data stack
	Stack-of-stacks references
	Workbench
	Show me the code !

	Pushing data to the stack
	Numeric data types
	String data type
	Boolean data type
	Pointer data type
	List data type
	Lambda data type

	Stack-related functions
	Functions for the "stack of stacks"
	Stacks management word: making named stack current
	Stacks management word: check if stack exists
	Stacks management word: rotate left
	Stacks management word: rotate right

	Managing data on stack
	Stack management word: duplicating data on the stack
	Stack management word: dropping data from stack
	Stack management word: swapping two values.
	Stack management word: rotate left
	Stack management word: rotate right

	Managing data on workbench
	Workbench management word: taking value from stack to workbench.
	Workbench management word: taking value from workbench to stack.

	Conclusion
	License

