extern crate rusty_machine; extern crate rand; use rusty_machine::linalg::{Matrix, BaseMatrix}; use rusty_machine::learning::k_means::KMeansClassifier; use rusty_machine::learning::UnSupModel; use rand::thread_rng; use rand::distributions::IndependentSample; use rand::distributions::normal::Normal; fn generate_data(centroids: &Matrix, points_per_centroid: usize, noise: f64) -> Matrix { assert!(centroids.cols() > 0, "Centroids cannot be empty."); assert!(centroids.rows() > 0, "Centroids cannot be empty."); assert!(noise >= 0f64, "Noise must be non-negative."); let mut raw_cluster_data = Vec::with_capacity(centroids.rows() * points_per_centroid * centroids.cols()); let mut rng = thread_rng(); let normal_rv = Normal::new(0f64, noise); for _ in 0..points_per_centroid { // Generate points from each centroid for centroid in centroids.iter_rows() { // Generate a point randomly around the centroid let mut point = Vec::with_capacity(centroids.cols()); for feature in centroid { point.push(feature + normal_rv.ind_sample(&mut rng)); } // Push point to raw_cluster_data raw_cluster_data.extend(point); } } Matrix::new(centroids.rows() * points_per_centroid, centroids.cols(), raw_cluster_data) } fn main() { println!("K-Means clustering example:"); const SAMPLES_PER_CENTROID: usize = 2000; println!("Generating {0} samples from each centroids:", SAMPLES_PER_CENTROID); // Choose two cluster centers, at (-0.5, -0.5) and (0, 0.5). let centroids = Matrix::new(2, 2, vec![-0.5, -0.5, 0.0, 0.5]); println!("{}", centroids); // Generate some data randomly around the centroids let samples = generate_data(¢roids, SAMPLES_PER_CENTROID, 0.4); // Create a new model with 2 clusters let mut model = KMeansClassifier::new(2); // Train the model println!("Training the model..."); // Our train function returns a Result<(), E> model.train(&samples).unwrap(); let centroids = model.centroids().as_ref().unwrap(); println!("Model Centroids:\n{:.3}", centroids); // Predict the classes and partition into println!("Classifying the samples..."); let classes = model.predict(&samples).unwrap(); let (first, second): (Vec, Vec) = classes.data().iter().partition(|&x| *x == 0); println!("Samples closest to first centroid: {}", first.len()); println!("Samples closest to second centroid: {}", second.len()); }