## In math, how to solve $x^2 - 2x -4 <= 0$ To solve the inequality $x^2 - 2x - 4 \leq 0$, you need to determine the values of $x$ for which the quadratic expression is less than or equal to zero. First, solve the quadratic equation $x^2 - 2x - 4 = 0$ to find its roots. The quadratic formula is given by: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ In this case, $a = 1$, $b = -2$, and $c = -4$. Substituting these values into the quadratic formula: $$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1}$$ $$x = \frac{2 \pm \sqrt{4 + 16}}{2}$$ $$x = \frac{2 \pm \sqrt{20}}{2}$$ $$x = \frac{2 \pm 2\sqrt{5}}{2}$$ $$x = 1 \pm \sqrt{5}$$ So, the roots are $x = 1 + \sqrt{5}$ and $x = 1 - \sqrt{5}$. Next, determine the intervals defined by these roots. The roots split the number line into three intervals: 1. $(-\infty, 1 - \sqrt{5})$ 2. $[1 - \sqrt{5}, 1 + \sqrt{5}]$ 3. $(1 + \sqrt{5}, \infty)$ Determine the sign of the quadratic expression in each interval by testing a point within each interval. 1. For $(-\infty, 1 - \sqrt{5})$, select $x = -10$: \[(-10)^2 - 2(-10) - 4 = 100 + 20 - 4 = 116 \] 2. For $(1 - \sqrt{5}, 1 + \sqrt{5})$, select $x = 0$: \[(0)^2 - 2(0) - 4 = -4 \] 3. For $(1 + \sqrt{5}, \infty)$, select $x = 10$: \[10^2 - 2(10) - 4 = 100 - 20 - 4 = 76 \] Considering these results, the quadratic expression is negative or zero in the interval where $x$ lies between the roots $1 - \sqrt{5}$ and $1 + \sqrt{5}$ inclusive. Thus, the solution is: $$ x \in [1 - \sqrt{5}, 1 + \sqrt{5}] $$ > Model used: gpt-4o-mini