ANSI E1.31-2018 Protocol Compliance Checklist

Green = Passed, White = Not Checked, Purple = Outside Library Scope, Blue = Not Implemented/Attempted, Grey = Already covered by another point

Section of ANSI E1.31-2018

1.2 Overview and Architecture

1.3 Appropriate Use of This Standard

1.4 Classes of Data Appropriate for Transmission

1.5 Universe Synchronization
1.6 Universe Discovery

3.5 Source

3.6 Receiver

3.7 Active Data Slots

3.8 E1.31 Data Packet

3.9 E.31 Synchronization Packet

3.10 E1.31 Universe Discovery Packet

4 Protocol Packet Structure Summary

4.1 E1.31 Data Packet

4.2 E1.31 Synchronization Packet

4.3 E1.31 Universe Discovery Packet

Specific functionality required for compliance, functionality listing ommitted or greyed out
if already checked in a previous section.

- Allows transfer of arbitary START code DMX512-A data:

- DMX data can be synchronized across multiple receivers using universe syncronisation:

- Uses a ACN wrapper meaning it is compatiable with devices following the ANSI E.1.17 [ACN]
standard:

- Uses UDP as the transport/IP layer protocol:

- Supports multicast addressing:

- Supports unicast addressing:

- Uses UDP to provide a non-reliable IP transport mechanism:

- Allows multiple senders and receivers:

- Allows transfer of arbitary START code DMX512-A data:

- Allows synchronisation through the universe synchronisation mechanism:
- Allows universe discovery through the universe discovery mechanism:

- A source is uniquely identified by the CID in the header of the packet:
- A source may send multiple streams of data for different universes:
- Multiple sources may output data for a given universe:

- A receiever may listen on multiple universes:

- Sources for E1.31 should specify the location and amount of active data slots using the DMP
First Property Address and DMP Property Count fields (shown in Table 4-1):

- Identified by being transmitted with the VECTOR_E131_DATA_PACKET vector:
- Contains only universe synchronisation information and no additional data:
- Identified by being transmitted with the VECTOR_E131_EXTENDED_SYNCHRONIZATION

vector:

- |dentified by being transmitted with the VECTOR_E131_EXTENDED_DISCOVERY vector:

- E1.31 components must support the £1.31 Data Packet and E1.31. Universe Discovery Packet:

Test(s) which show compliance

test_send_recv_single_universe_alternative_startcode_multicast_ipv4,
test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6,
test_send_recv_single_universe_alternative_startcode_multicast_ipv6
test_send_across_universe_multiple_receivers_sync_multicast_ipv4,
test_send_across_universe_multiple_receivers_sync_multicast_ipv6
test_sync_packet_transmit_format, test_discovery_packet_transmit_format,
test_data_packet_transmit_format

test_data_packet_transmit_format, test_sync_packet_transmit_format
test_send_recv_single_universe_multicast_ipv6, test_send_recv_single_universe_multicast_ipv4

test_send_recv_single_universe_unicast_ipv6, test_send_recv_single_universe_unicast_ipv4

test_three_senders_three_recv_multicast_ipv4, test_three_senders_three_recv_multicast_ipv6

test_universe_discovery_one_universe_one_source_ipv4,
test_universe_discovery_one_universe_one_source_ipv6

Relies on library user to ensure CID's are unique, protocol doesn't specify a mechanism for this
test_send_recv_two_universe_multicast_ipv4, test_send_recv_two_universe_multicast_ipv6

test_two_senders_one_recv_same_universe_no_sync_multicast_ipv4,
test_two_senders_one_recv_same_universe_no_sync_multicast_ipv6
test_two_senders_one_recv_same_universe_no_sync_multicast_ipv4,
test_two_senders_one_recv_same_universe_no_sync_multicast_ipv6
data_parse_tests::test_data_packet_parse_pack, data_parse_tests::
test_malformed_data_packet_dmp_layer_too_low_property_count_parse, data_parse_tests::
test_malformed_data_packet_dmp_layer_too_high_property_count_parse,
data_parse_tests::test_data_packet_parse_pack, data_parse_tests::
test_malformed_data_packet_extended_acn_vector_parse, data_parse_tests::
test_malformed_data_packet_dmp_layer_wrong_vector_parse

sync_parse_tests::test_synchronization_packet_parse_pack

sync_parse_tests::test_synchronization_packet_parse_pack, sync_parse_tests::
test_sync_packet_framing_layer_unknown_vector, sync_parse_tests::
test_sync_packet_framing_layer_discovery_vector

discovery_parse_tests::test_discovery_packet_parse_pack, discovery_parse_tests::
test_discovery_packet_unknown_framing_vector_parse, discovery_parse_tests::
test_discovery_packet_sync_framing_vector_parse
test_send_recv_across_universe_multicast_ipv4,
test_send_recv_across_universe_multicast_ipv6,
test_universe_discovery_one_universe_one_source_ipv4,
test_universe_discovery_one_universe_one_source_ipv6

- E1.31 components may support the E1.31 synchronization packet:

- Data is formatted as specified in Table 4-1

- Detection of malformed packets:

- All packet content must be transmitted in network byte order (big endian):

- A universe can be used as a synchronisation universe and to transmit data on simultaneously:
- Packet is formatted as specified in Table 4-2

- Detection of malformed packets:

- All packet content must be transmitted in network byte order (big endian):

- A set of universe discovery packets shall be sent once every
E131_UNIVERSE_DISCOVERY_INTERVAL:

- The list of E1.31 universes must be sorted:
- The list of universes may include synchronisation universes:

- If the list of universes changes within an E131_UNIVERSE_DISCOVERY_INTERVAL a source
may send upto one additional set of packets to update the information:

- Packet is formatted as specified in Table 4-3
- Detection of malformed packets:
- All packet content must be transmitted in network byte order (big endian):

data_parse_tests::test_data_packet_parse_pack

data_parse_tests

data_parse_tests

test_send_recv_across_universe_multicast_ipv4, test_send_recv_across_universe_multicast_ipvé
sync_parse_tests::test_synchronization_packet_parse_pack

sync_parse_tests

sync_parse_tests

test_universe_discovery_interval_ipv4

test_discovery_packet_random_order_parse
test_universe_discovery_multiple_universe_one_source_ipv4

Source only sends updates on interval only:
test_universe_discovery_interval_with_updates_ipv4

discovery_parse_tests::test_discovery_packet_parse_pack,
discovery_parse_tests
discovery_parse_tests



5 E1.31 use of the ACN Root Layer Protocol

5.1 Preamble Size

5.2 Post-amble Size
5.3 ACN Packet Identifier

5.4 Flags & Length

5.5 Vector

5.6 CID (Component Identifier)

6.1 Flags & Length

6.2 E1.31 Data Packet Framing Layer
6.2.1 E1.31 Data Packet: Vector
6.2.2 E1.31 Data Packet: Source Name

6.2.3 E1.31 Data Packet: Priority

- All E1.31 packets should use the ACN Root Layer Protocol as defined in ANSI E1.17 [ACN]
specifically the fields specified in Table 5-4 which is for E1.31 on UDP.

data_parse_tests::test_data_packet_parse_pack, sync_parse_tests::
test_synchronization_packet_parse_pack, discovery_parse_tests::
test_discovery_packet_parse_pack,

- Detection of malformed packets:
- The preamble size field must be 0x0010:
- Packets with a different preamble size must be discarded:

- The preamble (preamble size field, post-amble size field and ACN packet identifier) length must
match the size given in the field (0x10 octets):

- There is no post amble for RLP over UDP so the post-amble size field must be 0 and E1.31
receivers must discard packets if the post-amble size is not 0x0000.

data_parse_tests::test_data_packet_parse_pack
data_parse_tests::test_malformed_data_packet_wrong_preample_upper_byte_parse,
data_parse_tests::test_malformed_data_packet_wrong_preample_lower_byte_parse
data_parse_tests::test_data_packet_parse_pack
data_parse_tests::test_malformed_data_packet_wrong_preample_upper_byte_parse,
data_parse_tests::test_malformed_data_packet_wrong_preample_lower_byte_parse
data_parse_tests::test_malformed_data_packet_wrong_postample_upper_byte_parse,
data_parse_tests::test_malformed_data_packet wrong_postample_lower_byte_parse

- The ACN packet identifier must be exactly 0x41 0x53 0x43 0x2d 0x45 0x31 Ox2e 0x31 0x37 0x00 data_parse_tests::test_malformed_data_packet_wrong_acn_identifier_parse, data_parse_tests::

0x00 0x00 and must discard packets if the ACN packet identifier doesn't match above:
- The PDU length must be encoded in the low 12 bits of the root layer flags and length field:

- The flags (top 4 bits) must be 0x7:

- The PDU length is computed started with octet 16 and counting all remaining octets in the packet
including all payload:

- A ful payload data packet should have a length of 638 octets:

- A synchronisation packet should have a length of 49 octets:

- A universe discovery packet length should be computed to the end of the list of universes field:
The root layer vector must be VECTOR_ROOT_E131_DATA if the packet contains E1.31 data:

The root layer vector must be VECTOR_ROOT_E131_EXTENDED if the packet is for universe
discovery or synchronisation:

test_data_packet_parse_pack

test_malformed_data_packet_root_layer_too_low_length,
test_malformed_data_packet_root_layer_too_high_length

test_malformed_data_packet_root_layer_wrong_flags

test_malformed_data_packet_root_layer_too_low_length,
test_malformed_data_packet_root_layer_too_high_length

test_data_packet_full_length_expected
test_sync_packet_length
discovery_parse_tests

test_data_packet_parse_pack, test_malformed_data_packet_unknown_acn_vector_parse,
test_malformed_data_packet_extended_acn_vector_parse

test_synchronization_packet_parse_pack, test_sync_packet_root_layer_data_vector_parse,
test_sync_packet_root_layer_unknown_vector_parse, test_discovery_packet_parse_pack,
test_discovery_packet_root_layer_unknown_vector_parse,
test_discovery_packet_root_layer_data_vector_parse

Receivers must discard a packet if the vector isn't one of the above

Must be a UUID - a universally unique identifier that is 128 bit number unique across space and
time:

The CID must be compliant with RFC 4122 [UUID]:
A piece of equipment must maintain the same CID for its entire lifetime:
Must be transmitted in network byte order (big endian):

- Each framing layer must start with the flags & length field, The field must be 16 bit with the PDU
length encoded in the low 12 bits and 0x7 in the top 4 bits, The PDU length must be computed
starting with octet 38 and continue through the last octet provided by the underlying layer

Provided by the user of the library, not the responsibility of the library

Provided by the user of the library, not the responsibility of the library
Provided by the user of the library, not the responsibility of the library
Provided by the user of the library, not the responsibility of the library

test_malformed_data_packet_framing_layer_wrong_flags_parse,
test_malformed_data_packet_framing_layer_low_length_parse,
test_malformed_data_packet_framing_layer_high_length_parse,
test_sync_packet_framing_layer_wrong_flags_parse,
test_sync_packet_framing_layer_length_too_long_parse,
test_sync_packet framing_layer_length_too_short_parse,
test_discovery_packet_framing_layer_wrong_flags_parse,
test_discovery_packet_framing_layer_length_too_short_parse,
test_discovery_packet_framing_layer_length_too_long_parse

- An E1.31 Data Packet with full payload must have a length of 638:

- An E1.31 Universe Discovery Packet must have a length between 120 and 1144 depending on
the list of universes:

- The packet must be formatted as specified in Table 6-5:
- The E1.31 layer vector must be VECTOR_E131_DATA_PACKET for an E1.31 Data Packet
- The source name must be null-terminated:

- The source name of a component must match the UACN field as specified in EPI 19 [ACN]:
- The source name may be the same across multiple universes sourced by the same component:
- The source name should be unique:

- The most recent E1.31 Data Packet from a single source must supersede any previous packet
from that source:

- Data from sources with a higher priority (e.g. 200 vs 100) will be treated as the defininive data for
that universe.

- If the E1.31 receiver is also doing universe syncronisation then the behaviour is undefined:

- A receiver may receive data for the same universe from multiple sources which is distinguished
by examining the CID in the packet:

test_discovery_packet_no_universes, test_discovery_packet_max_universe_capacity

data_parse_tests
test_data_packet_parse_pack, test_malformed_data_packet_framing_layer_wrong_vector_parse

test_malformed_data_packet_source_name_not_null_terminated_parse,
test_data_packet_max_source_name_length_parse

Left to the user as source name is provided
Left to the user as source name is provided
Left to the implementer / user-configuration as not specified in protocol how this should be done

This refers to how the data is treated on the device after the implementation since the
implementation parses the data and returns it to the user immediately (no background parsing).
The only time data waits is when waiting for synchronisation in which case the highest priority
packet is kept and if at the same priority then the latest packet.
test_store_2_same_universe_diff_priority_waiting_data,
test_store_2_same_universe_same_priority_waiting_data,
test_send_recv_diff_priority_same_universe_multicast_ipv4,
test_send_recv_two_packets_same_priority_same_universe_multicast_ipv4

test_two_senders_one_recv_same_universe_no_sync_multicast_ipv4,
test_two_senders_one_recv_same_universe_no_sync_multicast_ipv6



6.2.3.1 Multiple Sources at Highest Priority

6.2.3.2 Note on Merge and Arbitration Algorithms

6.2.3.3 Note on Resolution of Sources Exceeded Condition

6.2.3.4 Requirements for Merging and Arbitrating

6.2.3.5 Requirements for Sources Exceeded Resolution

6.2.3.6 Requirements for Devices with Multiple Operating Modes

6.2.4.1 Synchronization Address Usage in an E1.31 Data Packet

6.2.5 E1.31 Data Packet: Sequence Number

6.2.6 E1.31 Data Packet: Options

6.2.7 E1.31 Data Packet: Universe

6.3 E1.31 Synchronization Packet Framing Layer

- The priority field must be in the range 0 to 200

- If there are multiple sources transmitting data at the same highest currently active priority for a
given universe then this must be handled:

- If a receiver is only capable of processing a certain number of sources of data it will encounter a
sources exceeded condition when a greater number of sources are present:

- Allow various merging algorithms for combining data from multiple sources:

- Various possible resolution mechanisms should be possible:

- Resolution mechanisms are recommended to not generate different results from the same source
combination on different occasions as it can make troubleshooting more difficult:

- The ability to merge/arbitrate between multiple sources, the maximum number of sources which
can be handled and the algorithm used should all be declared in user documentation for the
device:

- The resolution behaviour for equipment to resolve a source exceeded condition should be
specified in the user documentation:

- The sources exceeded condition is highly recommended to be easily detected at the device
aswell as potentially through the network:

- All different operating modes for a device should be compliant with the standard or or non-
compliant configurations should be clearly declared as such.

- A synchronisation address of value 0 indicates that the data isn't synchronised meaning any
waiting data must be discarded and the data acted on immediately.

- A nonzero synchronization address means that the data is synchronised, if the receiever doesn't
support universe synchronisation the packet should be processed normally:

- A nonzero synchronisation address means that the data packet should be held until the arrival of
the corresponding E1.31 synchronisation packet to release it:

- A receiver must not synchronise any data until it has receieved its first E1.31 synchronisation
packet on the synchronisation address:

- Sources must maintain a sequence number for each universe transmitted:
- The sequence number should be incremented by one for each packet sent on the universe:

- The most significant bit is the Preview_Data, when set to 1 this means that the data is intended
for use that doesn't affect the live output e.g. for visualisers or media server preview applications:

- The Stream_Terminated bit (2nd most significant) triggers the termination of a stream or universe
synchronisation without waiting for timeout and to indicate that the termination is not due to a fault
condition. When set to 1 the source of data for the universe specified has terminated transmission
of the universe:

- A source should send three packets when terminating the universe source:

- A receiver should enter network data loss condition when a packet with the stream terminated bit
is set:

- A receiver should ignore any property values in a packet with the stream termination bit set:

- The Force_Synchronisation bit (3rd most significant) says how a receiver should handle the loss
of synchronisation, if set to 0 then on synchronisation loss the reciever must not update / process
any new packets until syncronisation is re-established / resumes:

- If the Force_Synchronisation bit is set to 1 then if synchronisation is lost receivers may continue
to process new E1.31 data packets without having to wait for synchronisation to resume / re-
etablish:

- The least significant 5 bits of the field are reserved for future use and must be transmitted as 0:
- The least significant 5 bits of the field should be ignored by receivers:

- Universe values must be in the range 1 to 63999 inclusive, other universe values are reserved for
future use and must not be used except for the E131_DISCOVERY UNIVERSE:

- The E131_DISCOVERY_UNIVERSE: is used for universe discovery:
- The synchronisation packet framing layer must conform to Table 6-6:

test_data_packet_lowest_priority_parse, test_malformed_data_packet_too_high_priority_parse,
test_send_above_priorty

test_two_senders_one_recv_same_universe_custom_merge_fn_sync_multicast_ipv4

Left to implementer to decided the number of sources allowed, provided as an argument when
creating receiver.

test_receiver_sources_exceeded_3, test_receiver_source_limit_2,
test_receiver_source_limit_2_termination_check

User can provide an alternative merge function for the part within the implementation (during
synchronisation)
test_two_senders_one_recv_same_universe_custom_merge_fn_sync_multicast_ipv4

Left to the implementer, dependent on computational resources avaliable, not limited by library

Left to the implementer, dependent on specific device

This library aims to be compliant however the device might have other modes
test_send_recv_sync_then_nosync_packet_same_universe_multicast_ipv4

Doesn't apply as the implementation supports universe synchronisation.

test_send_across_universe_multiple_receivers_sync_multicast_ipv4,
test_send_across_universe_multiple_receivers_sync_multicast_ipvé

test_track_data_packet_seq_numbers
test_preview_data_2_receiver_1_sender

test_termination_packet_empty_property_values_parse,
test_termination_packet_partial_property_values_parse,
test_termination_packet_full_property_values_parse

test_terminate_stream
test_receiver_source_limit_2_termination_check

test_termination_packet_empty_property_values_parse,
test_termination_packet_partial_property_values_parse,
test_termination_packet_full_property_values_parse

Not implemented as part of the project

Not implemented as part of the project

test_data_packet_transmit_format

test_data_packet_options_bit_4_set_parse, test_data_packet_options_bit_3_set_parse,
test_data_packet_options_bit_2_set_parse, test_data_packet_options_bit_1_set_parse,
test_data_packet_options_bit_0_set_parse
test_malformed_data_packet_too_low_universe_parse,
test_malformed_data_packet_too_high_universe_parse, test_register_min_universe,
test_register_max_universe, test_register_discovery_universe,
test_register_above_max_universe, test_register_below_min_universe
test_discovery_packet_transmit_format

sync_parse_tests



6.3.1 E1.31 Synchronization Packet: Vector

6.3.2 E1.31 Synchronization Packet: Sequence Number

6.3.3.1 Synchronization Address Usage in an E1.31 Synchronization
Packet

6.3.4 E1.31 Synchronization Packet: Reserved

6.4 E1.31 Universe Discovery Packet Framing Layer
6.4.1 E1.31 Universe Discovery Packet: Vector

6.4.2 E1.31 Universe Discovery Packet: Source Name

6.4.3 E1.31 Universe Discovery Packet: Reserved

6.5 Processing by Receivers

6.6.1 Transmission Rate

6.6.2 Null START Code Transmission Requirements in E1.31 Data
Packets

6.7.1 Network Data Loss

6.7.1.1 Network Data Loss and Universe Discovery

6.7.2 Sequence Numbering

7 DMP Layer Protocol

7.1 DMP Layer: Flags & Length




7.2 DMP Layer: Vector

7.3 Address Type and Data Type
7.4 First Property Address

7.5 Address Increment

7.6 Property Value Count

7.7 Property Values (DMX512-A Data)

8 Universe Discovery Layer
8.1 Flags and Length

8.2 Universe Discovery Layer: Vector

8.3 Page
8.4 Last Page
8.5 List of Universes

E1.31 Data and Synchronisation information:
9 Operation of E1.31 in IPv4 and IPv6 Networks

9.1 Association of Multicast Addresses and Universe

9.1.1 Multicast Addressing

- The DMP layer vector must be set to VECTOR_DMP_SET_PROPERTY, receivers should
discard packets if the receieved value is not VECTOR_DMP_SET_PROPERTY:

- The DMP layer address type and data type must be Oxa1, receivers must discard packets if the
value is not Oxa1

- The DMP Layers first property address must be 0x0000, receivers must discard packets if the
value is not 0x0000:

- The DMP layer address increment must be 0x0001, receivers must discard packets if the value is
not 0x0001:

- Must contain the number of DMX512-A [DMX] slots including the START code slot:

- The first octet of the property values field is the DMX512-A START Code, The maximum number
of data slots excluding the START Code is 512 data slots:

- Alternate START Code data much be processed in compliance with ANSI E1.11 [DMX] Section
8.5.3.3: "DMX512 processing devices or any device that receives and re-transmits DMX512 shall
state in the manual for the product how they process Alternate START Code packets. The
acceptable processing methods are: 1) Block all packets containing particular Alternate START
Codes. The START Codes blocked shall be declared (and may be all Alternate START Codes). 2)
Pass unmodified all packets containing particular Alternate START Codes. The START Codes
passed shall be declared. 3) Process the information contained in packets containing particular
Alternate START Codes. The algorithm shall be declared in enough detail to allow the user to
decide if the device will satisfy their needs.

DMX512 in-line repeating transmitters shall not pass some packets with a particular Alternate
START Code while blocking other packets containing the same Alternate START Code unless
doing so as part of a stated processing algorithm."

- The packet must be formatted as specified in Table 8-9:
- The PDU length is encoded in the low 12 bits:

- 0x7 must be encoded in the top 4 bits:

- The PDU length is computed from octet 112 upto and including the last universe in the universe
discovery PDU (octet 1143 for a full payload):

- The university discovery layer vector must be
VECTOR_UNIVERSE_DISCOVERY_UNIVERSE_LIST, receievers should discard packets if the
received value is not VECTOR_UNIVERSE_DISCOVERY_UNIVERSE_LIST:

- Indicates the page being specified in the set of universe discovery packets starting at 0:
- Indicates the index of the last page in the set of universe discovery packets:
- Must be numerically sorted:

- May be empty:
- Should contain all of the universes upon which a source is actively transmitting

- The standard can work over either and which modes are supported should be indicated:

- The standard should work over multicasting
- The standard should also work using unicast

- Addressing of multicast traffic done by setting 2 least significant bytes to the desired universe
number or synchronisation address:

- Sources operating over IPv4 and IPv6 simultaneously should transmit identical E1.31 packets
regardless of IP transport used:

- Recievers operating in IPv4 and IPV6 simultaneously should not process E1.31 packets
differently based on the IP transport:

- Receivers operating in IPv4 and IPv6 simultaneously seeing the same packet via both IP
transports shall only act on one instance of that packet:

- E1.31 devices should not transmit on address 239.255.255.0 through 239.255.255.255:

- E1.31 devices shall not used universe number 0 or univere numbers [64000 - 65535] excluding
universe 64214 (used for universe discovery only):

- The identity of the universe must be determined by the universe number in packet and not
assumed from multicast address:

- E1.31 devices should also respond to E1.31 data receieved on its unicast address:

- When multicast addressing is used the UDP destination port shall be set to the standard ACN-
SDT multicast port ACN_SDT_MULTICAST_PORT:

- For unicast communication the ACN-SDT multicast port shall be used by default but may be
configured differently

test_malformed_data_packet_dmp_layer_wrong_vector_parse
test_malformed_data_packet_dmp_layer_wrong_address_data_parse
test_malformed_data_packet_dmp_layer_wrong_first_property_address_parse
test_malformed_data_packet_dmp_layer_wrong_address_increment_parse

test_malformed_data_packet_dmp_layer_too_high_property_count_parse,
test_malformed_data_packet_dmp_layer_too_low_property_count_parse

test_termination_packet_full_property_values_parse,
test_malformed_data_packet_dmp_layer_too_high_property_count_parse

Left to the implementation using the library, alternative start-code data is treated the same as any
other start-code data within the implementation allowing the user of the library to choose how to
handle the payload.

test_send_recv_single_universe_alternative_startcode_multicast_ipv4
test_send_recv_single_universe_alternative_startcode_multicast_ipv6

discovery_parse_tests

test_discovery_packet_discovery_layer_length_too_short_parse,
test_discovery_packet_discovery_layer_length_too_long_parse

test_discovery_packet_discovery_layer_wrong_flags_parse

test_discovery_packet_discovery_layer_length_too_short_parse,
test_discovery_packet_discovery_layer_length_too_long_parse

test_discovery_packet_discovery_layer_vector_unknown_parse

test_discovery_packet_page_higher_than_last_page_parse
test_discovery_packet_page_higher_than_last_page_parse

Taken to mean numerically sorted in accending order with lower universe numbers at a lower
position (octet) within the packet.
test_discovery_packet_random_order_parse, test_discovery_packet_decending_order_parse

test_discovery_packet_no_universes
test_universe_discovery_multiple_universe_one_source_ipv4

Implementation supports either IPv4 or IPv6
test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6

test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6
test_send_recv_single_universe_unicast_ipv4, test_send_recv_single_universe_unicast_ipv6
test_universe_to_ip_ipv4_both_bytes_normal, test_universe_to_ip_ipv6_both_bytes_normal

test_ip_equivalence

The library passes data up without specifying IP version used with same recv() usage regardless of
ipv4 or ipv6 which shows no difference dependent on IP version.

test_discover_recv_sync_runthrough_ipv6, test_ansi_e131_appendix_b_runthrough_ipv6,
test_discover_recv_sync_runthrough_ipv4, test_ansi_e131_appendix_b_runthrough_ipv4

Receiver only operates in one IP version at once, the user of the library can use 2 receivers in
different ip version simultaneously but it is left to them to only act on one instance of the packet.

test_universe_to_ip_ipv4_limit_high

test_send_recv_wrong_multicast_universe

test_send_recv_single_universe_unicast_ipv4
test_universe_to_ip_ipv4_both_bytes_normal, test_universe_to_ipv4_lowest_byte_normal,

test_universe_to_ip_ipv4_limit_high, test_universe_to_ip_ipv4_limit_low

test_send_recv_single_universe_unicast_ipv4



9.2 Multicast Subscription

9.3.1 Allocation of IPv4 Multicast Addresses

9.3.2 Allocation of IPv6 Multicast Addresses

9.4 IPv4 and IPv6 Support Requirements

10.1.1 Boot Condition

10.1.2 Temporal Sequence

10.1.3 Loss of Data

10.2.2 Loss of Data

11 Universe Synchronization

11.1.1 When to Begin Synchronizing Data

11.1.2 When to Stop Synchronizing Data

11.2.1 Arrival of Multiple Packets Before Processing

11.2.2 Delays Before Universe Synchronization

12 Universe Discovery

12.1 Universe Discovery and Termination

12.2 Termination of Stream Transmission

|Appendix A: Defined Parameters (Normative)
B.1 Universe Synchronization for Sources

‘ B.2 Universe Synchronization for Receivers




