{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import sklearn.metrics" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [], "source": [ "y_true = np.array([1, 1, 1, 1, 1])\n", "y_pred = np.array([0, 0, 0, 0, 0])" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0, 0],\n", " [5, 0]])" ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sklearn.metrics.confusion_matrix(y_true, y_pred)" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.0" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sklearn.metrics.precision_score(y_true, y_pred, average='binary', zero_division=0)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }