// Rust JSON serialization library. // Copyright (c) 2011 Google Inc. #![forbid(non_camel_case_types)] #![allow(missing_docs)] //! JSON parsing and serialization //! //! # What is JSON? //! //! JSON (JavaScript Object Notation) is a way to write data in Javascript. //! Like XML, it allows to encode structured data in a text format that can be easily read by humans //! Its simple syntax and native compatibility with JavaScript have made it a widely used format. //! //! Data types that can be encoded are JavaScript types (see the `Json` enum for more details): //! //! * `Boolean`: equivalent to rust's `bool` //! * `Number`: equivalent to rust's `f64` //! * `String`: equivalent to rust's `String` //! * `Array`: equivalent to rust's `Vec`, but also allowing objects of different types in the //! same array //! * `Object`: equivalent to rust's `BTreeMap` //! * `Null` //! //! An object is a series of string keys mapping to values, in `"key": value` format. //! Arrays are enclosed in square brackets ([ ... ]) and objects in curly brackets ({ ... }). //! A simple JSON document encoding a person, their age, address and phone numbers could look like //! //! ```json //! { //! "FirstName": "John", //! "LastName": "Doe", //! "Age": 43, //! "Address": { //! "Street": "Downing Street 10", //! "City": "London", //! "Country": "Great Britain" //! }, //! "PhoneNumbers": [ //! "+44 1234567", //! "+44 2345678" //! ] //! } //! ``` //! //! # Rust Type-based Encoding and Decoding //! //! Rust provides a mechanism for low boilerplate encoding & decoding of values to and from JSON via //! the serialization API. //! To be able to encode a piece of data, it must implement the `serialize::RustcEncodable` trait. //! To be able to decode a piece of data, it must implement the `serialize::RustcDecodable` trait. //! The Rust compiler provides an annotation to automatically generate the code for these traits: //! `#[derive(RustcDecodable, RustcEncodable)]` //! //! The JSON API provides an enum `json::Json` and a trait `ToJson` to encode objects. //! The `ToJson` trait provides a `to_json` method to convert an object into a `json::Json` value. //! A `json::Json` value can be encoded as a string or buffer using the functions described above. //! You can also use the `json::Encoder` object, which implements the `Encoder` trait. //! //! When using `ToJson` the `RustcEncodable` trait implementation is not mandatory. //! //! # Examples of use //! //! ## Using Autoserialization //! //! Create a struct called `TestStruct` and serialize and deserialize it to and from JSON using the //! serialization API, using the derived serialization code. //! //! ```rust //! # #![feature(rustc_private)] //! extern crate serialize as rustc_serialize; // for the deriving below //! use rustc_serialize::json; //! //! // Automatically generate `Decodable` and `Encodable` trait implementations //! #[derive(RustcDecodable, RustcEncodable)] //! pub struct TestStruct { //! data_int: u8, //! data_str: String, //! data_vector: Vec, //! } //! //! fn main() { //! let object = TestStruct { //! data_int: 1, //! data_str: "homura".to_string(), //! data_vector: vec![2,3,4,5], //! }; //! //! // Serialize using `json::encode` //! let encoded = json::encode(&object).unwrap(); //! //! // Deserialize using `json::decode` //! let decoded: TestStruct = json::decode(&encoded[..]).unwrap(); //! } //! ``` //! //! ## Using the `ToJson` trait //! //! The examples above use the `ToJson` trait to generate the JSON string, which is required //! for custom mappings. //! //! ### Simple example of `ToJson` usage //! //! ```rust //! # #![feature(rustc_private)] //! extern crate serialize as rustc_serialize; //! use rustc_serialize::json::{self, ToJson, Json}; //! //! // A custom data structure //! struct ComplexNum { //! a: f64, //! b: f64, //! } //! //! // JSON value representation //! impl ToJson for ComplexNum { //! fn to_json(&self) -> Json { //! Json::String(format!("{}+{}i", self.a, self.b)) //! } //! } //! //! // Only generate `RustcEncodable` trait implementation //! #[derive(RustcEncodable)] //! pub struct ComplexNumRecord { //! uid: u8, //! dsc: String, //! val: Json, //! } //! //! fn main() { //! let num = ComplexNum { a: 0.0001, b: 12.539 }; //! let data: String = json::encode(&ComplexNumRecord{ //! uid: 1, //! dsc: "test".to_string(), //! val: num.to_json(), //! }).unwrap(); //! println!("data: {}", data); //! // data: {"uid":1,"dsc":"test","val":"0.0001+12.539i"}; //! } //! ``` //! //! ### Verbose example of `ToJson` usage //! //! ```rust //! # #![feature(rustc_private)] //! extern crate serialize as rustc_serialize; //! use std::collections::BTreeMap; //! use rustc_serialize::json::{self, Json, ToJson}; //! //! // Only generate `RustcDecodable` trait implementation //! #[derive(RustcDecodable)] //! pub struct TestStruct { //! data_int: u8, //! data_str: String, //! data_vector: Vec, //! } //! //! // Specify encoding method manually //! impl ToJson for TestStruct { //! fn to_json(&self) -> Json { //! let mut d = BTreeMap::new(); //! // All standard types implement `to_json()`, so use it //! d.insert("data_int".to_string(), self.data_int.to_json()); //! d.insert("data_str".to_string(), self.data_str.to_json()); //! d.insert("data_vector".to_string(), self.data_vector.to_json()); //! Json::Object(d) //! } //! } //! //! fn main() { //! // Serialize using `ToJson` //! let input_data = TestStruct { //! data_int: 1, //! data_str: "madoka".to_string(), //! data_vector: vec![2,3,4,5], //! }; //! let json_obj: Json = input_data.to_json(); //! let json_str: String = json_obj.to_string(); //! //! // Deserialize like before //! let decoded: TestStruct = json::decode(&json_str).unwrap(); //! } //! ``` use self::DecoderError::*; use self::ErrorCode::*; use self::InternalStackElement::*; use self::JsonEvent::*; use self::ParserError::*; use self::ParserState::*; use std::borrow::Cow; use std::collections::{BTreeMap, HashMap}; use std::io; use std::io::prelude::*; use std::mem::swap; use std::num::FpCategory as Fp; use std::ops::Index; use std::str::FromStr; use std::string; use std::{char, fmt, str}; use crate::Encodable; /// Represents a json value #[derive(Clone, PartialEq, PartialOrd, Debug)] pub enum Json { I64(i64), U64(u64), F64(f64), String(string::String), Boolean(bool), Array(self::Array), Object(self::Object), Null, } pub type Array = Vec; pub type Object = BTreeMap; pub struct PrettyJson<'a> { inner: &'a Json, } pub struct AsJson<'a, T> { inner: &'a T, } pub struct AsPrettyJson<'a, T> { inner: &'a T, indent: Option, } /// The errors that can arise while parsing a JSON stream. #[derive(Clone, Copy, PartialEq, Debug)] pub enum ErrorCode { InvalidSyntax, InvalidNumber, EOFWhileParsingObject, EOFWhileParsingArray, EOFWhileParsingValue, EOFWhileParsingString, KeyMustBeAString, ExpectedColon, TrailingCharacters, TrailingComma, InvalidEscape, InvalidUnicodeCodePoint, LoneLeadingSurrogateInHexEscape, UnexpectedEndOfHexEscape, UnrecognizedHex, NotFourDigit, NotUtf8, } #[derive(Clone, PartialEq, Debug)] pub enum ParserError { /// msg, line, col SyntaxError(ErrorCode, usize, usize), IoError(io::ErrorKind, String), } // Builder and Parser have the same errors. pub type BuilderError = ParserError; #[derive(Clone, PartialEq, Debug)] pub enum DecoderError { ParseError(ParserError), ExpectedError(string::String, string::String), MissingFieldError(string::String), UnknownVariantError(string::String), ApplicationError(string::String), } #[derive(Copy, Clone, Debug)] pub enum EncoderError { FmtError(fmt::Error), BadHashmapKey, } /// Returns a readable error string for a given error code. pub fn error_str(error: ErrorCode) -> &'static str { match error { InvalidSyntax => "invalid syntax", InvalidNumber => "invalid number", EOFWhileParsingObject => "EOF While parsing object", EOFWhileParsingArray => "EOF While parsing array", EOFWhileParsingValue => "EOF While parsing value", EOFWhileParsingString => "EOF While parsing string", KeyMustBeAString => "key must be a string", ExpectedColon => "expected `:`", TrailingCharacters => "trailing characters", TrailingComma => "trailing comma", InvalidEscape => "invalid escape", UnrecognizedHex => "invalid \\u{ esc}ape (unrecognized hex)", NotFourDigit => "invalid \\u{ esc}ape (not four digits)", NotUtf8 => "contents not utf-8", InvalidUnicodeCodePoint => "invalid Unicode code point", LoneLeadingSurrogateInHexEscape => "lone leading surrogate in hex escape", UnexpectedEndOfHexEscape => "unexpected end of hex escape", } } /// Shortcut function to decode a JSON `&str` into an object pub fn decode(s: &str) -> DecodeResult { let json = match from_str(s) { Ok(x) => x, Err(e) => return Err(ParseError(e)), }; let mut decoder = Decoder::new(json); crate::Decodable::decode(&mut decoder) } /// Shortcut function to encode a `T` into a JSON `String` pub fn encode(object: &T) -> Result { let mut s = String::new(); { let mut encoder = Encoder::new(&mut s); object.encode(&mut encoder)?; } Ok(s) } impl fmt::Display for ErrorCode { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { error_str(*self).fmt(f) } } fn io_error_to_error(io: io::Error) -> ParserError { IoError(io.kind(), io.to_string()) } impl fmt::Display for ParserError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // FIXME this should be a nicer error fmt::Debug::fmt(self, f) } } impl fmt::Display for DecoderError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // FIXME this should be a nicer error fmt::Debug::fmt(self, f) } } impl std::error::Error for DecoderError {} impl fmt::Display for EncoderError { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // FIXME this should be a nicer error fmt::Debug::fmt(self, f) } } impl std::error::Error for EncoderError {} impl From for EncoderError { /// Converts a [`fmt::Error`] into `EncoderError` /// /// This conversion does not allocate memory. fn from(err: fmt::Error) -> EncoderError { EncoderError::FmtError(err) } } pub type EncodeResult = Result<(), EncoderError>; pub type DecodeResult = Result; fn escape_str(wr: &mut dyn fmt::Write, v: &str) -> EncodeResult { wr.write_str("\"")?; let mut start = 0; for (i, byte) in v.bytes().enumerate() { let escaped = match byte { b'"' => "\\\"", b'\\' => "\\\\", b'\x00' => "\\u0000", b'\x01' => "\\u0001", b'\x02' => "\\u0002", b'\x03' => "\\u0003", b'\x04' => "\\u0004", b'\x05' => "\\u0005", b'\x06' => "\\u0006", b'\x07' => "\\u0007", b'\x08' => "\\b", b'\t' => "\\t", b'\n' => "\\n", b'\x0b' => "\\u000b", b'\x0c' => "\\f", b'\r' => "\\r", b'\x0e' => "\\u000e", b'\x0f' => "\\u000f", b'\x10' => "\\u0010", b'\x11' => "\\u0011", b'\x12' => "\\u0012", b'\x13' => "\\u0013", b'\x14' => "\\u0014", b'\x15' => "\\u0015", b'\x16' => "\\u0016", b'\x17' => "\\u0017", b'\x18' => "\\u0018", b'\x19' => "\\u0019", b'\x1a' => "\\u001a", b'\x1b' => "\\u001b", b'\x1c' => "\\u001c", b'\x1d' => "\\u001d", b'\x1e' => "\\u001e", b'\x1f' => "\\u001f", b'\x7f' => "\\u007f", _ => { continue; } }; if start < i { wr.write_str(&v[start..i])?; } wr.write_str(escaped)?; start = i + 1; } if start != v.len() { wr.write_str(&v[start..])?; } wr.write_str("\"")?; Ok(()) } fn escape_char(writer: &mut dyn fmt::Write, v: char) -> EncodeResult { escape_str(writer, v.encode_utf8(&mut [0; 4])) } fn spaces(wr: &mut dyn fmt::Write, mut n: usize) -> EncodeResult { const BUF: &str = " "; while n >= BUF.len() { wr.write_str(BUF)?; n -= BUF.len(); } if n > 0 { wr.write_str(&BUF[..n])?; } Ok(()) } fn fmt_number_or_null(v: f64) -> string::String { match v.classify() { Fp::Nan | Fp::Infinite => string::String::from("null"), _ if v.fract() != 0f64 => v.to_string(), _ => v.to_string() + ".0", } } /// A structure for implementing serialization to JSON. pub struct Encoder<'a> { writer: &'a mut (dyn fmt::Write + 'a), is_emitting_map_key: bool, } impl<'a> Encoder<'a> { /// Creates a new JSON encoder whose output will be written to the writer /// specified. pub fn new(writer: &'a mut dyn fmt::Write) -> Encoder<'a> { Encoder { writer, is_emitting_map_key: false } } } macro_rules! emit_enquoted_if_mapkey { ($enc:ident,$e:expr) => {{ if $enc.is_emitting_map_key { write!($enc.writer, "\"{}\"", $e)?; } else { write!($enc.writer, "{}", $e)?; } Ok(()) }}; } impl<'a> crate::Encoder for Encoder<'a> { type Error = EncoderError; fn emit_unit(&mut self) -> EncodeResult { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, "null")?; Ok(()) } fn emit_usize(&mut self, v: usize) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u128(&mut self, v: u128) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u64(&mut self, v: u64) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u32(&mut self, v: u32) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u16(&mut self, v: u16) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u8(&mut self, v: u8) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_isize(&mut self, v: isize) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i128(&mut self, v: i128) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i64(&mut self, v: i64) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i32(&mut self, v: i32) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i16(&mut self, v: i16) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i8(&mut self, v: i8) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_bool(&mut self, v: bool) -> EncodeResult { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if v { write!(self.writer, "true")?; } else { write!(self.writer, "false")?; } Ok(()) } fn emit_f64(&mut self, v: f64) -> EncodeResult { emit_enquoted_if_mapkey!(self, fmt_number_or_null(v)) } fn emit_f32(&mut self, v: f32) -> EncodeResult { self.emit_f64(f64::from(v)) } fn emit_char(&mut self, v: char) -> EncodeResult { escape_char(self.writer, v) } fn emit_str(&mut self, v: &str) -> EncodeResult { escape_str(self.writer, v) } fn emit_enum(&mut self, _name: &str, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { f(self) } fn emit_enum_variant(&mut self, name: &str, _id: usize, cnt: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { // enums are encoded as strings or objects // Bunny => "Bunny" // Kangaroo(34,"William") => {"variant": "Kangaroo", "fields": [34,"William"]} if cnt == 0 { escape_str(self.writer, name) } else { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, "{{\"variant\":")?; escape_str(self.writer, name)?; write!(self.writer, ",\"fields\":[")?; f(self)?; write!(self.writer, "]}}")?; Ok(()) } } fn emit_enum_variant_arg(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx != 0 { write!(self.writer, ",")?; } f(self) } fn emit_enum_struct_variant( &mut self, name: &str, id: usize, cnt: usize, f: F, ) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_enum_variant(name, id, cnt, f) } fn emit_enum_struct_variant_field(&mut self, _: &str, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_enum_variant_arg(idx, f) } fn emit_struct(&mut self, _: &str, _: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, "{{")?; f(self)?; write!(self.writer, "}}")?; Ok(()) } fn emit_struct_field(&mut self, name: &str, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx != 0 { write!(self.writer, ",")?; } escape_str(self.writer, name)?; write!(self.writer, ":")?; f(self) } fn emit_tuple(&mut self, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq(len, f) } fn emit_tuple_arg(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq_elt(idx, f) } fn emit_tuple_struct(&mut self, _name: &str, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq(len, f) } fn emit_tuple_struct_arg(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq_elt(idx, f) } fn emit_option(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } f(self) } fn emit_option_none(&mut self) -> EncodeResult { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_unit() } fn emit_option_some(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } f(self) } fn emit_seq(&mut self, _len: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, "[")?; f(self)?; write!(self.writer, "]")?; Ok(()) } fn emit_seq_elt(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx != 0 { write!(self.writer, ",")?; } f(self) } fn emit_map(&mut self, _len: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, "{{")?; f(self)?; write!(self.writer, "}}")?; Ok(()) } fn emit_map_elt_key(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx != 0 { write!(self.writer, ",")? } self.is_emitting_map_key = true; f(self)?; self.is_emitting_map_key = false; Ok(()) } fn emit_map_elt_val(&mut self, _idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut Encoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, ":")?; f(self) } } /// Another encoder for JSON, but prints out human-readable JSON instead of /// compact data pub struct PrettyEncoder<'a> { writer: &'a mut (dyn fmt::Write + 'a), curr_indent: usize, indent: usize, is_emitting_map_key: bool, } impl<'a> PrettyEncoder<'a> { /// Creates a new encoder whose output will be written to the specified writer pub fn new(writer: &'a mut dyn fmt::Write) -> PrettyEncoder<'a> { PrettyEncoder { writer, curr_indent: 0, indent: 2, is_emitting_map_key: false } } /// Sets the number of spaces to indent for each level. /// This is safe to set during encoding. pub fn set_indent(&mut self, indent: usize) { // self.indent very well could be 0 so we need to use checked division. let level = self.curr_indent.checked_div(self.indent).unwrap_or(0); self.indent = indent; self.curr_indent = level * self.indent; } } impl<'a> crate::Encoder for PrettyEncoder<'a> { type Error = EncoderError; fn emit_unit(&mut self) -> EncodeResult { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, "null")?; Ok(()) } fn emit_usize(&mut self, v: usize) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u128(&mut self, v: u128) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u64(&mut self, v: u64) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u32(&mut self, v: u32) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u16(&mut self, v: u16) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_u8(&mut self, v: u8) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_isize(&mut self, v: isize) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i128(&mut self, v: i128) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i64(&mut self, v: i64) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i32(&mut self, v: i32) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i16(&mut self, v: i16) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_i8(&mut self, v: i8) -> EncodeResult { emit_enquoted_if_mapkey!(self, v) } fn emit_bool(&mut self, v: bool) -> EncodeResult { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if v { write!(self.writer, "true")?; } else { write!(self.writer, "false")?; } Ok(()) } fn emit_f64(&mut self, v: f64) -> EncodeResult { emit_enquoted_if_mapkey!(self, fmt_number_or_null(v)) } fn emit_f32(&mut self, v: f32) -> EncodeResult { self.emit_f64(f64::from(v)) } fn emit_char(&mut self, v: char) -> EncodeResult { escape_char(self.writer, v) } fn emit_str(&mut self, v: &str) -> EncodeResult { escape_str(self.writer, v) } fn emit_enum(&mut self, _name: &str, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { f(self) } fn emit_enum_variant(&mut self, name: &str, _id: usize, cnt: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if cnt == 0 { escape_str(self.writer, name) } else { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } writeln!(self.writer, "{{")?; self.curr_indent += self.indent; spaces(self.writer, self.curr_indent)?; write!(self.writer, "\"variant\": ")?; escape_str(self.writer, name)?; writeln!(self.writer, ",")?; spaces(self.writer, self.curr_indent)?; writeln!(self.writer, "\"fields\": [")?; self.curr_indent += self.indent; f(self)?; self.curr_indent -= self.indent; writeln!(self.writer)?; spaces(self.writer, self.curr_indent)?; self.curr_indent -= self.indent; writeln!(self.writer, "]")?; spaces(self.writer, self.curr_indent)?; write!(self.writer, "}}")?; Ok(()) } } fn emit_enum_variant_arg(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx != 0 { writeln!(self.writer, ",")?; } spaces(self.writer, self.curr_indent)?; f(self) } fn emit_enum_struct_variant( &mut self, name: &str, id: usize, cnt: usize, f: F, ) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_enum_variant(name, id, cnt, f) } fn emit_enum_struct_variant_field(&mut self, _: &str, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_enum_variant_arg(idx, f) } fn emit_struct(&mut self, _: &str, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if len == 0 { write!(self.writer, "{{}}")?; } else { write!(self.writer, "{{")?; self.curr_indent += self.indent; f(self)?; self.curr_indent -= self.indent; writeln!(self.writer)?; spaces(self.writer, self.curr_indent)?; write!(self.writer, "}}")?; } Ok(()) } fn emit_struct_field(&mut self, name: &str, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx == 0 { writeln!(self.writer)?; } else { writeln!(self.writer, ",")?; } spaces(self.writer, self.curr_indent)?; escape_str(self.writer, name)?; write!(self.writer, ": ")?; f(self) } fn emit_tuple(&mut self, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq(len, f) } fn emit_tuple_arg(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq_elt(idx, f) } fn emit_tuple_struct(&mut self, _: &str, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq(len, f) } fn emit_tuple_struct_arg(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_seq_elt(idx, f) } fn emit_option(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } f(self) } fn emit_option_none(&mut self) -> EncodeResult { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } self.emit_unit() } fn emit_option_some(&mut self, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } f(self) } fn emit_seq(&mut self, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if len == 0 { write!(self.writer, "[]")?; } else { write!(self.writer, "[")?; self.curr_indent += self.indent; f(self)?; self.curr_indent -= self.indent; writeln!(self.writer)?; spaces(self.writer, self.curr_indent)?; write!(self.writer, "]")?; } Ok(()) } fn emit_seq_elt(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx == 0 { writeln!(self.writer)?; } else { writeln!(self.writer, ",")?; } spaces(self.writer, self.curr_indent)?; f(self) } fn emit_map(&mut self, len: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if len == 0 { write!(self.writer, "{{}}")?; } else { write!(self.writer, "{{")?; self.curr_indent += self.indent; f(self)?; self.curr_indent -= self.indent; writeln!(self.writer)?; spaces(self.writer, self.curr_indent)?; write!(self.writer, "}}")?; } Ok(()) } fn emit_map_elt_key(&mut self, idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } if idx == 0 { writeln!(self.writer)?; } else { writeln!(self.writer, ",")?; } spaces(self.writer, self.curr_indent)?; self.is_emitting_map_key = true; f(self)?; self.is_emitting_map_key = false; Ok(()) } fn emit_map_elt_val(&mut self, _idx: usize, f: F) -> EncodeResult where F: FnOnce(&mut PrettyEncoder<'a>) -> EncodeResult, { if self.is_emitting_map_key { return Err(EncoderError::BadHashmapKey); } write!(self.writer, ": ")?; f(self) } } impl Encodable for Json { fn encode(&self, e: &mut E) -> Result<(), E::Error> { match *self { Json::I64(v) => v.encode(e), Json::U64(v) => v.encode(e), Json::F64(v) => v.encode(e), Json::String(ref v) => v.encode(e), Json::Boolean(v) => v.encode(e), Json::Array(ref v) => v.encode(e), Json::Object(ref v) => v.encode(e), Json::Null => e.emit_unit(), } } } /// Creates an `AsJson` wrapper which can be used to print a value as JSON /// on-the-fly via `write!` pub fn as_json(t: &T) -> AsJson<'_, T> { AsJson { inner: t } } /// Creates an `AsPrettyJson` wrapper which can be used to print a value as JSON /// on-the-fly via `write!` pub fn as_pretty_json(t: &T) -> AsPrettyJson<'_, T> { AsPrettyJson { inner: t, indent: None } } impl Json { /// Borrow this json object as a pretty object to generate a pretty /// representation for it via `Display`. pub fn pretty(&self) -> PrettyJson<'_> { PrettyJson { inner: self } } /// If the Json value is an Object, returns the value associated with the provided key. /// Otherwise, returns None. pub fn find(&self, key: &str) -> Option<&Json> { match *self { Json::Object(ref map) => map.get(key), _ => None, } } /// Attempts to get a nested Json Object for each key in `keys`. /// If any key is found not to exist, `find_path` will return `None`. /// Otherwise, it will return the Json value associated with the final key. pub fn find_path<'a>(&'a self, keys: &[&str]) -> Option<&'a Json> { let mut target = self; for key in keys { target = target.find(*key)?; } Some(target) } /// If the Json value is an Object, performs a depth-first search until /// a value associated with the provided key is found. If no value is found /// or the Json value is not an Object, returns `None`. pub fn search(&self, key: &str) -> Option<&Json> { match *self { Json::Object(ref map) => match map.get(key) { Some(json_value) => Some(json_value), None => { for v in map.values() { match v.search(key) { x if x.is_some() => return x, _ => (), } } None } }, _ => None, } } /// Returns `true` if the Json value is an `Object`. pub fn is_object(&self) -> bool { self.as_object().is_some() } /// If the Json value is an `Object`, returns the associated `BTreeMap`; /// returns `None` otherwise. pub fn as_object(&self) -> Option<&Object> { match *self { Json::Object(ref map) => Some(map), _ => None, } } /// Returns `true` if the Json value is an `Array`. pub fn is_array(&self) -> bool { self.as_array().is_some() } /// If the Json value is an `Array`, returns the associated vector; /// returns `None` otherwise. pub fn as_array(&self) -> Option<&Array> { match *self { Json::Array(ref array) => Some(&*array), _ => None, } } /// Returns `true` if the Json value is a `String`. pub fn is_string(&self) -> bool { self.as_string().is_some() } /// If the Json value is a `String`, returns the associated `str`; /// returns `None` otherwise. pub fn as_string(&self) -> Option<&str> { match *self { Json::String(ref s) => Some(&s[..]), _ => None, } } /// Returns `true` if the Json value is a `Number`. pub fn is_number(&self) -> bool { match *self { Json::I64(_) | Json::U64(_) | Json::F64(_) => true, _ => false, } } /// Returns `true` if the Json value is a `i64`. pub fn is_i64(&self) -> bool { match *self { Json::I64(_) => true, _ => false, } } /// Returns `true` if the Json value is a `u64`. pub fn is_u64(&self) -> bool { match *self { Json::U64(_) => true, _ => false, } } /// Returns `true` if the Json value is a `f64`. pub fn is_f64(&self) -> bool { match *self { Json::F64(_) => true, _ => false, } } /// If the Json value is a number, returns or cast it to a `i64`; /// returns `None` otherwise. pub fn as_i64(&self) -> Option { match *self { Json::I64(n) => Some(n), Json::U64(n) => Some(n as i64), _ => None, } } /// If the Json value is a number, returns or cast it to a `u64`; /// returns `None` otherwise. pub fn as_u64(&self) -> Option { match *self { Json::I64(n) => Some(n as u64), Json::U64(n) => Some(n), _ => None, } } /// If the Json value is a number, returns or cast it to a `f64`; /// returns `None` otherwise. pub fn as_f64(&self) -> Option { match *self { Json::I64(n) => Some(n as f64), Json::U64(n) => Some(n as f64), Json::F64(n) => Some(n), _ => None, } } /// Returns `true` if the Json value is a `Boolean`. pub fn is_boolean(&self) -> bool { self.as_boolean().is_some() } /// If the Json value is a `Boolean`, returns the associated `bool`; /// returns `None` otherwise. pub fn as_boolean(&self) -> Option { match *self { Json::Boolean(b) => Some(b), _ => None, } } /// Returns `true` if the Json value is a `Null`. pub fn is_null(&self) -> bool { self.as_null().is_some() } /// If the Json value is a `Null`, returns `()`; /// returns `None` otherwise. pub fn as_null(&self) -> Option<()> { match *self { Json::Null => Some(()), _ => None, } } } impl<'a> Index<&'a str> for Json { type Output = Json; fn index(&self, idx: &'a str) -> &Json { self.find(idx).unwrap() } } impl Index for Json { type Output = Json; fn index(&self, idx: usize) -> &Json { match *self { Json::Array(ref v) => &v[idx], _ => panic!("can only index Json with usize if it is an array"), } } } /// The output of the streaming parser. #[derive(PartialEq, Clone, Debug)] pub enum JsonEvent { ObjectStart, ObjectEnd, ArrayStart, ArrayEnd, BooleanValue(bool), I64Value(i64), U64Value(u64), F64Value(f64), StringValue(string::String), NullValue, Error(ParserError), } #[derive(PartialEq, Debug)] enum ParserState { // Parse a value in an array, true means first element. ParseArray(bool), // Parse ',' or ']' after an element in an array. ParseArrayComma, // Parse a key:value in an object, true means first element. ParseObject(bool), // Parse ',' or ']' after an element in an object. ParseObjectComma, // Initial state. ParseStart, // Expecting the stream to end. ParseBeforeFinish, // Parsing can't continue. ParseFinished, } /// A Stack represents the current position of the parser in the logical /// structure of the JSON stream. /// /// An example is `foo.bar[3].x`. pub struct Stack { stack: Vec, str_buffer: Vec, } /// StackElements compose a Stack. /// /// As an example, `StackElement::Key("foo")`, `StackElement::Key("bar")`, /// `StackElement::Index(3)`, and `StackElement::Key("x")` are the /// StackElements composing the stack that represents `foo.bar[3].x`. #[derive(PartialEq, Clone, Debug)] pub enum StackElement<'l> { Index(u32), Key(&'l str), } // Internally, Key elements are stored as indices in a buffer to avoid // allocating a string for every member of an object. #[derive(PartialEq, Clone, Debug)] enum InternalStackElement { InternalIndex(u32), InternalKey(u16, u16), // start, size } impl Stack { pub fn new() -> Stack { Stack { stack: Vec::new(), str_buffer: Vec::new() } } /// Returns The number of elements in the Stack. pub fn len(&self) -> usize { self.stack.len() } /// Returns `true` if the stack is empty. pub fn is_empty(&self) -> bool { self.stack.is_empty() } /// Provides access to the StackElement at a given index. /// lower indices are at the bottom of the stack while higher indices are /// at the top. pub fn get(&self, idx: usize) -> StackElement<'_> { match self.stack[idx] { InternalIndex(i) => StackElement::Index(i), InternalKey(start, size) => StackElement::Key( str::from_utf8(&self.str_buffer[start as usize..start as usize + size as usize]) .unwrap(), ), } } /// Compares this stack with an array of StackElement<'_>s. pub fn is_equal_to(&self, rhs: &[StackElement<'_>]) -> bool { if self.stack.len() != rhs.len() { return false; } for (i, r) in rhs.iter().enumerate() { if self.get(i) != *r { return false; } } true } /// Returns `true` if the bottom-most elements of this stack are the same as /// the ones passed as parameter. pub fn starts_with(&self, rhs: &[StackElement<'_>]) -> bool { if self.stack.len() < rhs.len() { return false; } for (i, r) in rhs.iter().enumerate() { if self.get(i) != *r { return false; } } true } /// Returns `true` if the top-most elements of this stack are the same as /// the ones passed as parameter. pub fn ends_with(&self, rhs: &[StackElement<'_>]) -> bool { if self.stack.len() < rhs.len() { return false; } let offset = self.stack.len() - rhs.len(); for (i, r) in rhs.iter().enumerate() { if self.get(i + offset) != *r { return false; } } true } /// Returns the top-most element (if any). pub fn top(&self) -> Option> { match self.stack.last() { None => None, Some(&InternalIndex(i)) => Some(StackElement::Index(i)), Some(&InternalKey(start, size)) => Some(StackElement::Key( str::from_utf8(&self.str_buffer[start as usize..(start + size) as usize]).unwrap(), )), } } // Used by Parser to insert StackElement::Key elements at the top of the stack. fn push_key(&mut self, key: string::String) { self.stack.push(InternalKey(self.str_buffer.len() as u16, key.len() as u16)); self.str_buffer.extend(key.as_bytes()); } // Used by Parser to insert StackElement::Index elements at the top of the stack. fn push_index(&mut self, index: u32) { self.stack.push(InternalIndex(index)); } // Used by Parser to remove the top-most element of the stack. fn pop(&mut self) { assert!(!self.is_empty()); match *self.stack.last().unwrap() { InternalKey(_, sz) => { let new_size = self.str_buffer.len() - sz as usize; self.str_buffer.truncate(new_size); } InternalIndex(_) => {} } self.stack.pop(); } // Used by Parser to test whether the top-most element is an index. fn last_is_index(&self) -> bool { match self.stack.last() { Some(InternalIndex(_)) => true, _ => false, } } // Used by Parser to increment the index of the top-most element. fn bump_index(&mut self) { let len = self.stack.len(); let idx = match *self.stack.last().unwrap() { InternalIndex(i) => i + 1, _ => { panic!(); } }; self.stack[len - 1] = InternalIndex(idx); } } /// A streaming JSON parser implemented as an iterator of JsonEvent, consuming /// an iterator of char. pub struct Parser { rdr: T, ch: Option, line: usize, col: usize, // We maintain a stack representing where we are in the logical structure // of the JSON stream. stack: Stack, // A state machine is kept to make it possible to interrupt and resume parsing. state: ParserState, } impl> Iterator for Parser { type Item = JsonEvent; fn next(&mut self) -> Option { if self.state == ParseFinished { return None; } if self.state == ParseBeforeFinish { self.parse_whitespace(); // Make sure there is no trailing characters. if self.eof() { self.state = ParseFinished; return None; } else { return Some(self.error_event(TrailingCharacters)); } } Some(self.parse()) } } impl> Parser { /// Creates the JSON parser. pub fn new(rdr: T) -> Parser { let mut p = Parser { rdr, ch: Some('\x00'), line: 1, col: 0, stack: Stack::new(), state: ParseStart, }; p.bump(); p } /// Provides access to the current position in the logical structure of the /// JSON stream. pub fn stack(&self) -> &Stack { &self.stack } fn eof(&self) -> bool { self.ch.is_none() } fn ch_or_null(&self) -> char { self.ch.unwrap_or('\x00') } fn bump(&mut self) { self.ch = self.rdr.next(); if self.ch_is('\n') { self.line += 1; self.col = 1; } else { self.col += 1; } } fn next_char(&mut self) -> Option { self.bump(); self.ch } fn ch_is(&self, c: char) -> bool { self.ch == Some(c) } fn error(&self, reason: ErrorCode) -> Result { Err(SyntaxError(reason, self.line, self.col)) } fn parse_whitespace(&mut self) { while self.ch_is(' ') || self.ch_is('\n') || self.ch_is('\t') || self.ch_is('\r') { self.bump(); } } fn parse_number(&mut self) -> JsonEvent { let neg = if self.ch_is('-') { self.bump(); true } else { false }; let res = match self.parse_u64() { Ok(res) => res, Err(e) => { return Error(e); } }; if self.ch_is('.') || self.ch_is('e') || self.ch_is('E') { let mut res = res as f64; if self.ch_is('.') { res = match self.parse_decimal(res) { Ok(res) => res, Err(e) => { return Error(e); } }; } if self.ch_is('e') || self.ch_is('E') { res = match self.parse_exponent(res) { Ok(res) => res, Err(e) => { return Error(e); } }; } if neg { res *= -1.0; } F64Value(res) } else if neg { let res = (res as i64).wrapping_neg(); // Make sure we didn't underflow. if res > 0 { Error(SyntaxError(InvalidNumber, self.line, self.col)) } else { I64Value(res) } } else { U64Value(res) } } fn parse_u64(&mut self) -> Result { let mut accum = 0u64; let last_accum = 0; // necessary to detect overflow. match self.ch_or_null() { '0' => { self.bump(); // A leading '0' must be the only digit before the decimal point. if let '0'..='9' = self.ch_or_null() { return self.error(InvalidNumber); } } '1'..='9' => { while !self.eof() { match self.ch_or_null() { c @ '0'..='9' => { accum = accum.wrapping_mul(10); accum = accum.wrapping_add((c as u64) - ('0' as u64)); // Detect overflow by comparing to the last value. if accum <= last_accum { return self.error(InvalidNumber); } self.bump(); } _ => break, } } } _ => return self.error(InvalidNumber), } Ok(accum) } fn parse_decimal(&mut self, mut res: f64) -> Result { self.bump(); // Make sure a digit follows the decimal place. match self.ch_or_null() { '0'..='9' => (), _ => return self.error(InvalidNumber), } let mut dec = 1.0; while !self.eof() { match self.ch_or_null() { c @ '0'..='9' => { dec /= 10.0; res += (((c as isize) - ('0' as isize)) as f64) * dec; self.bump(); } _ => break, } } Ok(res) } fn parse_exponent(&mut self, mut res: f64) -> Result { self.bump(); let mut exp = 0; let mut neg_exp = false; if self.ch_is('+') { self.bump(); } else if self.ch_is('-') { self.bump(); neg_exp = true; } // Make sure a digit follows the exponent place. match self.ch_or_null() { '0'..='9' => (), _ => return self.error(InvalidNumber), } while !self.eof() { match self.ch_or_null() { c @ '0'..='9' => { exp *= 10; exp += (c as usize) - ('0' as usize); self.bump(); } _ => break, } } let exp = 10_f64.powi(exp as i32); if neg_exp { res /= exp; } else { res *= exp; } Ok(res) } fn decode_hex_escape(&mut self) -> Result { let mut i = 0; let mut n = 0; while i < 4 && !self.eof() { self.bump(); n = match self.ch_or_null() { c @ '0'..='9' => n * 16 + ((c as u16) - ('0' as u16)), 'a' | 'A' => n * 16 + 10, 'b' | 'B' => n * 16 + 11, 'c' | 'C' => n * 16 + 12, 'd' | 'D' => n * 16 + 13, 'e' | 'E' => n * 16 + 14, 'f' | 'F' => n * 16 + 15, _ => return self.error(InvalidEscape), }; i += 1; } // Error out if we didn't parse 4 digits. if i != 4 { return self.error(InvalidEscape); } Ok(n) } fn parse_str(&mut self) -> Result { let mut escape = false; let mut res = string::String::new(); loop { self.bump(); if self.eof() { return self.error(EOFWhileParsingString); } if escape { match self.ch_or_null() { '"' => res.push('"'), '\\' => res.push('\\'), '/' => res.push('/'), 'b' => res.push('\x08'), 'f' => res.push('\x0c'), 'n' => res.push('\n'), 'r' => res.push('\r'), 't' => res.push('\t'), 'u' => match self.decode_hex_escape()? { 0xDC00..=0xDFFF => return self.error(LoneLeadingSurrogateInHexEscape), // Non-BMP characters are encoded as a sequence of // two hex escapes, representing UTF-16 surrogates. n1 @ 0xD800..=0xDBFF => { match (self.next_char(), self.next_char()) { (Some('\\'), Some('u')) => (), _ => return self.error(UnexpectedEndOfHexEscape), } let n2 = self.decode_hex_escape()?; if n2 < 0xDC00 || n2 > 0xDFFF { return self.error(LoneLeadingSurrogateInHexEscape); } let c = (u32::from(n1 - 0xD800) << 10 | u32::from(n2 - 0xDC00)) + 0x1_0000; res.push(char::from_u32(c).unwrap()); } n => match char::from_u32(u32::from(n)) { Some(c) => res.push(c), None => return self.error(InvalidUnicodeCodePoint), }, }, _ => return self.error(InvalidEscape), } escape = false; } else if self.ch_is('\\') { escape = true; } else { match self.ch { Some('"') => { self.bump(); return Ok(res); } Some(c) => res.push(c), None => unreachable!(), } } } } // Invoked at each iteration, consumes the stream until it has enough // information to return a JsonEvent. // Manages an internal state so that parsing can be interrupted and resumed. // Also keeps track of the position in the logical structure of the json // stream isize the form of a stack that can be queried by the user using the // stack() method. fn parse(&mut self) -> JsonEvent { loop { // The only paths where the loop can spin a new iteration // are in the cases ParseArrayComma and ParseObjectComma if ',' // is parsed. In these cases the state is set to (respectively) // ParseArray(false) and ParseObject(false), which always return, // so there is no risk of getting stuck in an infinite loop. // All other paths return before the end of the loop's iteration. self.parse_whitespace(); match self.state { ParseStart => { return self.parse_start(); } ParseArray(first) => { return self.parse_array(first); } ParseArrayComma => { if let Some(evt) = self.parse_array_comma_or_end() { return evt; } } ParseObject(first) => { return self.parse_object(first); } ParseObjectComma => { self.stack.pop(); if self.ch_is(',') { self.state = ParseObject(false); self.bump(); } else { return self.parse_object_end(); } } _ => { return self.error_event(InvalidSyntax); } } } } fn parse_start(&mut self) -> JsonEvent { let val = self.parse_value(); self.state = match val { Error(_) => ParseFinished, ArrayStart => ParseArray(true), ObjectStart => ParseObject(true), _ => ParseBeforeFinish, }; val } fn parse_array(&mut self, first: bool) -> JsonEvent { if self.ch_is(']') { if !first { self.error_event(InvalidSyntax) } else { self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); ArrayEnd } } else { if first { self.stack.push_index(0); } let val = self.parse_value(); self.state = match val { Error(_) => ParseFinished, ArrayStart => ParseArray(true), ObjectStart => ParseObject(true), _ => ParseArrayComma, }; val } } fn parse_array_comma_or_end(&mut self) -> Option { if self.ch_is(',') { self.stack.bump_index(); self.state = ParseArray(false); self.bump(); None } else if self.ch_is(']') { self.stack.pop(); self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); Some(ArrayEnd) } else if self.eof() { Some(self.error_event(EOFWhileParsingArray)) } else { Some(self.error_event(InvalidSyntax)) } } fn parse_object(&mut self, first: bool) -> JsonEvent { if self.ch_is('}') { if !first { if self.stack.is_empty() { return self.error_event(TrailingComma); } else { self.stack.pop(); } } self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); return ObjectEnd; } if self.eof() { return self.error_event(EOFWhileParsingObject); } if !self.ch_is('"') { return self.error_event(KeyMustBeAString); } let s = match self.parse_str() { Ok(s) => s, Err(e) => { self.state = ParseFinished; return Error(e); } }; self.parse_whitespace(); if self.eof() { return self.error_event(EOFWhileParsingObject); } else if self.ch_or_null() != ':' { return self.error_event(ExpectedColon); } self.stack.push_key(s); self.bump(); self.parse_whitespace(); let val = self.parse_value(); self.state = match val { Error(_) => ParseFinished, ArrayStart => ParseArray(true), ObjectStart => ParseObject(true), _ => ParseObjectComma, }; val } fn parse_object_end(&mut self) -> JsonEvent { if self.ch_is('}') { self.state = if self.stack.is_empty() { ParseBeforeFinish } else if self.stack.last_is_index() { ParseArrayComma } else { ParseObjectComma }; self.bump(); ObjectEnd } else if self.eof() { self.error_event(EOFWhileParsingObject) } else { self.error_event(InvalidSyntax) } } fn parse_value(&mut self) -> JsonEvent { if self.eof() { return self.error_event(EOFWhileParsingValue); } match self.ch_or_null() { 'n' => self.parse_ident("ull", NullValue), 't' => self.parse_ident("rue", BooleanValue(true)), 'f' => self.parse_ident("alse", BooleanValue(false)), '0'..='9' | '-' => self.parse_number(), '"' => match self.parse_str() { Ok(s) => StringValue(s), Err(e) => Error(e), }, '[' => { self.bump(); ArrayStart } '{' => { self.bump(); ObjectStart } _ => self.error_event(InvalidSyntax), } } fn parse_ident(&mut self, ident: &str, value: JsonEvent) -> JsonEvent { if ident.chars().all(|c| Some(c) == self.next_char()) { self.bump(); value } else { Error(SyntaxError(InvalidSyntax, self.line, self.col)) } } fn error_event(&mut self, reason: ErrorCode) -> JsonEvent { self.state = ParseFinished; Error(SyntaxError(reason, self.line, self.col)) } } /// A Builder consumes a json::Parser to create a generic Json structure. pub struct Builder { parser: Parser, token: Option, } impl> Builder { /// Creates a JSON Builder. pub fn new(src: T) -> Builder { Builder { parser: Parser::new(src), token: None } } // Decode a Json value from a Parser. pub fn build(&mut self) -> Result { self.bump(); let result = self.build_value(); self.bump(); match self.token { None => {} Some(Error(ref e)) => { return Err(e.clone()); } ref tok => { panic!("unexpected token {:?}", tok.clone()); } } result } fn bump(&mut self) { self.token = self.parser.next(); } fn build_value(&mut self) -> Result { match self.token { Some(NullValue) => Ok(Json::Null), Some(I64Value(n)) => Ok(Json::I64(n)), Some(U64Value(n)) => Ok(Json::U64(n)), Some(F64Value(n)) => Ok(Json::F64(n)), Some(BooleanValue(b)) => Ok(Json::Boolean(b)), Some(StringValue(ref mut s)) => { let mut temp = string::String::new(); swap(s, &mut temp); Ok(Json::String(temp)) } Some(Error(ref e)) => Err(e.clone()), Some(ArrayStart) => self.build_array(), Some(ObjectStart) => self.build_object(), Some(ObjectEnd) => self.parser.error(InvalidSyntax), Some(ArrayEnd) => self.parser.error(InvalidSyntax), None => self.parser.error(EOFWhileParsingValue), } } fn build_array(&mut self) -> Result { self.bump(); let mut values = Vec::new(); loop { if self.token == Some(ArrayEnd) { return Ok(Json::Array(values.into_iter().collect())); } match self.build_value() { Ok(v) => values.push(v), Err(e) => return Err(e), } self.bump(); } } fn build_object(&mut self) -> Result { self.bump(); let mut values = BTreeMap::new(); loop { match self.token { Some(ObjectEnd) => { return Ok(Json::Object(values)); } Some(Error(ref e)) => { return Err(e.clone()); } None => { break; } _ => {} } let key = match self.parser.stack().top() { Some(StackElement::Key(k)) => k.to_owned(), _ => { panic!("invalid state"); } }; match self.build_value() { Ok(value) => { values.insert(key, value); } Err(e) => { return Err(e); } } self.bump(); } self.parser.error(EOFWhileParsingObject) } } /// Decodes a json value from an `&mut io::Read` pub fn from_reader(rdr: &mut dyn Read) -> Result { let mut contents = Vec::new(); match rdr.read_to_end(&mut contents) { Ok(c) => c, Err(e) => return Err(io_error_to_error(e)), }; let s = match str::from_utf8(&contents).ok() { Some(s) => s, _ => return Err(SyntaxError(NotUtf8, 0, 0)), }; let mut builder = Builder::new(s.chars()); builder.build() } /// Decodes a json value from a string pub fn from_str(s: &str) -> Result { let mut builder = Builder::new(s.chars()); builder.build() } /// A structure to decode JSON to values in rust. pub struct Decoder { stack: Vec, } impl Decoder { /// Creates a new decoder instance for decoding the specified JSON value. pub fn new(json: Json) -> Decoder { Decoder { stack: vec![json] } } fn pop(&mut self) -> Json { self.stack.pop().unwrap() } } macro_rules! expect { ($e:expr, Null) => {{ match $e { Json::Null => Ok(()), other => Err(ExpectedError("Null".to_owned(), other.to_string())), } }}; ($e:expr, $t:ident) => {{ match $e { Json::$t(v) => Ok(v), other => Err(ExpectedError(stringify!($t).to_owned(), other.to_string())), } }}; } macro_rules! read_primitive { ($name:ident, $ty:ty) => { fn $name(&mut self) -> DecodeResult<$ty> { match self.pop() { Json::I64(f) => Ok(f as $ty), Json::U64(f) => Ok(f as $ty), Json::F64(f) => Err(ExpectedError("Integer".to_owned(), f.to_string())), // re: #12967.. a type w/ numeric keys (ie HashMap etc) // is going to have a string here, as per JSON spec. Json::String(s) => match s.parse().ok() { Some(f) => Ok(f), None => Err(ExpectedError("Number".to_owned(), s)), }, value => Err(ExpectedError("Number".to_owned(), value.to_string())), } } }; } impl crate::Decoder for Decoder { type Error = DecoderError; fn read_nil(&mut self) -> DecodeResult<()> { expect!(self.pop(), Null) } read_primitive! { read_usize, usize } read_primitive! { read_u8, u8 } read_primitive! { read_u16, u16 } read_primitive! { read_u32, u32 } read_primitive! { read_u64, u64 } read_primitive! { read_u128, u128 } read_primitive! { read_isize, isize } read_primitive! { read_i8, i8 } read_primitive! { read_i16, i16 } read_primitive! { read_i32, i32 } read_primitive! { read_i64, i64 } read_primitive! { read_i128, i128 } fn read_f32(&mut self) -> DecodeResult { self.read_f64().map(|x| x as f32) } fn read_f64(&mut self) -> DecodeResult { match self.pop() { Json::I64(f) => Ok(f as f64), Json::U64(f) => Ok(f as f64), Json::F64(f) => Ok(f), Json::String(s) => { // re: #12967.. a type w/ numeric keys (ie HashMap etc) // is going to have a string here, as per JSON spec. match s.parse().ok() { Some(f) => Ok(f), None => Err(ExpectedError("Number".to_owned(), s)), } } Json::Null => Ok(f64::NAN), value => Err(ExpectedError("Number".to_owned(), value.to_string())), } } fn read_bool(&mut self) -> DecodeResult { expect!(self.pop(), Boolean) } fn read_char(&mut self) -> DecodeResult { let s = self.read_str()?; { let mut it = s.chars(); if let (Some(c), None) = (it.next(), it.next()) { // exactly one character return Ok(c); } } Err(ExpectedError("single character string".to_owned(), s.to_string())) } fn read_str(&mut self) -> DecodeResult> { expect!(self.pop(), String).map(Cow::Owned) } fn read_enum(&mut self, _name: &str, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_enum_variant(&mut self, names: &[&str], mut f: F) -> DecodeResult where F: FnMut(&mut Decoder, usize) -> DecodeResult, { let name = match self.pop() { Json::String(s) => s, Json::Object(mut o) => { let n = match o.remove(&"variant".to_owned()) { Some(Json::String(s)) => s, Some(val) => return Err(ExpectedError("String".to_owned(), val.to_string())), None => return Err(MissingFieldError("variant".to_owned())), }; match o.remove(&"fields".to_string()) { Some(Json::Array(l)) => { self.stack.extend(l.into_iter().rev()); } Some(val) => return Err(ExpectedError("Array".to_owned(), val.to_string())), None => return Err(MissingFieldError("fields".to_owned())), } n } json => return Err(ExpectedError("String or Object".to_owned(), json.to_string())), }; let idx = match names.iter().position(|n| *n == &name[..]) { Some(idx) => idx, None => return Err(UnknownVariantError(name)), }; f(self, idx) } fn read_enum_variant_arg(&mut self, _idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_enum_struct_variant(&mut self, names: &[&str], f: F) -> DecodeResult where F: FnMut(&mut Decoder, usize) -> DecodeResult, { self.read_enum_variant(names, f) } fn read_enum_struct_variant_field( &mut self, _name: &str, idx: usize, f: F, ) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_enum_variant_arg(idx, f) } fn read_struct(&mut self, _name: &str, _len: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { let value = f(self)?; self.pop(); Ok(value) } fn read_struct_field(&mut self, name: &str, _idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { let mut obj = expect!(self.pop(), Object)?; let value = match obj.remove(&name.to_string()) { None => { // Add a Null and try to parse it as an Option<_> // to get None as a default value. self.stack.push(Json::Null); match f(self) { Ok(x) => x, Err(_) => return Err(MissingFieldError(name.to_string())), } } Some(json) => { self.stack.push(json); f(self)? } }; self.stack.push(Json::Object(obj)); Ok(value) } fn read_tuple(&mut self, tuple_len: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_seq(move |d, len| { if len == tuple_len { f(d) } else { Err(ExpectedError(format!("Tuple{}", tuple_len), format!("Tuple{}", len))) } }) } fn read_tuple_arg(&mut self, idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_seq_elt(idx, f) } fn read_tuple_struct(&mut self, _name: &str, len: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_tuple(len, f) } fn read_tuple_struct_arg(&mut self, idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { self.read_tuple_arg(idx, f) } fn read_option(&mut self, mut f: F) -> DecodeResult where F: FnMut(&mut Decoder, bool) -> DecodeResult, { match self.pop() { Json::Null => f(self, false), value => { self.stack.push(value); f(self, true) } } } fn read_seq(&mut self, f: F) -> DecodeResult where F: FnOnce(&mut Decoder, usize) -> DecodeResult, { let array = expect!(self.pop(), Array)?; let len = array.len(); self.stack.extend(array.into_iter().rev()); f(self, len) } fn read_seq_elt(&mut self, _idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_map(&mut self, f: F) -> DecodeResult where F: FnOnce(&mut Decoder, usize) -> DecodeResult, { let obj = expect!(self.pop(), Object)?; let len = obj.len(); for (key, value) in obj { self.stack.push(value); self.stack.push(Json::String(key)); } f(self, len) } fn read_map_elt_key(&mut self, _idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn read_map_elt_val(&mut self, _idx: usize, f: F) -> DecodeResult where F: FnOnce(&mut Decoder) -> DecodeResult, { f(self) } fn error(&mut self, err: &str) -> DecoderError { ApplicationError(err.to_string()) } } /// A trait for converting values to JSON pub trait ToJson { /// Converts the value of `self` to an instance of JSON fn to_json(&self) -> Json; } macro_rules! to_json_impl_i64 { ($($t:ty), +) => ( $(impl ToJson for $t { fn to_json(&self) -> Json { Json::I64(*self as i64) } })+ ) } to_json_impl_i64! { isize, i8, i16, i32, i64 } macro_rules! to_json_impl_u64 { ($($t:ty), +) => ( $(impl ToJson for $t { fn to_json(&self) -> Json { Json::U64(*self as u64) } })+ ) } to_json_impl_u64! { usize, u8, u16, u32, u64 } impl ToJson for Json { fn to_json(&self) -> Json { self.clone() } } impl ToJson for f32 { fn to_json(&self) -> Json { f64::from(*self).to_json() } } impl ToJson for f64 { fn to_json(&self) -> Json { match self.classify() { Fp::Nan | Fp::Infinite => Json::Null, _ => Json::F64(*self), } } } impl ToJson for () { fn to_json(&self) -> Json { Json::Null } } impl ToJson for bool { fn to_json(&self) -> Json { Json::Boolean(*self) } } impl ToJson for str { fn to_json(&self) -> Json { Json::String(self.to_string()) } } impl ToJson for string::String { fn to_json(&self) -> Json { Json::String((*self).clone()) } } macro_rules! tuple_impl { // use variables to indicate the arity of the tuple ($($tyvar:ident),* ) => { // the trailing commas are for the 1 tuple impl< $( $tyvar : ToJson ),* > ToJson for ( $( $tyvar ),* , ) { #[inline] #[allow(non_snake_case)] fn to_json(&self) -> Json { match *self { ($(ref $tyvar),*,) => Json::Array(vec![$($tyvar.to_json()),*]) } } } } } tuple_impl! {A} tuple_impl! {A, B} tuple_impl! {A, B, C} tuple_impl! {A, B, C, D} tuple_impl! {A, B, C, D, E} tuple_impl! {A, B, C, D, E, F} tuple_impl! {A, B, C, D, E, F, G} tuple_impl! {A, B, C, D, E, F, G, H} tuple_impl! {A, B, C, D, E, F, G, H, I} tuple_impl! {A, B, C, D, E, F, G, H, I, J} tuple_impl! {A, B, C, D, E, F, G, H, I, J, K} tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L} impl ToJson for [A] { fn to_json(&self) -> Json { Json::Array(self.iter().map(|elt| elt.to_json()).collect()) } } impl ToJson for Vec { fn to_json(&self) -> Json { Json::Array(self.iter().map(|elt| elt.to_json()).collect()) } } impl ToJson for BTreeMap { fn to_json(&self) -> Json { let mut d = BTreeMap::new(); for (key, value) in self { d.insert(key.to_string(), value.to_json()); } Json::Object(d) } } impl ToJson for HashMap { fn to_json(&self) -> Json { let mut d = BTreeMap::new(); for (key, value) in self { d.insert((*key).clone(), value.to_json()); } Json::Object(d) } } impl ToJson for Option { fn to_json(&self) -> Json { match *self { None => Json::Null, Some(ref value) => value.to_json(), } } } struct FormatShim<'a, 'b> { inner: &'a mut fmt::Formatter<'b>, } impl<'a, 'b> fmt::Write for FormatShim<'a, 'b> { fn write_str(&mut self, s: &str) -> fmt::Result { match self.inner.write_str(s) { Ok(_) => Ok(()), Err(_) => Err(fmt::Error), } } } impl fmt::Display for Json { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = Encoder::new(&mut shim); match self.encode(&mut encoder) { Ok(_) => Ok(()), Err(_) => Err(fmt::Error), } } } impl<'a> fmt::Display for PrettyJson<'a> { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = PrettyEncoder::new(&mut shim); match self.inner.encode(&mut encoder) { Ok(_) => Ok(()), Err(_) => Err(fmt::Error), } } } impl<'a, T: Encodable> fmt::Display for AsJson<'a, T> { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = Encoder::new(&mut shim); match self.inner.encode(&mut encoder) { Ok(_) => Ok(()), Err(_) => Err(fmt::Error), } } } impl<'a, T> AsPrettyJson<'a, T> { /// Sets the indentation level for the emitted JSON pub fn indent(mut self, indent: usize) -> AsPrettyJson<'a, T> { self.indent = Some(indent); self } } impl<'a, T: Encodable> fmt::Display for AsPrettyJson<'a, T> { /// Encodes a json value into a string fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let mut shim = FormatShim { inner: f }; let mut encoder = PrettyEncoder::new(&mut shim); if let Some(n) = self.indent { encoder.set_indent(n); } match self.inner.encode(&mut encoder) { Ok(_) => Ok(()), Err(_) => Err(fmt::Error), } } } impl FromStr for Json { type Err = BuilderError; fn from_str(s: &str) -> Result { from_str(s) } } #[cfg(test)] mod tests;