
Rust Implementation of the ANSI E1.31-2018 sACN Protocol

University of St Andrews
April 27th, 2020

Paul Lancaster

160007345

1 Abstract

The project aims to create a library for the ANSI E1.31-2018 sACN protocol
[3] that is available in native rust.

2 Declaration

I declare that the material submitted for assessment is my own work except
where credit is explicitly given to others by citation or acknowledgement.
This work was performed during the current academic year except where
otherwise stated. ”The main text of this project report is 20,659 words
long, including project specification, plan and testing excluding appendices.
”In submitting this project report to the University of St Andrews, I give
permission for it to be made available for use in accordance with the reg-
ulations of the University Library. I also give permission for the title and
abstract to be published and for copies of the report to be made and sup-
plied at cost to any bonafide library or research worker, and to be made
available on the World Wide Web. I retain the copyright in this work.

1

Contents

1 Abstract 1

2 Declaration 1

3 Introduction 4
3.1 Extraneous Circumstances - COVID-19 4

4 Context Survey 5
4.1 DMX, SACN and ACN . 5

4.1.1 DMX512 . 5
4.1.2 sACN . 7
4.1.3 sACN - Universe Synchronisation 8
4.1.4 sACN - Universe Discovery 11
4.1.5 sACN - Network Layers / Transport Modes 12

4.2 sACN Packet Structure . 15
4.3 Critical Analysis of the sACN protocol 15
4.4 Related Work . 17

5 Requirement specification 18

6 Software Engineering Process 20
6.1 Implementation, Testing and Deployment Phases 22
6.2 Reflection on Methodology Used 23

7 Tools & Technologies 26
7.1 Language: Rust . 26
7.2 Dependency Management: Cargo 26

7.2.1 Run . 26
7.2.2 Docs . 27
7.2.3 Test . 27

7.3 Debug Tools: Wireshark . 27
7.4 Version Control: Git, Gitlab, Github 28
7.5 Test Coverage Tool . 28
7.6 Compliance Testing Tools: sACNView 29
7.7 Real-world Usage Tool: Visualisers: Vision 30
7.8 Real-world Usage Tool: Lighting Control: Avolites Titan . . . 31

8 Ethics 32

9 Design 32
9.1 Sender . 34
9.2 Receiver . 35

9.2.1 Data and Universe Synchronisation 35

2

9.2.2 Universe Discovery . 35

10 Implementation 36
10.1 SacnReceiver . 36
10.2 SacnSource . 38
10.3 Protocol Packet Parsing / Packing 41
10.4 Std vs Non-Std . 42
10.5 Drop / Closing / Termination 42
10.6 Errors . 43

11 Testing 44
11.1 Scope . 45
11.2 Testing Mechanisms . 46

11.2.1 Unit Testing . 46
11.2.2 Integration Testing . 49
11.2.3 Fuzz Testing . 53
11.2.4 Testing External Interoperability 56
11.2.5 Acceptance Testing . 66

11.3 What Testing Shows . 68

12 Evaluation and Critical Appraisal 69

13 Conclusions 74

14 Appendices 75
14.1 User Manual . 75
14.2 Packet-Structure .
14.3 Synchronisation Mechanism
14.4 Discovery Mechanism .
14.5 ANSI E1.31-2018 Compliance Testing Check List
14.6 Usage .

3

3 Introduction

Currently within rust there does not exist a library which fully supports all
aspects of the ANSI E1.31-2018 streaming ACN protocol [3] (sACN). sACN
is a commonly used protocol for transmitting control data for lighting de-
vices (such as those used during concerts) and so the lack of a public-ally
available open-source rust library hinders development of lighting devices or
controllers in the language. Previous to this project the progress towards cre-
ating such a library was an implementation [2] which supported the sending
and parsing of data using sACN but with many newer features such as Uni-
verse Synchronisation and Discovery not available as well as no mechanism
to allow receiving sACN data. This project therefore utilised parts of this
existing implementation to create a new sACN library which supports ANSI
E1.31-2018 sACN universe synchronisation and discovery features as-well as
sending and receiving data. This project then goes beyond implementation
to thoroughly test the created library to show that it is compliant with the
protocol specification and interoperable with a number of commonly used
programs which already exist within the sACN protocol space.

3.1 Extraneous Circumstances - COVID-19

Unfortunately the acceptance test which was planned for sometime between
the 14th and 29th of March based on when the technician was free was
unable to take place. This is due to the outbreak of the COVID-19 virus
which forced the students association to close and non-essential contact to be
stopped before the demonstration could be conducted. It is predicted that
based on the very similar integration tests passing as-well as the other test-
ing that had the demonstration gone ahead the program would have worked
as expected and the evaluation been positive. It is a shame that the test
could not be conducted as comments could have led to recommended im-
provements for the project which would have ultimately resulted in a higher
quality submission. An annotated video is included showing what one of
the acceptance tests may have looked like is included although this video
is performed on my own hardware rather than the students union equipment.

The COVID-19 also meant that I was unable to remain in St Andrews
and continue to have access to the computing labs. This had a number of
impacts. The first was the time lost due to the move and having to create
a new setup for working at home. This environment was less than ideal
and meant that some features which may have been possible had things
continued as normal were not. The move also meant that I no longer had
direct access to more than 1-2 machines. This means that tests like the ssh
integration tests were much more difficult to create because they had to be

4

done completely remotely from home SSH’d into labs. This lead to far fewer
of these tests being created than would have been hoped.

4 Context Survey

4.1 DMX, SACN and ACN

4.1.1 DMX512

DMX512 is an protocol used in the entertainment industry for the control
of lighting, effects and other devices. It works by daisy chaining devices
together into distinct physical chains (called universes) and is a one way
protocol. This means that the devices in the line cannot communicate their
presence back to the controller so the controller must know about the de-
vices ahead of time and their addresses so it can broadcast packets down
the line which the devices then receive and use. The DMX packets are a
fixed size and contain five hundred and twelve 8-byte channel (+ a start
code) which allows them to control up to 512 different devices on a singular
line. A device may support the use of multiple channels to control different
functionalities so for example a light with RGB colour mixing may use 3
channels to allow control of the Red, Green and Blue individually. Since
there are only 512 channels available on a single universe this quickly im-
poses a limitation to the number of devices that can be connected together,
especially as modern lighting fixtures commonly use upwards of 30 channels
each for a moving light with usage of many more not uncommon. The so-
lution to this was previously to simply have more physical lines (universes)
and in this way allow more devices to be controlled simultaneously. This
comes with a number of problems however as each new physical line means
a new cable coming directly from the control desk. A diagram laying out a
typical dmx setup is shown in figure 1.

DMX512 Problems

1. As the control desk is often far from the devices themselves (at the
back of the venue whereas the lights/devices are above the stage) it
means that many cables need to be run which can be expensive and
time consuming.

2. The length of the cable runs can cause signal interference / degradation
and DMX does not have any error correction (bad frames if detected
are thrown out). There is also no mechanism to allow resending as
DMX is a one-way protocol.

3. The protocol only allowing 512 channels per physical line means that
a device cannot have more channels than this. This is particularly a

5

problem recently with the advent of complex fixtures which may have
many LED’s with individual colour control.

4. Each DMX line of daisy chains can only have up to 32 fixtures [4].

5. Each DMX line needs a separate port on the lighting controller which
may be limited by the physical space available on the device or cost.

6. DMX requires specialist equipment to handle it such as splitters /
merges (merges allow 2 sources to be combined into a single uni-
verse/line such as for usage as a backup).

Figure 1: A diagram showing a typical DMX setup which doesn’t utilise any
IP networking

6

4.1.2 sACN

Figure 2: A diagram showing a usage scenario for a system which utilises
sACN

One solution to solve some of the problems with DMX is to send it using
UDP over a standard IP based network and one of the protocols created to
do this is sACN. This allows many DMX packets (and so many universes)
to be simultaneously sent using a single network cable from the console
and then to be received by the devices. Often for backwards compatibility
reasons the sACN is converted back into DMX packets before being sent to
the device as most devices older than a few years do not support direct sACN
communication but this is rapidly increasing - particularly with higher end
professional fixtures. Figure 2 shows an example in which sACN is used for
part of the setup with an ”E1.31 -¿ DMX converter” used to convert it back
to DMX for use with some legacy lighting fixtures.

Figure 2 shows that within a network there are expected to be many
sources of sACN in the form of lighting controllers and many receivers in
the form of lighting fixtures and other devices. Within this many to many
network it is also expected that many different universes will be utilised with
some devices utilising the same universes and others utilising a different po-
tentially overlapping set of universes. Within these universes individual

7

devices all have their own ’addresses’ which refer to which section of the
universe they are listening to as-well as ’modes’ which refer to how many
’channels’ (Bytes) are used and what each channel controls on the fixture.
This within universe addressing is carried over from DMX and allows inter-
operability with the older protocol. Actually setting these addresses is done
the same regardless of sACN or DMX is used and this is usually done man-
ually (although there do exist mechanisms to do this automatically which
are discussed later such as Remote Device Management - RDM). Note that
these addresses are independent of the IP addressing. Each device connected
to the IP network still has a unique IP address however they might have the
same DMX address. In this case both devices would behave identically on
receiving an sACN data packet however depending on the IP network setup
they might not receive both packets. For example the controller might chose
to utilise unicast on the network. This would mean that only the specific
receiver being sent to would receive the sACN packets, this can be utilised
to allow part of the network to be kept dormant but connected and only
used in a backup scenario.

The points below show how a protocol like sACN addresses many of the
problems listed above with DMX512.

1. A single network cable (E.g. CAT6) can be used to transport many
universes minimising how cables have to be run to the back of the
venue.

2. Network cables especially fibre can be run for a much longer distance
than a DMX cable without signal degradation.

3. As described below universe synchronisation allows sACN to control
multiple DMX universes simultaneously allowing fixtures to use more
than a universe of channels.

4. As sACN uses a standard IP networking base as many devices as
desired can be connected as long as there are sufficient switches.

5. Only a single networking cable is required from the lighting board into
the network meaning the control device can be much smaller.

6. sACN works over standard UDP/IP and so can work onto of com-
modity hardware switches, routers, network interfaces etc. therefore
setting up a more complex sACN network is much cheaper than a
comparable DMX setup.

4.1.3 sACN - Universe Synchronisation

A potential problem with multiplexing multiple universes down a single net-
work line is that two universes of data cannot be sent simultaneously, this

8

is often not a problem for simple devices but for receiving devices that span
multiple universes receiving one packet before the another may put the de-
vice into an inconsistent state. A similar problem arises if two different
devices on different universes want to be controlled simultaneously. ANSI
E1.31-2018 provides a solution to this problem in the form of the universe
synchronisation feature. This works by data packets containing a synchro-
nisation universe field which can be set to a specific universe. On receipt of
a sACN packet with a non-zero universe synchronisation field a compliant
receiver won’t act on the packet immediately and instead will hold the data
for that universe. This data will then be acted upon on receipt of a universe
synchronisation packet with the corresponding universe. As data packets
for multiple different universes can specify a single synchronisation universe
this allows data for multiple universes to be acted upon simultaneously on
receipt of a universe synchronisation packet. A diagram demonstrating this
is shown in figure 3 with description below.

Figure 3: A diagram demonstrating how sACN universe synchronisation
allows simultaneous control of multiple DMX universes and its use cases

9

Usage Example:

The End Goal The lighting controller wants to update the entire lighting
fixture (2) to blue simultaneously even though the fixture is split across
multiple universes.

Using sACN without any universe synchronisation

(A): The lighting controller sends 2 unsynchronised sACN data packets
with 1 going to universe 1 and the other to universe 2. Both tell the
fixture to turn to blue. As there is only a single network line these are
sent one after the other with a very small delay between them.

(B): The packets arrive at the lighting fixture, due to network condi-
tions such as jitter/delay/re-ordering within the network the spacing
between the data packet for universe 1 and 2 has increased very slightly
and the ordering has changed. The sACN receiver on the lighting fix-
ture handles the packets in the order it receives them and passes this
data immediately up to the actual lighting display and then handles
the next packet. Any duplicate packets are removed if detected by
inspecting the sequence numbering of the packets.

(C): The command to set the section to blue reaches the left red section
before the green section. This causes the left section to turn blue a
fraction of a second before the right. This is small but causes a ’screen-
tearing’ type effect which is subtly noticed by the audience, as this is
part of a sequence which is rapidly changing the fixture colour this
effect becomes very noticeable as the colour-switch speed speeds up.

Same example using sACN with universe synchronisation

(D): The lighting controller sends the same data packets as in the
unsynchronised example but this time with a non-zero synchronisa-
tion address of 1 indicating that synchronisation should be performed
meaning both data packets should be acted upon together when a
synchronisation packet to synchronisation address 1 is sent. The syn-
chronisation packet to synchronisation address 1 is sent after a small
(few milliseconds) intentional pause.

(E): The data packets arrive at the lighting fixture and the network
conditions of jitter/delay/re-ordering etc. have again changed the
spacing within packets and caused the data packets to become re-
ordered. The lighting fixture processes both packets but doesn’t act
on them yet, instead they both wait. Once the synchronisation packet
is received the synchronisation address of the synchronisation packet is

10

checked against the data-packets waiting and as they match the data
from both data packets is acted upon and passed up to the actual
lighting display together.

(F): The command to set the left and right section to blue reaches
the controller together and so both sections are set to blue at the
same instant (ignoring nano-second circuit physical delays). This pre-
vents the screen-tearing type effect and means that the entire fixture
changes colour at the same time. This example could have also applied
to 2 completely separate fixtures which would have both independently
waited on the synchronisation packet and then when they received it
they would have acted together. Note that in this case 2 universes
were used for a fixture but any number of universes could have been
synchronised and it would still only require a single synchronisation
packet per group of universes to synchronise so therefore O(1) scala-
bility as the number of universes per fixture scales.

4.1.4 sACN - Universe Discovery

sACN allows sending on up-to 63998 universes with each universe having a
unique multicast address. Any of the universes can be used by any source
and so in initial versions of the protocol such as ANSI E1.31-2009 [14] the
only way to learn which universes were in use were either to have prior
knowledge or to scan every single possible address and listen for packets.
This is very inefficient and impractical in a real-system especially as in the
time that a universe was last scanned another source might have joined and
started transmitting. Universe discovery solves this problem through the
universe discovery mechanism. This mechanism works by having a reserved
universe of 64214 (as defined in ANSI E1.31-2018 Appendix A) on which
sources send universe discovery advert packets. These packets contain a list
of universes that the source sends which is referred to as a universe page.
Each page can hold 512 universes and so therefore a source may send multiple
discovery packets each with a different page that the receiver can then put
together to build up a complete list of universes that the source is sending.
To allow a receiver to know when all the pages have been received for a
given source each universe discovery page has a numbering which increases
sequentially with the number of the last page expected included. By having
multiple pages it prevents the protocol being required to send large packets
on the network (size limited by page size not by the much larger number
of possible universes). This is advantageous as it prevents problems with
sending large packets such as causing a-lot of fragmentation at the link
layer which will fragment packets into frames that are the size of link-layers
maximum transmission unit (e.g. 1500 bytes for Ethernet [24]). A figure
showing a typical usage of universe discovery is shown in figure 4.

11

Figure 4: A diagram and explanation demonstrating how universe discovery
can be used by a receiver to discover sources

It should be noted that by default a receiver will receive and act on
data packets from a source even if it hasn’t been ’discovered’ yet. This
means that the number of sources communicating over multicast is com-
pletely transparent to the receiver meaning it places no limit on the number
of allowed sources which allows the system to scale if required. Put another
way this means that if a receiver is only interested in receiving from universe
1 then it only needs to listen to universe 1 and can completely ignore other
universes and universe discovery.

4.1.5 sACN - Network Layers / Transport Modes

sACN falls within the application layer of the 5-layer network stack as it sits
on top of UDP (layer 4) and IP(layer 3). As UDP is used as the underlying
transport protocol it means that there is no guaranteed delivery of packets.
The protocol itself also doesn’t provide this which means that data send
by a source may not reach a receiver and there is no way for the source
to know within the protocol scope. This loss of guarantee comes with the
advantage that there is less packet overhead and no hand-shake is required
meaning data can be sent immediately. The use of UDP also avoids many of
the problems associated with session transport protocols like TCP such as

12

lost packets significantly reducing throughput due to the congestion control
mechanism. Theses trade-offs fit the expected usage of the sACN protocol
as they minimise latency which is vital in a real-time event/lighting system.

The usage of UDP additionally means that packets can be delivered
in any order, this can cause random jumps in data on the protocol which
is noted within the specification to be problematic if this is used with a
moving head lighting fixture as it effects the predictive algorithms used
(ANSI E1.31-2018 Section 6.7.2). To reduce this happening the protocol
uses sequence numbers to allow out of order packets to be discarded. It
is important to note that because a packet might have been lost the pro-
tocol doesn’t attempt to wait for packets which haven’t been received yet
and instead always acts on the most recent data (with regards to sequence
number), discarding any old data received. This keeps the latency of the
system low and prevents slightly out of order packets causing unexpected
jumps back and forth in the data. As the sequence number field is only 1
byte in length it is expected to wrap around frequently, therefore the se-
quence numbering mechanism accounts for this by looking at the difference
between the last and current sequence numbers as oppose to the numbers
themselves directly. This difference is then checked if it is within the range
of (-20, 0] (greater than -20 exclusive, less than or equal to 0 inclusive). If
it is within this range then the packet is rejected otherwise it is accepted.
This allows the sequence number to wrap around without packets being
incorrectly discarded. It also means that if a packet with an unexpected
sequence number is received it allows the system to quickly (within 20 se-
quentially numbered packets) start accepting packets again which minimises
latency. Sequence numbers are evaluated/incremented separately for each
packet type and within packet types separately for each data-universe in
data packets and synchronisation-address in synchronisation packets. This
means if a packet with an incorrect sequence number is received it will only
effect that type of packet and universe allowing other universes/packet-types
to continue as normal.

In its current 2018 state the protocol specifies operation over IPv4 and
IPv6 using 3 different IP communication modes. The first mode is unicast,
this is where a source sends data directly to the receivers IP and this means
that any data sent by a source must individually be sent to all receivers for
them to see it. The next mode is broadcast, this is where the destination
IP is set to a special broadcast IP which causes all receivers to see the data.
This mode means that a sender doesn’t have to individually send to each
receiver but does mean that there is the potential to flood the network with
these broadcast packets with all receivers getting packets even if they didn’t
want them.

13

The final IP communication mode utilised by the protocol is IP Mul-
ticast. This is the default mode used and works by receivers joining ip
multicast groups which senders can send to with only the receivers that
joined the relevant multicast group seeing the sent packets. This minimises
the packets transmitted to uninterested receivers with packets only routed
to receivers that have joined the relevant multicast group but without the
senders having to know the address of each receiver. Within the sACN pro-
tocol each universe utilises a different multicast address and therefore all
receives and senders can use a specific address to receive from / send to
a specific universe. As this mechanism does not require the receiver(s) or
sender(s) to know about each-other ahead of time it improves the scalability
of the system as a sender requires the same amount of processing power to
send a single universe of data to one receiver or to a thousand.

Multicast Address Assignment To allow usage of multicast within an
sACN network there are standard multicast addresses defined for each uni-
verse so that a receiver and sender know where to receive/send data. For a
sACN universe IPv4 multicast address the first 2 bytes are always 239 and
255 respectively. The 3rd byte is the upper, most significant byte of the
universe (when the universe is expressed as a 2 byte unsigned number) and
the 4th byte is the least significant byte. The IPv6 mapping is similar with
the least significant 16 bits used for the universe number. This is shown in
figure 5 below.

Figure 5: The mapping used from an sACN universe to an IPv4 or IPv6
multicast address within an sACN network

As specified in the internet engineering task force (IETF) RFC 5771 [34]
all of the IPv4 multicast address fall within the ’Administratively Scoped
Block’ as specified in IETF RFC 2365 [35]. This then clarifies that the

14

sACN multicast address fall within the IPv4 Local Scope range (6.1). These
multicast addresses are reserved for usage dependent on the specific local
network within which they are deployed. This limits the sACN usage to
a local dedicated network and not for use on a wide area network (WAN)
for as the public internet. As discussed previously this fits with the other
design decisions made which based the protocol around usage on a private,
isolated dedicated network.

The IPv6 multicast address assignment starts with 0xFF in the first
byte, this indicates that the address is a multicast address. This is then
followed by 0x18 which can be broken down as per section 2.7 of [36] into
a flag value of 1 and a scop value of 8. This flag value mean that this is
a transient address which indicates that it isn’t statically assigned by the
IETF and may change in future. The scope value of 8 indicates organisation-
local scope which has a similar reasoning as the local-scope used for IPv4
meaning that this address is only valid within a specific environment / group
of networks. Therefore the sACN protocol is not aimed at usage on a WAN
regardless of IPv4 or IPv6.

4.2 sACN Packet Structure

As sACN is a subset of the wider ACN family of protocols it utilises a
common standard ACN header. By using the general ACN header it allows
other ACN protocols to be used on the network alongside sACN without
conflicts, for example it is later discussed in the relate works that ANSI
E1.33-2019 (remote device management) and ANSI E1.31-2018 can be used
together to increase the available functionality in the system. The packets
are split into layers with each layer handling a different part of the packet.
As there may be multiple possible layers the packet contains multiple ’vector’
fields. These fields contain predefined values which tell the receiver about
what the data will be. The structure of the packets is described directly
within the protocol as a table and has also been expressed as a diagram in
”Packet-Structure.pdf”.

4.3 Critical Analysis of the sACN protocol

ANSI E1.31-2018 sACN over a purely DMX network provides a solution to
a number of problems as discussed above but also has its own problems.

In the universe synchronisation example above the mechanism allowed
the update to happen simultaneously on a single fixture however this came at
the cost of requiring 1 more network packet than without synchronisation (2
data packets + 1 synchronisation packet vs just 2 data packets). This is po-
tentially significant on a network with hundreds of simultaneously controlled

15

fixtures and could lead to congestion. The reliance on another synchronisa-
tion packet has a further problem which is that it is also subjected to the
network conditions. This can lead to the synchronisation packet being lost,
in this case the fixture won’t act at all (which in some situations might be
better than it half acting). Another problem comes in if the synchronisation
packet is reordered, if it arrives before the data packets then they won’t be
acted on at all (unless another sync packet is sent). If the sync packet arrives
between the data packets then only the first synchronised data packet will
be acted on, this means that even with this mechanism fixtures can end up
in an inconsistent state with only one universe acted upon. As noted within
point (F) of the synchronisation example synchronisation can also be used
between fixtures however this suffers from the problem that there will still
be a delay caused by the difference in timings taken for the synchronisation
packet to reach each fixture.

Another potential issue with the protocol is that it provides no protec-
tion from malicious or malfunctioning sources taking control of the system.
This makes isolation, preferably physical, of the network vital and so ANSI
E1.31 sACN is commonly used on networks dedicated to lighting protocols.
This also helps reduce the issue of variable transmission latencies as these
networks are likely to be fairly simple. Even with isolation from malicious
users the sACN protocol is still vulnerable to problems related to byzantine
failures where devices fail but rather than doing so cleanly instead produce
random values which are interpreted by devices on the network as inten-
tional and can cause the system to act unpredictably. These failures are
not-uncommon in networks using cheap, knock-off devices which might not
be fully compliant with the protocol even if they work most of the time.

The protocol also suffers from the same problems that many protocols
do related to trying to maintain backwards compatibility, particularly with
DMX. This imposes a number of limitations and inefficiencies. One exam-
ple of this that each sACN packet sends a single universe limited to 512
channels, this is far less payload than the packet could actually hold, even
if 2 universes were sent in one packet it would half the number of packets
required and produce packets of size 1150 bytes (current size: 637 bytes +
a universe (513 bytes)) which is less than the MTU of many common link-
layers e.g. Ethernet. In addition to this the concept of universes themselves
limits the protocol as problems due to devices being unable to lie across uni-
verse boundaries have been carried over into the protocol and solved. For
example universe synchronisation is at its core a solution to only being able
to send a single universe per packet however if you could send more than a
single universe then it wouldn’t be required at all. An example of how this
could work for example is that a packet could be sent for every individual
device or group of devices with variable parameter counts meaning redun-

16

dant data isn’t sent. This would still be subject to fragmentation from lower
layers e.g. to fit within the MTU of the link in use.

The protocol layers (UDP + sACN) also add a significant amount of
over-head, for a full universe of data which takes up 513 bytes (512 DMX
channels + a start-code) the packet size is 637 bytes meaning an overhead
of 124 bytes, corresponding to 19.5% and if the universe is only partially full
the ratio of overhead to actual data gets worse (1 byte of data + 1 start-code
leads to a packet that is 98% overhead).

4.4 Related Work

The ANSI E1.31 sACN protocol was originally specified in the document
ANSI E1.31-2009 [14]. This represented the base version of the protocol
without any universe synchronisation, universe discovery or discussion of
operation with IPv6. Since then it has been revised in 2016 (universe syn-
chronisation and discovery) [15] and again to its current latest version in
2018 (IPv6). The future of ANSI E1.31 is still being actively developed and
discussed [16] with the direction of the ACN eco-system being focused on
supporting communication from receivers back to sources. This would allow
sources to detect receivers and optionally configure them remotely. This has
significant use in cases where there are a significant number of receivers or
the receivers are located in hard to reach areas (such as high up in an arena
lighting rig). Within traditional DMX systems this is supported using the
remote device management protocol (RDM) as described in ANSI E1.20-
2010 [19]. This protocol allows a number of configuration options such as
remotely setting the DMX addresses of fixtures and has proven usage within
real-world environments. A recent iteration of this protocol is an IP version
known as RDMnet [17] which is ACN based and allows discovery and con-
trol of receivers over a network. RDMnet as a fairly new protocol and so
is still in the process of being taken up by vendors but has strong support
from ETC (a large lighting company [20]) in the form of a maintained open
source implementation of RDMnet in C++ [18]. RDMnet while a good for-
ward step still suffers from some of the problems related to sACN in that
it is still based on DMX. Similar to what happened within the traditional
networking world it is very likely that eventually the entertainment control
ecosystem will move to a completely IP based system. This would have sig-
nificant benefits as fixtures could be configured completely remotely (using
standard mechanisms such as SSH / Telnet / Webservices) and rather than
requiring specialist DMX control at all it could all be commodity network
hardware which is cheaper and more flexible in its usage. This would also
allow many of the advancements in other areas of computing to brought into
the industry such as advances in IoT

17

The ACN based family of lighting control protocols aren’t the only pro-
tocols that allow sending DMX data over an IP network. Another widely
adopted protocol is ArtNet which at time of writing is in its 4th version. Un-
like sACN on its own ArtNet allows discovery of receivers, remote configura-
tion and transporting remote device management data (receiver meta-data)
[12] in addition to sending data. ArtNet therefore has taken the strategy of
being a larger protocol which covers multiple use-cases within a single pro-
tocol as opposed to the more split up ACN strategy (ArtNet v4 is roughly
equivalent to ANSI E1.31-2018 and ANSI E1.33-2019). While they are de-
veloped independently the ArtNet v4 standard does include the ability to
interoperate with sACN. In this mode ArtNet is used to configure and con-
trol sACN devices and then sACN is used for sending data [12, Pg. 3].

There are a number of existing implementations of sACN in rust however
none are fully compliant with the protocol as specified in ANSI E1.31-2018.
One of the most complete is [2] which was used as the base for this project.
As this is hosted on github it can be seen that while there are a number of
forks (6 at time of writing) no public fork has any further progress which
leads to the conclusion that this is the most complete open source rust im-
plementation available. Note that this implementation appears in a number
of places such as [13] but this is still the same implementation. This exist-
ing implementation provides support for parsing sACN packets and sending
sACN data packets using multicast. The existing implementation however
does not provide support for universe synchronisation/discovery, sending
data using a mechanism other than multicast or receiving data.

Implementations of sACN exist in multiple languages, at the time of
writing (Jan 2020) a cursory search for E1.31 repositories on github reveals
the most prevalent libraries being in C++ and C as shown by Figure: 6.
An example of one of these projects is [6] which allows both sending and
receiving of sACN packets but does not support universe synchronisation or
discovery.

5 Requirement specification

The project was split into the following list of primary and secondary func-
tional and non-functional requirements
Primary, Functional Requirements

Allow sending and receiving DMX (or other start-code data) over
sACN.

Support the sending and receiving of synchronised DMX data through

18

Figure 6: A search of repositories on github with the search term ”E1.31”
as of Jan 2020

19

the universe synchronisation feature.

Support universe discovery with adverts for sources and discovery for
receivers.

Secondary, Non Functional Requirements

Demonstrate a deployment of the library into a real-world system to
show its compliance with the protocol by showing interoperability with
other compliant devices.

Provide support for Windows 10 and Fedora Linux systems.

Support multiple IP transmission modes - Unicast, Multicast and
Broadcast.

Support multiple IP versions - Ipv4 and Ipv6.

The intended user for this library is a software developer developing
applications that utilise the sACN protocol. It isn’t designed to be used
directly by an end user as it is just a library which needs to be used in
code to actually perform any actions. This means it needs to be able to be
understood and utilised by someone who is familiar with general software
engineering and the main ideas of sACN. This makes technical documenta-
tion of the project code such as comments, API explanations and examples
a vital part of the project as otherwise developers won’t want or be-able to
use the library.

SACN is commonly used in heterogeneous device environments with a
mix of different operating systems such as Windows and Unix. Therefore
to provide support for as many devices as possible a few additional non-
functional requirements were made; The library therefore should have sup-
port for both IPv4 and IPv6 as well as unicast, multicast and broadcast in
both windows and unix environments. Backwards compatibility with the
existing library was abandoned due to the incomplete nature of the library
and to re-use it would require significantly forcing the implementation of the
new library into confusing patterns to allow usage of the new Synchronisa-
tion and Discovery features.

6 Software Engineering Process

A waterfall based process model was used for the development of the pro-
gram. In the waterfall method there are several distinct phases of the project
as shown in figure: 7 which follow on from each other with loops back pos-
sible if a problem is found at a later stage. This development approach was

20

Figure 7: A diagram showing the waterfall development process, [[23]]

chosen as it has a very clear structure which allows easy to manage distinct
milestones so progress through the project can be more easily tracked. The
main disadvantage of this process is the inflexibility, if something major
needed to change it would be difficult to adapt the project. This is not a
problem for this project however as the project is based on a clearly de-
fined specification provided by the protocol specification and the domains
were clearly defined at the start. This means that this inflexibility isn’t an
issue and so therefore choosing the waterfall method is a suitable software
engineering process for this project.

The waterfall model can be clearly seen throughout the development of
the program. The first phase of ’requirement analysis’ is the protocol spec-
ification itself as it clearly lays out the goals of the protocol and what it is
required to do. On top of this there is the project goals which were defined
around the protocol specifically for how much of the protocol this specifi-
cation should implement for example universe-synchronisation, IPv4/IPv6
support, Unix/Windows support etc. When taken together this gives a clear
list of requirements as so allows moving onto the ’system design’ phase.

The system design phase is where the requirements are turned into a
technical plan for how they will be implemented. Part of this comes from
the protocol specification itself as it describes how each bit of a compliant
implementation should behave and so therefore the design can be based of

21

this. In addition to this part of the design is based on the existing base
implementation. The design is detailed in more detail later but in general
is based around distinct receiver and sender implementations with all the
communication being 1-way from sender to receiver. This allows both sides
to be developed in relative isolation with the protocol providing the only
communication between them. This isolation makes testing easier as there
are 3 distinct areas to test: the sending mechanism, the receiving mechanism
and the protocol packet structure.

6.1 Implementation, Testing and Deployment Phases

Once the software design is established the next steps are the Implementa-
tion, Testing and Deployment phases. Within this project this represents
the largest part of the work. The implementation phase is one of the biggest
in this project and represents the actual creation of the code as discussed
in more detail in the Implementation section. As part of the engineering
process there was an amount of looping between the implementation and
testing phases. This was done as each part of the code was implemented
(for example adding universe synchronisation) which was then tested by cre-
ating some initial tests to check that the design for that section has been
implemented correctly. Then the implementation phase was revisited to ei-
ther fix a discovered bug or to implement the next section. This looping is
similar to the way that a test-driven-development methodology might work
however the waterfall methodology described here is distinct as the imple-
mentation is written before the tests. This is distinct from an agile process
as the design of what will be created in the end stays the same throughout.

The implementation is known to be complete when all the functional-
ity specified in the design has been implemented. In this project this is
represented by data sending, universe sync and universe discovery all being
implemented on both the sender and receiver. At this point the project
moves into the testing phase. The focus now becomes on verifying that the
implementation is correct with respect to the design (compliant) using a
holistic view with all parts put together as-well as ensuring the documen-
tation matches the actual behaviour. During this stage it is possible that
bugs or areas where the implementation isn’t compliant with the protocol
specification may be discovered. In this case the focus will move briefly
back to the implementation stage to fix the problems before progressing
back through to the testing phase. It is possible at this phase that a design
problem is encountered, for example if it was found that the structure of the
program didn’t support a functional or non-functional requirement. If this
happens then at that point the engineering focus would move back to the
design stage and as per the waterfall model the focus would then continue

22

through the process of the implementation and testing phases. The testing
phase is signalled as complete when there is sufficient tests that verify that
all functional and non-functional requirements have been met. What counts
as sufficient is discussed in more detail in the testing section.

The next phase is the deployment phase, within a larger/real-world de-
velopment project this is where the finished and tested code is given to users
to use. As an analogue for this in this project this is shown by the real-world
acceptance tests. These tests fall across the boundary of the testing and de-
ployment phases as they both verify the system works but also show that it is
sufficiently mature that it could be deployed into a real-system and utilised.
For this project the intended end user is a software developer creating a
program which allows usage of the E131 protocol. Having an actual devel-
oper use the library is beyond the scope of the project. As an alternative
the demo sender and receivers act as an example of a possible deployment.
These demo programs are then demoed by interacting with a real-system
and this is shown to someone who actually works in the field (see acceptance
testing). Passing these tests indicates that the project has reached the stage
of actually being being deployed. As part of this stage it also includes the
packaging of the project so that it can be used by developers including the
finalisation of documentation and a list of dependencies, once this is com-
plete and the demo programs have been packaged the deployment stage is
complete. This is the point at which the scope of the project ends as the
final ’deployment’ is marked by the final submission.

The final stage is the maintenance stage, this falls out with the scope of
this limited time-period project however in a real-world project this repre-
sents the process of users reporting bugs, problems, feedback and developers
looping back to one of the various stages such as design, implementation or
testing to verify the problem and implement a fix. While not part of the
project directly it is hoped that the library will be able to be contributed
back to the community e.g. through the rust cargo repository and GitHub
and by doing so the maintenance stage can begin with me and community
acting as the maintainers.

6.2 Reflection on Methodology Used

The approach fit the project well as it made it clear which stages the project
was focused on (implementation, testing, deployment) with the previous
stages (analysis, design) clearly shown by the protocol specification. The
methodology did require increased up-front work as implementation could
not begin until the analysis and design states were complete. This up-front
work came in the form of the initial documentation for the project such

23

as the DOER list of objectives and as this is required anyway this isn’t a
problem for this project. The methodology also meant that there was the
risk that too long could be spent on one stage which delays further stages
and therefore the entire project doesn’t reach the deployment stage by the
fixed deadline. This meant that a time-line had to be created early on to
mark when various parts of the project would be complete so that progress
could be tracked. This was attached as part of the project in the ’Objec-
tives with times.txt’ file and its creation and modifications are shown by the
git-version control which shows how it changed. This was later superseded
by minute notes at weekly meetings where the project and its progress were
discussed. Taken together these show how the project has developed and
how the requirements have been changed from those originally proposed due
to time-constraints.

A high level view of the development of the project over time is shown
in Figure 8. This shows that the waterfall methodology was followed start-
ing with the deployed existing library which is moved into the requirement
analysis stage as new requirements are set as discussed in the requirements
section. The requirements are then turned into a design using some of the
structure provided by the existing base implementation and a set of mile-
stones created. As discussed above the project then enters its main stages
of implementation and testing which loop around as sections of the program
are created, tested and debugged. It can be seen that on the 12th of January
the project had to loop back 2 steps to the design stage and this was due
to the non-threaded structure of the program being insufficient to allow the
periodic universe discovery adverts and so the design had to be changed to
a threaded structure to allow this. This change was a fairly minor change
and so the project quickly got back on track. The implementation of this
new design and testing was then performed as part of the next 2 steps as
per the waterfall model. This was then followed by a stage of further testing
indicating the start of the test phase. This phase also included instances
of steps back being required such as the bug found on March 7th which
required implementing a new OS specific socket handling mechanism to fix.
The testing phase then continued up until the code was ready to be demoed
in the real-world environment which marks the transition from the testing
phase into the deployment phase which continues until final submission.

24

F
ig

u
re

8
:

T
h

e
d

ev
el

op
m

en
t

o
f

th
e

p
ro

je
ct

ov
er

ti
m

e
w

it
h

th
e

w
at

er
-f

al
l

m
et

h
o
d

ol
og

y
st

ag
es

m
ar

ke
d

.
A

s
th

is
m

ay
b

e
to

o
sm

al
l

to
re

a
d

in
p

la
ce

it
is

a
ls

o
in

cl
u

d
ed

a
s

”
D

ev
el

op
m

en
t-

T
im

el
in

e.
p

d
f”

25

7 Tools & Technologies

7.1 Language: Rust

Rust [11] is a compiled memory safe language with no garbage collector. It
is extremely fast with near C/C++ like performance [21] but with a much
stricter compiler that guarantees memory safety. As Rust has no runtime
due to no garbage collector it is applicable to high performance applications
making it an ideal language for an ANSI E1.31-2018 sACN device which are
often utilised in environments such as concerts where real-time performance
with minimal latency is vital to keeping lighting devices in sync with sound.
The memory and thread-safety guarantees provided by rust are also ideal for
many of the application that sACN are utilised in. These guarantees make
applications in rust significantly more robust as they exclude an entire class
of bugs and security vulnerabilities. This is useful for devices used in the
entertainment industry especially as they are often ’show critical’ meaning
that if they stop working it could ruin a large event with significant finan-
cial implications e.g. if the lighting went out at a big concert and people
demanded refunds.

This project was developed and test for rust compiler version 1.40.0 or
later.

7.2 Dependency Management: Cargo

In terms of tooling the project utilised a fairly standard rust development
tool-chain based around the cargo package manager. Details of how to use
these tools relevant to the project are provided in the usage.pdf. The project
was developed and tested using cargo version 1.40.0.

Within rust libraries/packages are referred to as crates and the man-
agement of dependencies is handled by Cargo. This system allows fetching
of dependencies as required during the build stage and includes automatic
handling of sub-dependencies etc. In addition to this the Cargo system
provides many commands related to testing, compiling, documenting and
creating rust applications.

7.2.1 Run

The cargo run command allows checking of the rust code for compile time
errors, fetching of dependencies, compiling/linking of the produced rust bi-
nary and finally running the produced binary all within one command. This
greatly simplified development as there were no Makefiles or similar to man-
ually manage and the code can easily be moved to a new system for devel-
opment/testing as required libraries are fetched automatically.

26

7.2.2 Docs

As discussed the targeted end user of the library is a software developer.
This makes good comprehensive documentation vital so that developers
know what each part of the code does and as this project is expected to
eventually be released open-source having good documentation allows new
library developers to come in and maintain/expand the code base.

Documentation within the project is done using the rust-doc system
which is included as part of the rust/cargo development package. This
library is very similar to those found in other languages such as Javadoc for
Java which work by having documentation embedded within the code which
is then transformed into a HTML web-page to provide the documentation for
the crate. As it is directly embedded into the code this makes it less likely
that it will fall behind as the documentation and code are close together
and a developer can change both simultaneously without having to work
across multiple different documents. As this is part of the Cargo system it
allows the library to packaged up along with its generated documentation
automatically so that when it is distributed to the cargo repository the
documentation can be readily accessed alongside.

7.2.3 Test

One of the verification methods used with the library is unit tests, these are
small self contained tests which can quickly run to verify that a small part
of the program behaves as expected. Rust comes with a built-in form of unit
testing through usage of the cargo test command. This automatically finds
all tests within the code as designated by the test annotation and runs them
producing a list of which tests passed and failed. This also includes other
tests such as examples in the documentation which helps to prevent prob-
lems where examples are forgotten about and as the development progresses
become depreciated or broken. Cargo test was therefore an important part
of the project during development and remains an important part once the
code is in the maintenance phase.

7.3 Debug Tools: Wireshark

As a network protocol sACN packets can be inspected on the network and
the main tool used for this was Wireshark [29]. This was a crucial debugging
tool as it allowed checking that packets were formatted and contained the
data that was expected. It was also used to trace a number of bugs related
to sending/receiving as it can be used to ensure that packets are actually
reaching the destination or if not find where they are lost. To allow working
with sACN specifically wireshark has built-in support for the protocol as-
well as displaying the internal DMX payload, these settings are not enabled

27

by default so in addition to enabling the ACN protocol the following settings
were used shown in figure 9.

Figure 9: The settings used for display sACN packets in wireshark

7.4 Version Control: Git, Gitlab, Github

Like most modern software engineering projects a version control system
was utilised. Even though there is only a single developer and so the collab-
oration tools were unused during the duration of the project version control
still provides significant advantages related to being able to roll-back ver-
sions of code if a change must be reversed. This is particularly useful during
the implementation stage of the project where bugs found in testing can be
traced to where they were created by testing earlier versions of the code.
As-well as the local git repository the code was also pushed onto separate
private github and gitlab repositories. This allows development to continue
anywhere that can access github and the repository as well as providing two
separate backups of the project with one within the school gitlab and one
on a private github. The gitlab repository was also useful as it allowed the
project supervisor to monitor progress and inspect the project as required.

7.5 Test Coverage Tool

The grcov [38] tool was used to show code test coverage of the library. This
tool was created by Mozilla and is made specifically for usage with Rust
programs. The output of the code coverage is a webpage which contains
details of the lines and functions covered for each part of the library, this
is then used to find functionality which has been missed in testing. The

28

Figure 10: A screenshot from the main part of the SACNView program
(v2.1.0) with added explanation of the various features

”usage.pdf” file contains details about how to re-run the coverage tool. It
should be noted that the code coverage tool only shows the coverage from
the unit and single machine integration tests and so some cases may have
been covered in other tests even if not show as covered in the coverage.
Grcov version v0.5.13 was used for this project.

7.6 Compliance Testing Tools: sACNView

sACNView [30] is a simple tool which allows sending and receiving with the
sACN protocol. It is used as part of the compliance testing of this library as
it acts as a real-world deployed version of the protocol which can be tested
against. This viewer notably provides support for the universe discovery fea-
ture which isn’t supported in the other tools used to test compliance making
it particularly useful.

The main page for this tool says it is for the ANSI E1.17 [1] protocol
(the base ACN protocol) however this is a typo and it really means the
ANSI E1.31 protocol (the sACN part of ACN). The reasoning for this as-
sumption is that at multiple points within the documentation such as [31]
it says things such as ’E1.17 (2018)’ which must mean E1.31 (a related part
of E1.17) as there is no 2018 version of E1.31. The documentation also de-
scribes the universe discovery feature which is not part of E1.17 as it is part
of E1.31. Version v2.1.0 of sACNView was used with this project.

29

7.7 Real-world Usage Tool: Visualisers: Vision

When creating a lighting design for an event a common step for a lighting
designer is to create a 3D model of the stage and include in it the planned
lighting. This allows the designer, clients and project management to see
what is being proposed. Once the design is approved the visualiser acts
as an accurate simulation of the behaviour of the lighting fixtures and this
allows the lighting programmer for the event to create many of the lighting
patterns, effects and cues ahead of the actual fixtures being put in place.
This is a massive part of any major project as a week spent using a visu-
aliser to create much of what is required for the event in terms of lighting
effects is significantly cheaper than a week doing it with the real-fixtures. It
also means that the visualisation can be done without being on site which
might not be possible if the site is in-use in the time leading up-to the event.
To allow this programming to be transferred straight onto the real lighting
setup most visualisers allow usage of the exact same protocols and mecha-
nisms used within real-lights to be used with the visualiser. This makes a
visualiser an ideal tool with which to test the created library against as a
professional visualiser is designed to simulate real-world usage as closely as
possible and contains a professional developed/maintained/tested version of
sACN. This means that if the library works with the visualiser it shows that
it is conformant with an industry implementation which itself is created to
be compliant with the protocol and therefore this provides evidence that
the library is compliant. From an outside user perspective it also crucially
shows that the library can actually be used for its intended purpose. The
visualiser that is used for testing this library is Vectorworks Vision Plus 2019
Version 24.0.6.521266 [32], this software is professional paid software so for
this project the St Andrews Students Association’s copy of the software +
license was used. Permission for this was granted through communication
with the current director of events and services as-well as building manage-
ment. Vision does offer a free-trial version but this has limited features so by
using the full-version it helps better show compliance. The relevant parts of
the visualiser are explained within the relevant interoperability/acceptance
tests but an explanation of the interface is also included in figure 11.

The project extends it thanks to the St Andrews Students Association,
particularly the director of events and services (Mika Schmeling) for their
permission to use their real-world visualiser setup with this project.

30

Figure 11: A screenshot from the vision visualiser with added explanation
to explain the interface.

7.8 Real-world Usage Tool: Lighting Control: Avolites Titan

The visualiser provides a way to test that the library can send sACN which
can be utilised by a real-world system but it doesn’t test the other-way
around where the library is receiving sACN. To test this a source of sACN
was required and this came in the form of a real-world lighting controller.
The lighting controller used was an Avolites Titan Mobile [33]. This con-
troller is part of a family of Avolites lighting controllers which are used
across the world to control lighting systems with sizes ranging from small
few light setups up-to arena sized world-tours. All the different controllers
in the family run the same Avolites Titan software. This software is another
professional example of a product which claims compliance with sACN and
through its extensive usage by professionals in a variety of systems has show
that it is conformant with many systems using the sACN protocol. By
testing the library receiver against this lighting controller it therefore adds
evidence that it is compliant with the protocol and can actually be used
for its intended purpose. This controller was available for the project as I
already own it for use as part of my work in the lighting industry outside of
university. A brief explanation of the Avolites Titan software is included in
figure 12, the interface is also further detailed within the relevant interoper-
ability/acceptance tests. Avolites Titan V11.4 was used for testing. Show
files (the saved configuration + data Avolites save files) for the tests are
included in the interoperability tests folder. Note that each of the folders
e.g. ”CS4099-Receiver-Interoperability” is a show-file with the files inside
all being part of the overall show-file + show-file versions.

31

Figure 12: A screenshot from Avolites Titan with some of the features
explained.

8 Ethics

This project has no ethical considerations that require notification in this
section.

9 Design

The project design is separated into 3 areas. The receiver ’SacnReceiver’, the
sender ’SacnSource’ and the protocol used to communicate. The receiver and
sender are completely separate with communication only being performed
in one direction from sender to receiver and only using the ANSI E1.31-
2018 protocol. This means that each part can be developed completely
independently. The design of the protocol used for communication is already
established by the protocol specification and described within the context
survey section of the report. This leaves the design of the sender and receiver
which must be created so as to support the operation of the protocol while
also taking into account the non-functional requirements for the project.
Figure 13 shows the same example setup shown earlier in the report (Figure
2) but with the areas where the SacnSource and SacnReceiver fit in shown.

32

Figure 13: A diagram showing where the 2 separate parts of the project are
expected to be utilised within an sACN and DMX system

The design decision was made from the start that the project should take
the form of a library which is called from other code to actually perform ac-
tions. This means that the program cannot generate data on its own and
as part of this it should treat the data as transparently as possible. This
simplifies the design of the project as it does not have to specifically handle
various cases related to the data transmitted and instead defers this to the
program using the library. This is similar to how many other network pro-
tocols work such as TCP which just handles its part of the process to move
data and doesn’t worry about the specific data being sent. The decision
was also made that the library should handle much of the sACN specifics as
transparently as possible. This means that concepts like universe synchro-
nisation and discovery should be hidden from the user as much as possible
to allow developers to focus on actually using the library rather than having
to learn exactly how sACN works. Based on the existing implementation
the project follows an object orientated type programming design with the
SacnSource and SacnReceiver being objects which contain all the methods
and state for sending and receiving.

33

9.1 Sender

The sender can be split up into 4 different areas one for each of the E1.31
packet types (data, synchronisation and discovery) and lastly for stream
termination. The data and synchronisation areas are fairly simple on the
sender with a data or synchronisation packet being sent when asked by the
user with the library handling the formatting of the packet. The universe
discovery mechanism is more complicated however as it requires the sender
to send discovery adverts on an interval and not just when the user is sending
data.

To address that the sender must send universe discovery packets on an
interval requires that the library is able to run periodically. There were 2
possible mechanisms considered for this which were decided between. The
first is to require the user to periodically call the library using a poll function.
This allows the library to perform any checks it requires and send packets
when needed. The problem with this however is that it means the user must
keep calling the library and they must do so often enough that the packets
will be sent within the required universe discovery interval. This mechanism
works well for the receiver were the receiver can sit in the background and
only needs to update when the user wishes to receive. This does not work as
well for the sender however as it makes the library more complicated to use.
It does provide some advantages as it allows the user full control over the
event loop and when code is run which is useful for some embedded applica-
tions but this mechanism was decided against as this was deemed not worth
the cost of the added complexity on the user. The second mechanism which
was the one chosen is based on having a poll thread. This thread runs in
the background when the source starts up and periodically polls the sender.
This allows the sender to then send the discovery packets as needed. This
mechanism has disadvantages related to requiring another thread to be run-
ning which can lead to issues related to concurrent access such as deadlocks
and data races. That noted these disadvantages are fairly minor due to the
initial design decision to use Rust which already guarantees thread safety
and while it cannot prevent deadlocks it guards against many of the other
possible issues such as data races [43]. Having a separate thread (or other
similar mechanism) was therefore chosen as it allows the sender to handle
sending universe discovery adverts without adding complexity to how the
library is used.

When it comes to stream termination a key sender design decision is
when to send termination packets. One mechanism would be for the sender
to timeout each universe itself and if the universe wasn’t being used by the
user for a period automatically send the stream termination packets. This
has the potential for the sender to make the system more efficient because if
it knows (for example in a predefined sequence) that a universe won’t be used

34

for awhile it can send stream termination packets to speed up the timeout
on the receiver. The problem with this mechanism is that it is significantly
difficult to implement for the general case. Therefore the alternative decision
was made where the user manually tells the implementation when it is done
with a universe. This mechanism allows the user freedom to stop using
a universe whenever but without forcing them to as the receiver can just
timeout the universe as normal. This puts all the work in terms of the
required data-loss timeouts onto the receiver which makes sense given that
it already has to handle this. This solution does mean that a universe might
be marked as sending by a sender for longer than it actually is but this isn’t
a large problem as this doesn’t mean more data is being sent and so will
only have the effect of a small delay (2.5s timeout on receiver as defined in
[3] Appendix A).

9.2 Receiver

The receiver can be further split up into how it handles 2 areas of the
protocol. The first is how it handles data and universe synchronisation. The
second is how it handles universe discovery. While in practice these may be
combined closely together at the design stage these 2 areas can be treated
separately with how they are brought together being an implementation
detail.

9.2.1 Data and Universe Synchronisation

The data and synchronisation mechanisms are closely linked as both effect
how data is handled by the receiver. The mechanism for how the receiver
should behave both with data and in a scenario involving universe synchro-
nisation is detailed in the ”Sync-Mechanism.pdf” file. This file shows that
the receiver must have a way of storing packets for later and then triggering
them at the correct time.

9.2.2 Universe Discovery

The universe discovery mechanism doesn’t directly relate to the way data
is handled and therefore can be treated separately to the synchronisation
and data part of the receiver. The expected behaviour of the receiver is
detailed in the ”Discovery-Mechanism.pdf” file. This highlights a key design
decision which was to abstract over the sACN specific behaviour on receiving
a universe discovery packet such as rebuilding the universe list from multiple
pages. This makes the mechanism easier for a user as they don’t have to
worry about the sACN specifics on how to handle the individual discovery
packets and instead can just make use of the functionality.

35

10 Implementation

As noted within the design the library can be divided up into 3 sections, the
receiver, sender and the protocol between. Within the implementation this
corresponds to the 3 files, receive.rs, source.rs, packet.rs. receive.rs contains
the SacnReceiver struct which is used for all parts of the library related to
an sACN receiver. source.rs contains the SacnSource struct which is used
for all parts of the library related to an sACN source. packet.rs contains
the parts of the library related to sACN on the network and so contains the
parsing and packing implementation as-well as functions which are utilised
by the receiver and sender such as the function to convert a universe to a
multicast address. Packet.rs also contains all the sACN constants.

10.1 SacnReceiver

As part of developing the receiver an implementation decision had to be
made about how the receiver should interface with the users code. One
mechanism which was considered was to create an event-based call back
system, this is like how many JavaScript libraries are created and is based
around the receiver being asynchronous as a call-back could be called at
any point. This wasn’t chosen as it makes the library more complicated,
this increases the chance of bugs and to add to this there is no standard
’Rust’ way of doing callbacks. This means that there was far more chance
of the library being unstable or liable to fail in certain situations as these
callbacks add extra concurrency considerations due to requiring a constantly
running receiver thread to trigger the callbacks. It is also problematic for
some embedded devices which can struggle with the concept of being con-
tinuously interrupted to perform an action especially if they don’t finish the
action before the next occurs. The mechanism that was chosen therefore
was to base the majority of the receiver functionality around an easy to
use ’recv()’ method. This method takes a timeout and blocks until either
data is received or the timeout is reached, this is very similar to a standard
UDP or TCP socket and so the functionality should be familiar to many
developers already. The recv method also allows a timeout of ’None’ which
means it will block for an indefinite amount of time until there is data ready
to pass up. Something that is different with this recv() compared to say a
UDP socket however is that the universes to listen to must first be specified.
Rather than having multiple instances of an SacnReceiver per universe the
implementation allows many different universes to be received by a single
instance. Besides being more efficient this makes it much easier to manage
for the end user but it does still require the user to specify the universes
they want to receive ahead of time.

If a user wants to receive data then once they have listened to the uni-

36

verses they want they can call recv and the code will block until data that
is ready is received. A key point here is ’data that is ready’. The recv()
implementation completely abstracts over the concept of universe synchroni-
sation on the receiver side, if a synchronised data packet is received it won’t
be passed up to the user library until the corresponding synchronisation
packet is received. This makes handling synchronisation significantly easier
for the user based on the observation that the user shouldn’t be acting upon
synchronised data that hasn’t been synchronised as per the protocol and so
therefore there is no reason to make them handle it. In addition to this uni-
verse discovery and termination are also abstracted over for a similar reason.
This means that for a user to get up and running with a receiver that can
handle receiving as many universes as required (and that the hardware can
handle) with support for synchronisation is very quick.

The user may still want to utilise the universe discovery feature to check
the discovered sources so this is still possible by using the ’get discovered sources()’
method which returns a list of sources that have been discovered. This also
made to be as simple for the user as possible by abstracting over the concept
of timeouts and pages by automatically timing out sources when retrieving
and presenting the universe lists as complete lists with no page divisions.
This means that the user never has to understand about the page frag-
mentation performed by the protocol and can just utilise the feature for its
functionality. This is similar to how many link-layer protocols will automat-
ically fragment and then re-build big packets so that they can be sent over
a link which has a limited maximum transmission unit e.g. Ethernet’s 1500
Byte MTU.

There are still situations where a user might not want some events
to handled silently. For example if the library is used within a receiver
which needs to perform an action whenever a new source is discovered on
the network. Therefore to support this the library allows setting an ’an-
nounce source discovery’ flag. This utilises the existing ’Result’ return type
to return a special error if a new source universe list is successfully discov-
ered through universe discovery. By utilising the existing system this allows
this option to be easily toggled on and off without it effecting the handling
of the recv() method by the user. This is a behaviour very similar to that
used for timeouts when receiving from a UDP socket. Using the same mech-
anism the library also allows stream termination packets and timeouts to
be announced. This allows the user a greater level of flexibility without
complicating the basic case. The decision not to make announcement the
default behaviour was based on the assumption that in most use cases the
receiver spends most of its time receiving and processing data rather than
for example listening for more discovered sources - given most sources will
probably send more than a single data packet there are significantly more

37

data packets than sources to discover so most receivers spend most of their
time receiving data.

One potential trap of this mechanism is attempting to receive with no
timeout, all announcements disabled and no universes being listened to.
This would lead to the recv never being able to return successfully. To help
protect the user from this happening the implementation will return an er-
ror if the user attempts to call recv() in this situation.

A single instance of an SacnReceiver only allows receiving using IPv4
or IPv6 at one time. This means that if a user wishes to utilise both IP
protocols simultaneously they must create 2 SacnReceiver instances. It is
expected that is a fairly rare use-case which is why the library does not
provide explicit built in support for this.

Within the SacnReceiver the actual interfacing with the IP network
is further abstracted by the ’SacnNetworkReceiver’ receiver. This wraps
around the UDP socket that the sACN packets are actually received on to
allow receiving to be done in a way that is independent of the actual socket
used. The reason for this is that it was found after much trial and error
that the socket provided by the underlying rust Socket2 library used cannot
be used identically on both windows and linux. This meant that 2 differ-
ent implementations of SacnNetworkReceiver were created with the version
selected based on the targetted compilation operating system. This allows
the user using the sACN library to program without having to worry about
the operating system (as long as its either Windows or Linux based) as the
implementation has handled this. One limitation related to this was also
discovered which is that within rust there currently (at the time of writing)
does not exist support for receiving UDP over IPv6 multicast on windows
with multiple multicast groups on the same socket within any of the libraries
tried (std, Net2 [44], Socket2 [45]). This does provide some limitation on
the usage of the library however it was beyond the scope of this project to
attempt to implement and full test an implementation of IPv6 multicast for
windows. Due to the separation in the receiver between the part that inter-
faces with the network and the rest of the code it does mean that if/when
this is implemented in rust it can be easily added into the library without
having to effect the rest of the code base or change any public facing func-
tionality.

10.2 SacnSource

The sender side of the library is split up internally between the main func-
tionality and the universe discovery poll thread. The main functionality

38

is encapsulated within the ’SacnSourceInternal’ struct which is wrapped
within the SacnSource. This actually handles all the sending of sACN data
including the universe discovery packets. All the thread does is periodically
wake, check if it is time to send a discovery packet (10 second discovery
packet interval defined for sACN in ANSI E1.31-2018) and if so calls the
method on the SacnSourceInternal and then goes back to sleep. This keeps
the discovery thread as simple and lightweight as possible and allows all the
functionality to be in one place that is easier to test.

The SacnSourceInternal is encapsulated within a rust Mutex which is it-
self encapsulated in a rust ’Arc’ . The reason for the mutex is that because
the receiver is made up of 2 threads there is the possibility that one thread
could interleave while another operation is in progress. This can lead to
data-races which could leave the sender in an inconsistent state. The usage
of a mutex therefore prevents this by only allowing one thread to perform
an operation on the sender at any one time. The decision was made to make
this a coarse grained lock with the Mutex covering the entire SacnSourceIn-
ternal. This does mean that the discovery thread or user-called-methods
may have to wait on each other for slightly longer but at the advantage of
not requiring a more complex locking system. This makes bugs less likely
and especially since the use of another thread is only to perform relatively
infrequent and short tasks the added costs in time and required testing to
implement more fine-grained locking were not deemed worth it. The sec-
ond layer of encapsulation is within an ’Arc’ which refers to ’Atomically
Reference Counted’ [46]. This is a rust reference counting implementation
which is thread-safe through the use of atomic operations. This means that
it allows multiple different concurrent threads to reference the contained
mutex simultaneously, in this case the application and universe discovery
threads. This prevents the problems which can be related to this such as
one thread freeing the memory for an object while another thread still has
a reference to it. Due to the reference checking present within Rust even if
you attempted to not use an Arc+Mutex the compiler would prevent this
as it violates rusts thread-safety policy. This is mostly transparent to a user
of the library except that the rust error system requires that the possibility
of a ’Poisoned’ mutex is handled. This is where a thread which is currently
holding a lock on a mutex crashes and is unable to release it. This leaves
the contained structure in a potentially inconsistent state and so it cannot
be reused. The implementation handles this case by returning a SourceCor-
rupt user to the error. This is not expected within normal operation but is
still possible. It is expected that in most cases if a user did encounter this
error they would handle it by creating a new instance of the SacnSender
and continuing operations. The library could have attempted to handle this
transparently but this was decided against in-case the user is using the li-
brary in an environment where the standard mechanism of just creating a

39

new instance isn’t suitable (for example in some embedded devices).

Like the receiver the sender attempts to make the most basic use cases
as easy for a user to get to grips with as possible. To this end there are 2
methods needed to allow sending data once an SacnSource has been created.
The first is to register the universe, this is required ahead of time as part of
the universe discovery mechanism because it allows the source to add that
universe to its advertised list of universes. Once a universe is registered the
second is the ’send()’ method. This method allows a user to send data to
1 or more universes with a given priority, destination IP and synchronisa-
tion address. In the most basic case of sending unsynchronised data at the
default priority using IP multicast the last 3 options can all be replaced
with ’None’ with just the data and destination universe(s) provided. This
allows a user to start with a simple base which can be configured for more
applications as required.

Unlike on the receiver on the sender side universe synchronisation is han-
dled explicitly. The reason for this is that it allows a greater level of control
by the user while not adding to much complexity. An early implementa-
tion did attempt to have synchronisation packets sent automatically after
a synchronised data packet but this meant that the library could only be
used in the situation where the data packets send should be synchronised
immediately and didn’t allow the user to delay it or wait for some other
option. The way the user interacts with the universe synchronisation fea-
ture is by providing an synchronisation universe as an argument to data
send using the send method or None if no synchronisation is desired. The
user can then trigger the synchronisation by using the ’send sync packet’
method which sends a synchronisation packet to the given synchronisation
address. This allows a much higher level of control by the user on when
to synchronise data and allows for the possibility that the synchronisation
might be performed by another sender. While not a hard requirement it
is advised in the standard (ANSI-E1.31-2018 Appendix B.1) that there is a
small delay between sending data and sending the synchronisation packet to
allow receivers time to process the data. This isn’t enforced by the library
as what counts as a ’small’ delay will depend on the system and so this is
left up to the user to decide. Similarly as specified in ANSI E1.31-2018 Sec-
tion 6.6.1 the send method shouldn’t be called at a higher refresh rate than
specified in DMX (ANSI E1.11) unless there are no E1.31-DMX converters
on the network. Since this is also something which is system dependent and
the library cannot know on its own this is also left to the user to control
how often they call the send method.

The sender supports all 3 IP modes specified in the non-functional re-
quirements of unicast, multicast and broadcast. The default mode used is

40

multicast and this is accessed by the user providing ’None’ in the place of
the destination IP in the send (or send sync packet) method. This will cause
the sender to use the destination universe (or synchronisation address for
sync packets) to find the multicast address to use. Unicast can be accessed
by instead providing the destination IP. This will cause the source to send
the packet using unicast. If broadcast is desired then the user can provide a
broadcast IP destination address and this will cause the library to send the
data to that broadcast IP and thereby broadcast the data to all receivers on
that subnet. The ANSI E1.31-2018 protocol specification [3] only discusses
universe discovery in the context of IP multicast so therefore this feature
only utilises that sending mechanism. It is relatively easy to modify the
library later if required to also allow sending discovery packets using other
IP modes.

In some situations it might be required that universe discovery isn’t
used, for example if there are devices which implement ANSI E1.31-2009
which was created before universe discovery and which don’t correctly dis-
card packets with the wrong vector. To allow compatibility with these de-
vices the sender provides the ’is sending discovery’ flag which defaults to
true but can be set to false to prevent discovery packets being sent.

10.3 Protocol Packet Parsing / Packing

The parsing and packing of sACN packets is handled by the packet.rs file.
By keeping packing and parsing together it makes it easier for both sides
of the library to be kept consistent as a developer can make changes to
both areas in a single place knowing that this is the only areas that need
changing. Within the file it is separated by layer with each layer parsed as
a separate struct. The macro system used for defining the functions at each
layer is from the existing implementation and kept as it provides essentially
the same functionality as doing it the ’standard’ way as shown in the other
files. A large amount of the parsing and packing code was brought over
from the existing implementation but a number of changes were made. For
example the replacing of the old rust style error system with the new library
error-chain system with a specific type of error to encapsulate all parse/pack
related errors. Related to this a large amount of error checking that was
missing was also added and the code was extensively tested to find prob-
lems. In-doing so a number of bugs such as the data packet options field
being packed incorrectly were found and fixed. In that specific example the
original implementation was referencing bit 7 in the option field to mean the
7th bit when in the ANSI E1.31-2018 specification the bits were 0 indexed
so bit 7th was actually the 8th. This lead to all the stream termination and
preview packets produced by the implementation to be incorrectly utilised
by external receivers. A level of code tidying on the existing code was also

41

performed with magic numbers replaced with descriptive constants and the
code documentation extended.

One implementation decision that had to be made was related to the
ordering of the universes within a discovery packet. ANSI E1.31-2018 Sec-
tion 8.5 specifies that the list of universes in a universe discovery packet
must be sorted numerically but doesn’t specify if this should be in ascend-
ing or descending order. This meant the implementation had to make a
decision on which to use with the assumption being to use ascending order
however this exists as a potential source of compatibility problems between
implementations due to this being unclear in the specification.

10.4 Std vs Non-Std

The library is implemented assuming a std environment. This means that
the rust std libraries such as the network library are available. This greatly
increases the amount that can be done using rust as within the standard
library the inbuilt functionality is fairly limited and would require rebuild-
ing many already implemented solutions. This differs from the library that
the implementation is based on which allowed running in environments with
and without std. The reason to discontinue support for no std environments
was made as the new parts of the protocol which were being implemented
such as universe discovery are significantly easier and provide a better user
experience when parts of the standard library such as the threads can be
used.

10.5 Drop / Closing / Termination

Unlike many languages the underlying rust socket used for this library does
not require being explicitly closed as it automatically cleans up when it is
out of scope. This protects against an entire family of errors related to in-
correctly closed/not-closed streams. In-line with this the library also cleans
the created receiver/sender up automatically through the implementation of
the ’Drop’ trait. As part of this the implementation decision was made that
a source will automatically terminate any universe it is currently sending
on (as well as its spawned thread), this is similar to a TCP stream sending
FIN packets to close. The receiver will also de-register any universes it is
listening on by leaving the multicast groups it has previously joined.

During a Drop there is no provided way to pass an error to the user.
This is inherent in Drop being called automatically because there is no clear
return path for an error nor can the Drop be stopped either-way as it might
be called during a panic! or program wrap up. This leads to an imple-

42

mentation decision for how to handle errors with 4 distinct options: panic,
notify, prevent, ignore. Panic means that within the drop if there is an error
then panic the program with a description of the error. This notifies the
user however it also causes the program to be terminated even if it could
potentially continue. It also pollutes the error-output and can lead to the
original error/problem to be hidden. This makes it unsuitable for this ap-
plication as a failure to drop won’t lead to memory unsafety or otherwise
cause significant problems beyond the program scope. Notifying the user
refers to using a functionality such as logging, printing to standard-out or
some other mechanism. Printing to stdout is avoided as this might pollute
an applications output by displaying errors to the user which a developer
using the library might want to avoid. Logging is a possible option which
adds further complexity to the library as-well as another requirement for a
logging library. Preventing the possibility of the error is the ideal solution
however in this case as IO is required this cannot be guaranteed if there is
a problem with the underlying socket. The final solution is to ignore the
error, usually this would be problematic as it doesn’t allow the application
developer to decide the programs behaviour or to fix the problem but in
this case that isn’t possible anyway. Ignoring the error also allows as much
to be cleaned up as possible unlike panic which would stop cleaning up at
the point the error occurs. The actual implementation decision based on
this was therefore to ignore the error with the recommendation that logging
could be potentially added later.

If the user wishes to they can also terminate a specific universe manually.
This is done through the ’terminate stream’ method on SacnSource. This
will remove the universe from the universe discovery list adverts for the
source as-well as send the termination packets.

10.6 Errors

The base implementation provided its own error system based on an Enum
with various different types. This had a number of problems, the biggest
two being that it didn’t allow errors to be encapsulated within each-other
to provide a back-trace and it wasn’t compatible with errors from rust li-
braries such as Io and Net. Since this error system was created for the
existing implementation (before or during 2018) there has been significant
changes within rust and the way that errors are handled. For example the
’try!’ [27] macro which used to return if the item produced an error type
has since been depreciated, replaced with the ’?’ operator and ’try’ made
into a reserved word.

Theses issues meant that the existing error implementation was no longer
suitable and it didn’t make sense to continue trying to use multiple errors

43

systems (rust Io/Net, old system, new errors added by new features). There-
fore the entire error system was replaced using the Error-Chain library [28].
This library is frequently used throughout the rust eco-sphere and allows
combining all the error systems into one system with rust errors automat-
ically converted as needed. It allows errors to be encapsulated within each
other which allows chaining of errors together to produce much more infor-
mative back-traces. As part of this update of the error system all usages
of the depreciated ’try!’ macro were removed and replaced with the new
’?’ operator in combination with the error-chain ’bail!’ macro. A num-
ber of new errors were also added to more descriptively describe possible
errors within the library as listed in the ’error.rs’ file such as ’ExceededUni-
verseCapacity’ and ’DmxMergeError’. To aid usability all errors related to
the parsing and packing of sACN packets were moved into their own ’Sacn-
ParsePackError’ error-chain. This allows a user of the library to handle all
these errors by just handling the generic SacnParsePackError which is useful
if they don’t care specifically why a packet was malformed just that it was.
If the user does want to handle specific parse-pack related errors they can
also do that in the usual way by matching against SacnParsePacketError(x)
and then checking the ErrorKind of x which will be one of the parse-pack
errors. Examples of this are shown throughout the unit tests for example
test ”test malformed data packet framing layer wrong vector parse” in the
”data parse tests.rs” file demonstates this in use to check that the expected
error is returned.

Programs which utilise the library are not required to continue using
error-chain within their code and can use their own error systems however
for the ’demo src’ and ’demo rcv’ programs the decision was made that
continuing to use error-chain made sense due to the advantages it provides
as described above.

11 Testing

As a software engineering project the testing stage is vitally important and
took up a large amount of the total time spent on the project. The key aims
of testing are as follows, first to show that the code works as intended. This
is primary done through the unit and integration tests. The next part is
showing that the code works as expected by the protocol. This is referred
to as compliance testing and as creating a library that is compliant with
parts of the ANSI E1.31-2018 protocol was the main aim of the project this
compliance testing is crucial to showing the success of the project. The final
aim of the testing is to show that the library is actually suitable for usage,
this comes in the form of acceptance testing where the library is actually
utilised for its intended purpose by an end user.

44

These 3 aims show that the project works as intended, that the intended
functionality is compliant with the protocol and that the project can actually
be used for its functionality by a user. Once the project has successfully
passed these 3 categories of tests it is ready to move onto the deployment
stage of the software development life cycle.

11.1 Scope

Within these testing objectives 3 types of tests were used Normal, Extreme
and Exceptional. Normal testing involves situations which are expected by
the project such as in this case receiving data from a registered and ex-
pected universe.The basic requirement of the project to be successful is for
it to pass all normal testing as this shows that the project actually performs
the intended functionality. Extreme testing is similar to normal testing but
with the situations being on the edge of what is expected/allowed, for ex-
ample sending a full data packet is an extreme test as it is on the edge of the
allowed data packet length. Extreme tests show the bounds of the project
and highlight where normal, expected scenarios transition into exceptional
scenarios. Exceptional tests are where the project is tested with scenarios
and inputs beyond what is allowed. In these cases the program must take
some action to handle the scenario, in many cases exceptional input may put
the program into an undefined or failing state. This action is undesirable
however because it means that there is no way to know exactly what will
happen or in some cases to stop the program from crashing. This is espe-
cially problematic for this project as it is a library which should be usable
by developers within their projects and different usages of the library will
need to handle errors in different ways. The project therefore attempts to
prevent undefined or crashing behaviour by flagging up exceptional input or
scenarios before they cause a crash (called a panic in rust). This flagging
is done by methods/functions being able to return a Result type which ex-
plicitly encodes the possibility of either an Ok’ non error result or an ’Err’
error result. The aim of the exceptional tests therefore are to show that
even when provided with unexpected scenarios such as those out-with the
ranges given by the protocol that the implementation follows predetermined
behaviour that allows the user of the library to handle or correct the problem.

The testing aims to provide coverage of the entire library including the
parts from the existing implementation. This is important because the ex-
isting implementation lacked sufficient testing and in multiple cases it was
discovered that it had problems including multiple deviations from the pro-
tocol specification. One example of this was the ’options’ field within the
data-packets. The existing implementation took bit 7 to mean the 7th bit
which is incorrect as specified in ANSI E1.31-2018 that the 7th bit means

45

the most significant bit and the 0th bit is the least significant. This problem
meant that the existing implementation did not correctly assign the option
flags leading to malformed packets and this is a problem which was pre-
vented through testing. In this case the problem was verified to be fixed
both through unit testing and by utilising wireshark to verify that it was
interpreting the option field as expected once the change was made. This
highlights why thorough testing is so important as small differences which
have a big impact such as this are easy to miss when developing and unlikely
to be spotted in a developer ’dry-run’.

11.2 Testing Mechanisms

A priority was put on reproducibility and automation when it comes to
testing. The reasoning for this is once a framework is set-up it takes ap-
proximately the same time to run a test manually once or twice as it does
to write the test in a way that it can be run multiple times automatically.
This means that there is only a small penalty to setting up a test so that it
can run automatically but once it is set-up it can be run frequently allowing
confidence that the code continues to work and that any change such as a
bug fix for another test hasn’t broken something else. Easily reproducible
automated tests also provide a significant advantage to a project once it
reaches the deployment/maintenance stage as they act as further documen-
tation of the code and a source of examples for new developers to use when
learning. These examples are particularly good as they can be run to verify
that they still perform as expected which can be used to flag up areas where
the documentation and code have diverged.

11.2.1 Unit Testing

Unit tests focus on a small specific part of the program to test its function-
ality for example a single method or functionality. The goal of these tests
are to be quick to run and show that each individual part of the project
work. By having unit tests for each part of the program is allows showing
that individually all the bits of the project work. As these are quick to
run they are run after each change/bug fix made during the testing stage of
development and show that the fix hasn’t introduced any issues into already
working sections. This sped up the implementation and testing phases by
allowing problems to be identified and fixed quickly. These tests are also an
important part of the maintenance stage for a similar reason. The output
from the unit tests is included in the ”unit test results.txt” file which shows
that all unit tests and example code passed as expected.

Unit testing relies on testing each unit to be effective and so therefore as

46

part of testing a code-coverage tool was used. This goes through the code
and highlights areas that are missing tests thereby making it easier during
testing to identify missed areas. It isn’t perfect as it cannot check if every
possibility/situation has been tested for every function but acts as a guide
to improve testing.

As described in the tools section unit tests created using the in-built
rust/cargo unit testing framework. In addition to this the code coverage of
these unit tests was checked using the grcov tool created by mozilla [38].
The output of the test coverage is included as a webpage (index.html in the
coverage folder) and the library view of the results are shown in 14. The
library is focused on as this is the focus of the testing (the other modules are
part of the webpage but not shown in the screenshot). The code coverage
tool shows that the test provide good line coverage with packet and receive
particularly well tested. This makes sense as a large amount of testing went
into the packet parsing specifically as part of the compliance testing. The low
scores for the functions column would indicate poor coverage but actually
inspecting the coverage for each file shows that the majority of functions
are covered. There is limited documentation available for the grcov tool so
it is hard to say why the functions score is so low while the line coverage is
high. One possibility is that in a few functions there are situations which
were not tested. This includes possibilities that are extremely difficult to
trigger intentionally such as the PoisonedMutex error discussed previously.
An inspection of the files with coverage highlighting also indicates multiple
non-code areas being highlighted which potentially indicates a problem with
the code-coverage tool used.

47

F
ig

u
re

14
:

T
h

e
li

b
ra

ry
v
ie

w
o
f

th
e

co
d

e
co

ve
ra

ge
to

ol
ou

tp
u

t
sh

ow
in

g
th

e
co

d
e

co
ve

ra
ge

of
ea

ch
p

ar
t

of
th

e
co

d
e,

m
or

e
d

et
ai

l
is

sh
ow

n
in

th
e

in
cl

u
d

e
co

ve
ra

g
e

w
eb

p
ag

e
/

fo
ld

er

48

11.2.2 Integration Testing

Unit testing shows that individual parts of the code works as expected,
integration comes as the next step where the parts are tested (integrated)
together. This included testing the sender and receiver as full units as well as
testing them with each other. This was done using two separate mechanisms.
The first utilised the rust testing framework that already exists (as used for
the unit tests) by creating multiple threads within a test with each thread
representing a sender or receiver. These senders and receivers then connect
to the same network using different addresses and generate/receive packets
to check the output in a variety of scenarios. This simulates the senders and
receivers being independent as they only share data through the protocol
with no shared memory (sharing memory between threads can only be done
explicitly in rust a normal variable cannot be shared). The only exception to
this was the usage of the rust thread message passing system which allowed
the sender/receiver threads to wait on each other as appropriate to allow
repeatedly creating the desired test scenario. An example of this is shown
in figure 15. This shows how a typical test is set-up . First the constant
parameters are defined first. Second the senders or in this case receiver
created are created. The sender/receivers are then put into the expected
states by using the thread message passing to communicate as certain points
are reached in the code which in this case is the receiver being ready to
receive. The actions being tested, in this case sending a single universe of
data over multicast, are then performed and the outcome is checked against
the expected results. These integration tests mimic the real-usage of the
system but with the advantage that the states of the sender/receive can be
more easily synchronised to test a specific scenario using the thread message
passing system. These tests can also be run on a single machine utilising a
feature within both Fedora and Windows which allows a single interface to a
network to use multiple IP addresses. This is required because the receiver
must use the protocol defined ACN port and so different addresses have
to be used to provide separation. As the states can be easily synchronised
and only a single computer is needed these tests allow a large range of
possible scenarios and functionality to be checked without requiring a more
complicated (and prone to breakages) set-up.

49

F
ig

u
re

1
5:

A
n

ex
a
m

p
le

of
th

e
co

d
e

u
se

d
fo

r
a

si
n

gl
e

m
ac

h
in

e
in

te
gr

at
io

n
te

st

50

Across Machines The threaded integration tests are limited because the
protocol is designed to work across multiple machines and the tests only
use one machine. This means that to fully test the protocol it also has
to be tested in a more representative environment of its actual usage. In-
order to allow this 2 small demo programs were created, these programs
were also written in rust and represent an example implementation of a
sender (’demo src’) and a receiver (’demo rcv’) that uses the library. A
testing framework was then created as shown in the ’script-testing’ folder.
This framework works between multiple machines by using SSH to start up
the required senders and receivers and then predefined input is provided
to both and the output written to a file on a shared file system. Once all
the tests are run the output is then compared against the expected output
(utilising the diff tool) and if it matches the test is marked as passed (failed
otherwise). This allows a way of showing the that the protocol works across
a real network setup with multiple machines while still being reproducible
without having large amounts of manual input. This test setup can be
represented as the abstract and physical layout shown in Figure 16.

51

Figure 16: The abstract setup of the integration tests along with the actual
implementation

The test-scripts used as-well as the expected output files and given inputs
are included in the script-testing/single-rcv-src folder. The test run script

52

actually runs the test, it starts the receiver and sender and then provides
the receiver the commands in the ’rcv’ file and the sender the commands
in the ’src’ file. The output of both sender and receiver are piped into an
output file ’xrcv-out.temp’ and ’xsrc-out.temp’ where ’x’ is the test number.
The test check script then checks the output against the expected output for
each test and reports pass/fail. The reason for separate run/check scripts is
that it helps to account for the delay in the file-system syncing the output
from the test machines so that the master can check it. The test.sh file calls
each test / check in turn and is the entry point for the testing mechanism
(as described in usage).

More than 2 machines The script above allows testing the features of
data sending/receiving, synchronisation, discovery etc. however it only tests
between 2 machines. This makes it easier to check the output as by setting
the appropriate wait points a loose ordering can be enforced so that the
output from the receiver is always the same. This is much more difficult
to do however with more than 2 machines. For this reason another set of
integration tests was created in the ’script-testing/multiple-rcv-src’ folder.
These tests utilise the same setup as the 2 machine tests above but allow
testing between more than 2 machines. The mechanism used is the same but
instead each sender and receiver is given a different input file as indicated by
the naming within the test folder so for example the first receiver takes the
input from the file ’rcv 1’ within its test folder and the second receiver takes
’rcv 2’ and so on. Due to the ordering being unpredictable it means that
the exact output from the receiver is hard to know ahead of time. Knowing
what is expected in general terms (e.g. 2 universes of data will be received) is
easy but for example in Test 2 knowing which universe will be received first
from the 2 senders is more difficult. There wasn’t time to create and test a
more complicated mechanism for doing the checks automatically so therefore
these tests are checked manually based on the ”expected-results.pdf” table.
This keeps the leg work down to a minimum in that the user must just check
the file outputs and doesn’t have to worry about how to run the tests.

11.2.3 Fuzz Testing

The integration and unit tests are both focused on checking behaviour of
the protocol in specific conditions. What this doesn’t check however is the
behaviour of the protocol when given a wider variety of inputs. Where this
is particularly important is with the packets parsed from the network. It
is possible that there may be multiple different protocols operating on a
network and so therefore it is possible that the implementation may receive
packets from these sources. It is also possible that there may be malfunc-
tioning/malicious sources on the network sending random or scrambled data.
This means that the protocol should be able to handle this by flagging up

53

malformed packets without crashing. This is particularly important in this
case because this library may be used within an implementation of a show-
critical device and so therefore should avoid crashing as much as possible.
To test how well the library does in this regard a technique called fuzzing
is used. This is where a fuzzing program generates data (based on some
initial inputs) which it then feeds to the program being tested and it checks
if the program crashes. This fuzzing program does this continuously using
a huge variety of possible data while recording how the program handles it
each time.

For this test the american-fuzzy-lop library [40] was used. This was setup
as described at [41] and run on the Fedora 31 operating system. The fuzz
target code used is included in the sacn-parse-fuzz-target subfolder of the
Fuzzing folder. This code is extremely basic and just passes the provided
fuzzing data straight to the parse function and ignores the result. This
therefore doesn’t check the specific error returned or if a specific packet is
parsed but it does check that the library parsing mechanism runs without
encountering a crash (a rust panic!).

To guide the fuzzer to produce data based on sACN expected packets
the raw data for a data, synchronisation and discovery packet are used as
inputs. These packets are found in the ’fuzz in’ subfolder of the Fuzzing
folder. The packets were generated by performing a wireshark capture of
the implementation sender sending these packets and this is included as the
”fuzz-test-base-captured-packets.pcapng” file. These captured packets were
then transformed into raw data files utilising the wireshark export raw data
export feature as described in [42].

The fuzzer was run with 2 separate instances with run conditions and
the results of the fuzzer shown in figure 17. These results show that out
of the 218 million packets tried 98.7 thousand produced a crash with 14
unique ’types’ of packet generation that caused a crash. This corresponds
to a calculated crash rate of 0.045% based on the inputs generated by the
fuzzer. While ideally the project would have a crash rate of 0% this crash
rate is still low enough to be acceptable.

54

F
ig

u
re

17
:

T
h

e
re

su
lt

s
of

th
e

fu
zz

te
st

in
g

on
th

e
p

ar
si

n
g

p
ar

t
of

th
e

li
b

ra
ry

.

55

11.2.4 Testing External Interoperability

The unit and integration tests show that the program works within itself
but it is unlikely that within a deployment scenario only a single imple-
mentation would be used and so therefore it is also required to show that
the library is interoperable with other programs. Since all the programs run
the same protocol it is expected that they should all be able to communicate.

These tests can highlight problems with the program which are hidden
until this point such as gaps in the specification where the library behaviour
is implementation defined and may not be compatible with other systems.
It can also highlight parts of the system which perform slightly differently
than described in the abstract specification due to the introduction of real-
world factors such as real-equipment limitations like processing speeds. An
example of this might be if the library absolutely relied on universe discovery
packets being sent at exactly the interval as defined by the specification. In-
real systems network delays as well as varying workloads on the devices
might cause packets to be received at slightly variable intervals. Real-world
tests therefore help find some of these problems and allow fixes to be made
before the program is sent to users.

Industry Sender - Avolites Titan Setup To allow repeatability the
show files used for the interoperability tests are included in the Avolites
Titan Show Files sub folder in the Interoperability Testing folder. These
show files were made for version 11.4 and run on an Avolites Titan Mobile.
Within the show file each universe was assigned to an sACN universe with a
1 to 1 mapping and no other network protocols were used as shown in figure
18. In addition to this within the show-file itself 1 channel lighting fixtures
called ’dimmers’ were used to allow a 1:1 mapping between a fixture in the
show-file and a DMX-address. This mapping is shown in figure 19 which
shows some of the dimmers used (the groups part of the window shows that
8190 dimmers were added to represent each channel in universes 1 - 16). All
settings used are included within the save files but in general were left to
their defaults.

56

F
ig

u
re

18
:

T
h

e
se

tu
p

o
f

th
e

av
ol

it
es

sh
ow

fi
le

n
et

w
or

k
p

ro
to

co
ls

u
se

d
fo

r
th

e
in

te
ro

p
er

ab
il

it
y

te
st

in
g

57

F
ig

u
re

1
9
:

T
h

e
se

tu
p

of
th

e
av

ol
it

es
sh

ow
fi

le
u

se
d

fo
r

in
te

ro
p

er
ab

il
it

y
te

st
in

g
sh

ow
in

g
so

m
e

of
th

e
fi

x
tu

re
s

p
at

ch
ed

58

Industry Receiver - Vectorworks Vision Setup The vectorworks vi-
sion visualiser uses the vision files ”CS4099-TEST.v3s” and ”Student-Union-
Model.v3s” included within the Test Resources folders of the Sender Inter-
operability Testing and Acceptance Test folders. Vision was setup using
medium graphical quality settings although this should have had no effect
on the results. The patch used within each file is included within the file
itself as is the positions of each individual fixture. The ’DMX Provider’ set-
ting was set to sACN for all tests. The tests were performed on Vectorworks
Vision Plus 2019 with a professional license and version 24.0.6.521266.

Industry Receiver - sACNView Setup sACNView was setup using
the default settings with the ethernet interface assigned to 192.168.0.6 set
as the network interface as shown in figure 20. Universes 1 - 16 inclusive
were listened to for every test even if less than that were used for a specific
test. Unicast and multicast were enabled for every universe as shown in
figure 21.

Figure 20: The setup of sacnView used for the interoperability tests

59

Figure 21: The IP modes enabled in sacnView used for the interoperability
tests

Testing receiver implementation To show that the sACN receiver im-
plementation is interoperable with a real-world sender the demo receiver
program was set-up and run in a network as shown in figure 22 along with
an professional industry source of sACN in the form of the Avolites Titan
program as described in the tools section. The tests run and what they
demonstrate are detailed in the included ”CS4099 - Interoperability Test-
ing.pdf” document. The real-world implementation used doesn’t support
sending universe synchronisation or universe discovery data so these could
not be tested in this step however details of how theses would have been
tested are also included in the document.

For some of the tests it was easier to determine if they passed by visu-
alising the received data. In test 5 the sender sends data on 16 different
universes with different value ranges per universe. For this test to pass each
universe should only contain the values within the range assigned to it as
specified in the testing document. To show that this was the case the results
were output to a csv file ”test-5-out.csv” and then processed using a spread-
sheet ”test-5-data-processed.xlsx” to produce the graph ”test-5-processed-
first-value-chart.png” which is included in figure 23. This graph shows that
each universe stays within the range expected and therefore that the test
passes. As a sanity check of the results this test was also repeated using the

60

sACN-viewer as the receiver and the graph produced in real-time recorded
and included as the ”Test-5-Receiver-Control-sACN-Viewer.mkv” file.

Similar to test 5, tests 3 and 4 also included visualisation elements as
part of the check and details of these as-well as further specifics/details of all
tests are included within the screenshots/videos within the relevant folders
test folders (excluded from report for brevity).

Figure 22: The set-up of the text with the implementation receiver and an
industry sACN source

61

F
ig

u
re

23
:

A
g
ra

p
h

sh
ow

in
g

th
e

va
lu

es
o
f

ea
ch

u
n

iv
er

se
p

er
p

ac
ke

t
re

ce
iv

ed
fo

r
th

at
u

n
iv

er
se

.
T

h
is

sh
ow

s
th

e
ra

n
ge

s
of

ea
ch

u
n

iv
er

se
fi
t

w
it

h
in

th
e

ex
p

ec
te

d
.

62

Testing sender implementation Similarly to test the sACN sender im-
plementation an external receiver was used. In this case 2 separate receivers
were used, the vision visualiser and sACN viewer, as discussed previously.
Separate programs were used because neither program was suitable on its
own. The visualiser was created by a large company within industry and is
used every day by professionals working in the field. This gives a high con-
fidence that it will be compliant with the protocol and so showing interop-
erability with this is very valuable. It was found however that the visualiser
only supports data packets and does not support universe synchronisation or
discovery (at least in a way that could be observed) meaning it could not test
this functionality. sACN viewer was therefore used as it provides support
for universe discovery as-well as a good interface to show that data packets
are being received and parsed correctly. Unfortunately neither implementa-
tion supported universe synchronisation. Given that the same problem was
encountered when trying to find a receiver implementation it appears that
the industry has not yet fully caught up to the ANSI E1.31-2016 standard
when synchronisation was added. It may also be possible that while in-use
programs supporting this feature do exist they are proprietary and so could
not be accessed/tested against within this project.

The test was set-up identically for both receivers as shown in figure 24,
the actual tests run are detailed in the ”CS4099 - Interoperability Test-
ing.pdf” document along with results. This figure also describes the tests
which would have been run had there been an industry receiver which sup-
ported the universe synchronisation feature.

To allow the visualiser output to be easier to interpret the 3D scene used
uses a large number of simple lighting fixtures. These fixtures are laid out
as shown in figure 25 with each fixture corresponding to a single channel on
a universe.

63

Figure 24: The set-up of the sender implementation interoperability test

64

F
ig

u
re

25
:

T
h

e
li

g
h
ti

n
g

p
lo

t
of

th
e

li
gh

ts
u

se
d

as
p

ar
t

of
th

e
V

is
io

n
V

is
u

al
is

er
te

st
sc

en
e

65

11.2.5 Acceptance Testing

Acceptance testing is the final stage of testing within the project and rep-
resents the transition from the testing phase to the deployment phase. For
this test a similar setup is used to the external interoperability tests however
this time rather than just the developer these tests were performed in the
presence of an industry professional. This allows demonstrating that the
program can actually be used for its intended purpose, it also allows the
chance for people in industry (the targeted end users) to provide feedback
or evaluation about the usefulness of the program and point out potential
problems.

Two separate demonstrations are performed, first showing the function-
ality of the program as a sender with data sent from the implementation to
the visualiser with the person seeing both the commands entered into the
implementation sender and the results on the visualiser. The second demon-
stration shows the sACN source lighting board (Avolites Titan) sending to
the receiver with the data received displayed on the screen in text format.

The industry professional for this test was the Technical Supervisor for
the St Andrews Students Association. As a technician they work with light-
ing, sound and other entertainment systems daily and so they are ideally
placed to demonstrate the implementation of this widely used lighting pro-
tocol to. The visualisation test provides significant value to the project as a
professional working in the field will know how this fits into the real-world
work flow of someone working in lighting and therefore that this is an actual
representative usage of the protocol. The receiver output from the lighting
board is also extremely valuable as the technician is able to observe that
this is a real-world sACN source which is being used with the protocol and
they can see that the data is being correctly sent by the board and received
as expected.

The test layout is shown in 26, the plan for the demonstrations to run
are detailed in the ”CS4099 - Interoperability Testing” however during the
actual test there is the possibility of questions which may lead the demon-
stration to change to show specific areas of the implementation. Once this
test was complete the professional then agreed to write up a short email
describing the test and their evaluation of the demonstration.

The lighting layout used for visualisation in this test is setup to be similar
to the actual setup used in the students union thereby being a representa-
tive example of an actual industry use case. The layout of this setup with
accompanying explanation is shown in figure 27.

66

Figure 26: The layout of the acceptance test performed

Figure 27: The lighting plot showing the locations and addresses of fixtures
within the visualiser used as part of the acceptance test. This is based on
the actual lighting layout used within the students association. Additional
explanation has been added on top of the plan to describe what each part
means.

67

11.3 What Testing Shows

The unit and integration tests in combination with the code-coverage show
that the code works as expected but to show that the behaviour actually fits
with the protocol specification compliance testing was performed. Ideally
this would be done through an external compliance test suite however none
exist public-ally for the protocol. Therefore a compliance suite was cre-
ated, this was done by going through the protocol specification document
[3] and generating a list of required functionality for each section, unit and
integration tests were then created so that each requirement was fulfilled.
This systematic approach makes it much less likely that something will be
missed and increases confidence that the implementation will be compliant
with all aspects of the protocol. This table is included in the attached ”ANSI
E1.31-2018 Compliance Check List.pdf” document coloured coded to show
the results of the tests for each requirement. Further to this the interop-
erability tests also provide evidence that the implementation is compliant
because the programs used have been shown to be compliant themselves
so being interoperable through the protocol indicates the implementation is
compliant. The acceptance test then provides evidence that the implemen-
tation can actually be used as expected. This testing therefore shows the
progress from design to implementation through to a deployable compliant
implementation.

68

12 Evaluation and Critical Appraisal

Figure 28: A table showing the features attempted, implemented and tested
as part of this project based on the requirements

Figure 28 shows the support for the library with respect to the require-
ments specified at the start of the report. This tables shows that almost
all of the requirements have been up-to the point of being implemented and
then verified through testing. The table shows that 1 of the non-functional
requirements was not fully implemented and this was due to a lack of support
provided by the rust library used for IP communication. The requirements
specified at the start of this project differ slightly from those presented in
the DOER at the start of the project as shown in figure 29. This came as
part of a supervisor change half-way through the project which meant that

69

the requirements were re-evaluated. The primary objectives were condensed
from 5 points to 3. This didn’t actually represent a specific change in re-
quirements but more so that requirements such as ’Learn rust’ and 2. were
implicit parts of the project so didn’t need to have their own requirement.
Within the secondary objectives 1. and 2. were removed. The reason for
this is that it was deemed that at the half-way point that these requirements
were not going to be realistically reachable to a high standard as they could
form the basis of entire projects in and of themselves. The removal of these
requirements didn’t effect the software engineering process, the reason for
this is that no work had been started on these requirements as they were
both part of the ’testing’ phase and so they could be easily dropped. Overall
the project meet the majority of its requirements as specified at the start
and all of the later refined requirements and so therefore the project can be
considered a success.

Figure 29: The requirements of the project as listed in the DOER at the
start of the project

There exists no fully-implemented public-ally available implementation
of sACN in rust and the most complete version was used as the base of
this project, this means that there is no direct comparison possible between
this project and another however there do exist implementations of sACN

70

in other languages so these can be used for comparison. Of the libraries
found many do not provide support for universe synchronisation as they
are based on the older ANSI E1.31-2009 from before synchronisation was
added. Many of the libraries also take a more bare-bones approach from
the perspective of the user by exposing the packet structure directly. This
requires more learning by the user about how sACN works especially as it
means all the synchronisation and discovery behaviour isn’t implemented
and must be handled by the user. The lack of synchronisation support po-
tentially explains the issues found during interoperability testing when it
came to finding implementations to test against that did support synchro-
nisation. The most complete public-ally available library seems to be the
open lighting project (C++) [10], which provides support for transmitting
and receiving sACN and provides support for Linux, Mac OS and FreeBSD
meaning it is tested for more operating systems than this rust project. The
library does not support windows however which this project does (except
for the IPv6 windows receiver limitation). The feature comparison between
this project and other libraries is shown in figure 30. This figure shows that
this project is more complete than many of the implementations. This is
unless support is required for a particular system such as arduino/bsd or the
system must be very lightweight e.g. the C++ impl. The lack of a fully com-
plete implementation in any language is likely to do less with one existing
and more than the companies that created it probably didn’t release the code
as they gain an advantage by being able to offer features that others can’t.
The choice for this project to only focus on Windows and Linux (specifically
Fedora 30/31) was based on a lack of test devices to use in any other system.

71

Figure 30: A table showing a comparison between this project and other
similar projects in terms of sACN features implemented

The decision not to pass up data packets awaiting synchronisation means
that the packets must be temporarily stored within the receiver and this is
done using a Vec data-structure which is a dynamically sized structure. This
means that the memory allocated to the program will continue to increase
as packets are received which can be problematic for embedded devices with
limited memory capacity. To limit this problem the implementation relies
on the limited number of possible universes in the protocol and only stores
a single universe of data for each waiting universe. This limits the max-
imum required space for this storage to 31.3MB + overhead which is not
a problem for any modern PC but is potentially a significant amount for
an embedded device. This means that the library is at risk of running out
of memory for some devices such as arduino [26] which are commonly used
for creating simple DIY embedded systems. This is only a risk on systems
which have a large number of universes being synchronised at once so the for
majority of usage cases where most universes aren’t synchronised and only

72

a few are synchronised at any one time this isn’t a problem. To avoid this
problem on an embedded system it is therefore required to keep the number
of universes being listened to ’low’ (other universe packets are discarded)
with ’low’ decided by the resources available (based on benchmarks etc.).
This potentially explains why the arduino implementation of sACN [7] does
not support universe synchronisation.

max possible universes× universe capacity = 63999 × 513B u 31.3MB

The library is based on the std-environment. This means the imple-
mentations utilises the standard rust crates to provide functionality such
as hash-maps and threads. This decisions means that the produced bi-
nary is potentially bigger than it otherwise might be and isn’t as tuned to
the specific application from the perspective of performance. These costs
come at an advantage however as re-using standard libraries means that
the required features don’t have to be re-implemented from scratch. This
limits the testing required and reduces the chance of bugs as the existing
implementations are already widely used and tested. It also reduces the de-
velopment time required significantly which was vital to allow this project
to be completed within the time-allowed. It would not have been possible
to create the library within the given-time without utilising at least some
existing libraries/implementations such as std.

The receiver uses a single threaded design with the timeout for all source
+ universe sequence numbers being checked when any sequence number is
checked. As every source/uni combination is checked every-time a sequence
number is checked this comes with a performance hit as they all must be
visited each time. This is required because otherwise a source which has
completely stopped transmitting on a universe and for which the termina-
tion packets are lost would never be removed from the sequence numbers
and would take up space on the receiver continuously which is problematic
for embedded devices. While not used within this implementation an alter-
native strategy could be to only check time-outs occasionally (say every 5
sequence number checks) or to have the timeout checks be done periodically
based on a time interval. This would reduce the number of checks required
and therefore theoretically increase performance at the cost of having dead-
universe and source sequence numbers stored longer than is required.

The fuzzer test outcomes highlight an area of potential improvement,
this would involve using the generated packets which caused the crashes to
track the problematic code and introduce fixes to lead to a more robust
and fault-tolerant parsing system. There wasn’t sufficient time to do this in
any significant depth within this project however this is a potential area for
further work.

73

Couldn’t show that the receiver worked with universe synchronisation
or discovery. This is because the real-world sACN sender used (Avolites
Titan) does not support it. Ideally another source would have been used
however an initial inspection found none that did support it that could be
used. If there had been time a test program could have been written using
a library in another programming language and this used however there was
insufficient time to learn, write and test an entirely new library in another
language so that it could be used for this test.

13 Conclusions

An implementation was successfully created with supports the ANSI E1.31-
2018 sACN protocol in the Rust programming language including the newer
(2016 onwards) features of universe synchronisation and universe discovery.
This implementation was extensively tested from the perspective of both
correctness within itself and for compliance and interoperability with the
protocol and other compliant devices. The implementation provides sup-
port for most of the non-functional requirements specified at the start by
supporting IPv4, IPv6, Unicast, Multicast, Broadcast, Windows and Linux.
The biggest drawback to the implementation as it stands is the lack of IPv6
multicast support on the receiver side in Windows.

For future work there are two directions to propose taking the project in.
The first is from the perspective of continuing to increase the library support
itself, this could take the form of supporting more devices but I believe the
next step to look at is integrating the features of ANSI E1.33 (RDMnet) into
the library. This is because driven by support from major companies such
as ETC the features provided by E1.33 are likely to be become a major part
of the lighting over IP eco-system in the next few years. Rust does not have
any implementation of E1.33 public-ally available so if extended the library
would be the only library with support. The other direction is in using
the library to make devices/software for usage with sACN. Rust provides a
high level of performance while maintaining many safety guarantees which
would make it an ideal language to create show critical high performance
lighting control software that is robust and usable on multiple platforms. By
creating this library it opens the door to the development of this software
in the language and the potential benefits this brings.

74

14 Appendices

After the references more appendices are appended to show more details
of the project. These documents are referred to as relevant throughout
the report and attached so that they are all within one report file. The
documents are also included as separate files within the project resources
submission.

14.1 User Manual

The details of how to run the various tests, demo-programs and examples
are described in the ”usage.pdf” file (the ”usage” appendix). Installation
instructions are detailed within the README file.

The core part of this project was the sACN library created. This library
is packaged as a rust cargo crate and therefore can be imported using a local
import as demonstrated in the ’demo src’ and ’demo rcv’ programs. After
this project is complete the project will hopefully be uploaded to the public
rust cargo repository which would allow much easier installation through
the cargo tool-chain and fetch mechanism.

Usage of the library is described in the generated rust-doc documen-
tation. Once the project is complete this would also be bundled with the
library in the public cargo repo to allow easier access however as that cannot
be done until after this project is marked the documentation is included in
the sacn subfolder of the Code Documentation folder. Within this folder
the documentation can be opened as a web-page by opening the index.html
file. This documentation contains details of the functionality of public and
private functions as-well as the possible returned errors, examples of the
code in usage and also includes the ’demo src’ and ’demo rcv’ crates. As
this documentation includes private code it the web-pages are bigger than
they would normally be but it was decided that for the purposes of submis-
sion the full documentation was more suitable. In actual usage an external
user of the library would normally just compile the documentation using the
same command (as detailed within usage.pdf) but without the ”–document-
private-items” argument so that only the public documentation is generated.
The private documentation is then for those who are developing the library
itself.

To check that the documentation contains the right information it was
compared to the documentation for another sACN library [6] and this is
summarised in the table in figure 31.

75

Figure 31: A table showing a comparison between the documentation of
another sACN library [6] and this project, green indicates that the area is
covered

References

[1] ANSI E1.17 - 2015 Entertainment Technology - Architecture for Control
Networks, CP/2011-1007, 21 May 2015.

[2] User: lschmierer. (2018, April. 20). Streaming ACN implemen-
tation for Rust [Online, Accessed: September 2019]. Available:
https://github.com/lschmierer/sacn

[3] ANSI E1.31 - 2018 Entertainment Technology Lightweight streaming
protocol for transport of DMX512 using ACN, CP/2014-1009r6a, 7
November 2018.

[4] ANSI E1.11 - 2008 (R2018) Entertainment Technology - USITT
DMX512-A Asynchronous Serial Digital Data Transmission Stan-
dard for Controlling Lighting Equipment and Accessories, CP/2007-
1013r3.1, 31 May 2018.

[5] User: shabaz. (2017, Aug. 24). DMX Explained;
DMX512 and RS-485 Protocol Detail for Lighting Ap-
plications [Online, Accessed: 17/09/2019]. Available:
https://www.element14.com/community/groups/open-source-
hardware/blog/2017/08/24/dmx-explained-dmx512-and-rs-485-
protocol-detail-for-lighting-applications

[6] User: hhromic. (2020, Jan. 4). libE131: a lightweight C/C++ library for
the E1.31 (sACN) protocol [Online, Accessed: 17/09/2019]. Available:
https://github.com/hhromic/libe131

76

[7] User: forkineye. (2017, Aug. 11). E1.31 (sACN) library for Arduino
with ESP8266 support [Online, Accessed: 21/04/2020]

[8] User hhromic. (2018, Dec. 16). Node.js client/server library for the
E1.31 (sACN) protocol [Online, Accessed: 21/04/2020]. Available:
https://github.com/hhromic/e131-node

[9] User: Hundemeier. (2019, Dec. 7). A simple ANSI E1.31 (aka
sACN) module for python. [Online, Accessed: 21/04/2020]. Available:
https://github.com/Hundemeier/sacn

[10] Open Lighting Project. (Unknown). Open Lighting Ar-
chitecture. [Online, Accessed: 21/04/2020]. Available:
https://www.openlighting.org/ola/

[11] Rust Team. (Unknown). Rust Programming Language. [Online, Ac-
cessed: 17/09/2019]. Available: https://www.rust-lang.org/

[12] Art-Net 4 Protocol Release V1.4, Document Revision 1.4dd, 22 Jan
2017.

[13] L. Schmierer. (Unknown). sacn - Rust [Onlinee, Accessed: 26/01/2020].
Available: https://docs.rs/sacn/0.4.4/sacn/index.html

[14] American National Standard E1.31- 2009 Entertainment Technology –
Lightweight streaming protocol for transport of DMX512 using ACN,
CP/2006-1020r3 Revision 0.46, 23 October 2008.

[15] ANSI E1.31 — 2016 Entertainment Technology Lightweight streaming
protocol for transport of DMX512 using ACN, CP/2014-1009r1, 11
October 2016.

[16] S. Blair, D. Fleenor, S. Newton. (Unknown). What Comes
After Streaming DMX Over ACN? [Online, Accessed:
26/01/2020]. Available: http://www.rdmprotocol.org/files/
What Comes After Streaming DMX over ACN %20%284%29.pdf

[17] ANSI E1.33 (RDMnet) Message Transport and Management for ANSI
E1.20 (RDM) compatible and similar devices over IP Networks,
CP/2010-1032r8 Revision 82, 9 Feb 2019.

[18] ETCLabs. (2020, Apr. 6). Implementation of ANSI
E1.33 [Online, Accessed: 26/01/2020]. Available:
https://github.com/ETCLabs/RDMnet

[19] ANSI E1.20 - 2010 Entertainment Technology—RDM Remote Device
Management Over DMX512 Networks, CP/2009-1017r2, 4 Jan 2011.

77

[20] ETC. (Unknown). About Us [Online, Accessed: 26/01/2020]. Available:
https://www.etcconnect.com/About/

[21] Unknown. (Unknown). Rust versus C gcc fastest programs [On-
line, Accessed: 28/01/2020] Available: https://benchmarksgame-
team.pages.debian.net/benchmarksgame/fastest/rust.html

[22] N. Heath. (2019, Jan. 9) Rust programming language: Seven reasons
why you should learn it in 2019 [Online, Accessed: 21 Apr 2020].
Available: https://www.techrepublic.com/article/rust-programming-
language-seven-reasons-why-you-should-learn-it-in-2019/

[23] Unknown. (Unknown) SDLC - Waterfall Model
[Online, Accessed: 01/01/2020] Available:
https://www.tutorialspoint.com/sdlc/sdlc waterfall model.htm

[24] A Standard for the Transmission of IP Datagrams over Ethernet Net-
works, Network Working Group Request for Comments: 894, April
1984.

[25] Unknown. (Unknown). No stdlib [Online, Accessed: 11/03/2020]. Avail-
able: https://doc.rust-lang.org/1.7.0/book/no-stdlib.html

[26] Arduino. (Unknown). Memory [Online, Accessed: 11/03/2020]. Avail-
able: https://www.arduino.cc/en/tutorial/memory

[27] Unknown. (Unknown). Macro std::try [Online, Accessed: 12/03/2020].
Available: https://doc.rust-lang.org/std/macro.try.html

[28] Rust-lang-nursery. (2020, Mar. 25). Error boilerplate for Rust [On-
line, Accessed: 12/03/2020]. Available: https://github.com/rust-lang-
nursery/error-chain

[29] Wireshark Foundation. (Unknown). Wireshark [Online, Accessed:
12/03/2020]. Available: https://www.wireshark.org/

[30] User: docsteer. (Unknown). sACNView [Online, Accessed:
12/03/2020]. Available: https://sacnview.org/

[31] User: docsteer. (Unknown). Installing sACNView [Online, Accessed:
12/03/2020]. Available: https://sacnview.org/documentation.html

[32] Vectorworks, Inc. (2020). Vision [Online, Accessed: 12/03/2020]. Avail-
able: https://www.vectorworks.net/en-GB/vision

[33] Avolites. (Unknown). Titan Mobile [Online, Accessed: 12/03/2020].
Available: https://www.avolites.com/product/titan-mobile/

78

[34] IANA Guidelines for IPv4 Multicast Address Assignments,
IETF RFC 5771, March 2020.

[35] Administratively Scoped IP Multicast, Network Working Group RFC:
2365, July 1998.

[36] IP Version 6 Addressing Architecture, Network Working Group RFC:
4291, February 2006.

[37] Unknown. (Unknown). Unit Testing [Online, Accessed: 06/04/2020]
Available: http://softwaretestingfundamentals.com/unit-testing/

[38] Mozilla. (2020, Apr. 21). Rust tool to collect and aggregate code cover-
age data for multiple source files [Online, Accessed: 06/04/2020] Avail-
able: https://github.com/mozilla/grcov

[39] M. Fowler. (2012, Apr. 17). TestCover-
age [Online, Accessed: 21/04/2020] Available:
https://martinfowler.com/bliki/TestCoverage.html

[40] Rust-Fuzz (2020, Apr. 18). Fuzzing Rust code with american-fuzzy-lop
[Online, Accessed: 08/04/2020] Available: https://github.com/rust-
fuzz/afl.rs

[41] Unknown. (Unknown). Fuzzing with afl.rs [Online, Accessed:
08/04/2020] Available: https://rust-fuzz.github.io/book/afl.html

[42] Unknown. (Unknown). 5.7. Exporting Data
[Online, Accessed: 08/04/2020] Available:
https://www.wireshark.org/docs/wsug html chunked/ChIOExportSection.html

[43] Unknown. (Unknown). Data Races and Race Conditions
[Online, Accessed: 20/04/2020] Available: https://doc.rust-
lang.org/nomicon/races.html

[44] A. Crichton. (Unknown). Crate net2 [Online, Accessed: 21/04/2020]
Available: https://docs.rs/net2/0.2.33/net2/

[45] A. Crichton. (Unknown). Crate socket2 [Online, Accessed: 21/04/2020]
Available: https://docs.rs/socket2/0.3.12/socket2/

[46] Unknown. (Unknown). Struct std::sync::Arc [Online,
Accessed: 21/04/2020] Available: https://doc.rust-
lang.org/std/sync/struct.Arc.html

79

14.2 Packet-Structure

ANSI E1.31-2018 sACN Packet Structure

Preamble Size
Octet

0 Post-amble Size
2 bytes

ACN Packet Identifier, Has a fixed static value of 0x41 0x53 0x43 0x2d 0x45 0x31 0x2e 0x31 0x37 0x00 0x00 0x00
16

Flags and Length16

2 bytes 12 bytes

Diagram inspired by layout used in Fig. 5. ICMP packet structure from Determining proximal geolocation of IoT edge devices via covert channel
- Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/ICMP-packet-structure_fig5_316727741 [accessed 20 Apr, 2020]

16 bytes (all packets to scale unless otherwise noted)

2 bytes
ACN Root Vector

4 bytes
Sender CID

... Sender CID (cont)

10 bytes, 16 bytes total

32
6 bytes, 16 bytes total 38

32
Base ACN

Packet Header
Shared By All
ACN Packets

Shows the packet is part
of ACN (ANSI E1.17)The preamble is the size of the packet upto the end of the ACN packet identifier

and so is always 16 bytes. The post-amble size is always 0x00.

The sender CID is a unique identifier for the sender, the protocol
provides no mechanism to guarantee this is unique however.

Identifies the type of packet, for sACN it is
either a data packet or an 'extended' packet

(synchronisation or discovery)

Key
Grey boxes and arrows are added explanation

Bold numbers show the next octet index (start at 0)
Colours within the diagram refer to specific explanation in the same colour.

The Flags and Length field appears frequently throughout
the packet structure, the field contains 2 parts. The flags
which are the upper 4 bits and for sACN is always 0x7.
The length is the bottom 12 bits and is the length of the
rest of the packet in bytes including the flags and length
field.

Octet
ANSI E1.31

Framing Layer
for a

Synchronisation
Packet

Synchronisation Packet Framing Layer

Flags and Length
2 bytes

38 Framing Layer Vector
4 bytes

Identifies this framing layer as the framing layer for a
synchronization packet by containing the constant value
of VECTOR_E131_EXTENDED_SYNCHRONIZATION

Seq No
1 byte

Synchronisation Addr
2 bytes

Reserved
2 bytes 49

The sequence number field
(described in more detail in report body)

The sychronisation address that this
synchronisation packet is triggering

Reserved space which is ignored by receivers
and transmitted as 0's by senders.

Discovery Packet Framing Layer
Octet

Flags and Length
2 bytes

38 Framing Layer Vector
4 bytes

Identifies this framing layer as the framing layer for a
discovery packet by containing the constant value of
VECTOR_E131_EXTENDED_DISCOVERY

Source Name
10 bytes, 64 bytes total

The human-readable source name of the sender which transmitted
the discovery packet. Encoded as a UTF-8 string that must be

null terminated.
ANSI E1.31

Framing Layer
for a Universe

Discovery
Packet

... Source Name (cont.)
16 bytes, 64 bytes total

... Source Name (cont.)
16 bytes, 64 bytes total

... Source Name (cont.)
16 bytes, 64 bytes total

... Source Name (cont.)
6 bytes, 64 bytes total

54

70

86

102

102

86

70

54

Reserved
4 bytes 112

Universe Discovery Packet Discovery Layer

End of Syncronisation
Packet

ACN Packet Root Layer

Octet
Flags and Length

2 bytes
112 Discovery Layer Vector

4 bytes

Identifies this universe discovery packet discovery layer
as containing a universe discovery universe list.

Page
1 byte

L-Page
1 byte

Page: The page number of this discovery packet.
L-Page: The last page expected as part of this universe discovery list.

This is used as part of the universe discovery fragmentation mechanism
to split universe discovery lists over multiple packets as described in more
detail in the report. The last page field indicates the number of the last page
expected as part of the fragmented universe discovery list.

List of universes. NOT TO SCALE
Variable between 0 and 1024 bytes Inclusive Max 1144

ANSI E1.31
Universe
Discovery
Packet

Discovery
Layer

The list of universes within this discovery packet. Each universe is expressed
as a Network Byte Order (Big Endian) unsigned 16-bit value. The universe list
must be numerically ordered. It doesn't specify within ANSI E1.31-2018 the
ordering required so assumed to be ascending order.

Data Packet Framing Layer
Octet

Flags and Length
2 bytes

38 Framing Layer Vector
4 bytes

Identifies this framing layer as an E1.31 data packet
framing layer by containing the constant value
VECTOR_E131_DATA_PACKET

Source Name
10 bytes, 64 bytes total

The human-readable source name of the sender which transmitted
the data packet. Encoded as a UTF-8 string that must be

null terminated.

ANSI E1.31
Framing Layer

for a data packet... Source Name (cont.)
16 bytes, 64 bytes total

... Source Name (cont.)
16 bytes, 64 bytes total

... Source Name (cont.)
16 bytes, 64 bytes total

... Source Name (cont.)
6 bytes, 64 bytes total

54

70

86

102

102

86

70

54

End of Discovery
Packet

Priority
1 byte

Synchronisation Addr
2 bytes

Seq No
1 byte

Options
1 byte

Universe Number
2 bytes 115

The priority of this packet
as an unsigned 8 bit number

that must be in the range 0 to
200 inclusive. A priority of 200

is the highest priority and 0 is the
lowest.

The synchronisation address of
this data packet, this is 0 if the
data packet is unsynchronised.

The options field which is split into 8 bits.
The highest bit (bit 7) indicates if the packet
is marked as preview data. Bit 6 indicates
if the packet is a termination packet. Bit 5
indicates if the receiver should switch to
force synchronisation mode.

The universe that this data packet
is meant for. An unsigned network byte

order 16 bit number.

Data Packet DMP Layer
Octet

Flags and Length
2 bytes

115
1 byte

Identifies this data packet DMP layer as
containing set property data.
Uses constant
VECTOR_DMP_SET_PROPERTY.

ANSI E1.31
Framing Layer

for a data packet

MAX 638
Vector

1 byte
Addr T 1st Property Addr

2 bytes
Addr Increment

2 bytes
Property Value Count

2 bytes
Property Values, NOT TO SCALE

The address of the first
property value in the
property values data field.
Always 0x0000 in E1.31-
2018 data packets.

The size of each property
value, always 0x0001 in
E1.31-2018 data packets
to indicate each property
has a 1 byte length.

The number of properties
within the property values
field. Is always at least
0x0001 as all packets
contain at least a start-
code. Max value of
0x0201 as 513 maximum
property values per data
packet.

The actual data +
start-code. Length
up to 513 bytes.

Variable between 1 and 513 bytes
inclusive

The Address Type & Data Type Field. Indicates the format
of the address and data. Always 0xa1 for ANSI E1.31-2018

data packets.

End of Data
Packet

General Packet Structures (Not to Scale)
ACN Packet Root Layer Data Packet

Synchronisation Packet

Discovery Packet

ACN Packet Root Layer

ACN Packet Root Layer

Data Packet Framing Layer

Synchronisation Packet Framing Layer

Discovery Packet Framing Layer

Data Packet DMP Layer

Universe Discovery Packet Discovery Layer

14.3 Synchronisation Mechanism

Receiver

Library

Application
Utilising
Library

Uni 1, Sync 0
Data Packet

Data with a zero synchronisation address is
unsynchronised and therefore is immediately
passed from the library upto the application.

Receiver

Library Application
Utilising
Library

Uni 1, Sync 1
Data Packet

More data for other universe with sync address
> 0 is received and therefore held by the library.

Uni 2, Sync 1
Data Packet
Uni 3, Sync 2
Data Packet

Receiver

Application
Utilising
Library

Uni 1, Sync 1
Data Packet

If data is received that is unsynchronised it is
still passed through the Library as normal.

Uni 2, Sync 1
Data Packet
Uni 3, Sync 2
Data Packet

Uni 1, Sync 0
Data Packet

Library

Uni 4, Sync 0
Data Packet

Data waiting for synchronisation
is discarded if a packet for that

same universe arrives.

Receiver

Application
Utilising
Library

Uni 2, Sync 1
Data Packet
Uni 3, Sync 2
Data Packet

Library

If data arrives for the same universe but a
different synchronisation address then the previous

data is discarded

Uni 2, Sync 3
Data Packet

Receiver

Application
Utilising
Library

Uni 3, Sync 2
Data Packet

Library

If data arrives for the same universe and
synchronisation address then the previous data is

discarded or optionally merged using a user defined function.

Uni 2, Sync 3
Data Packet

Uni 2, Sync 3
Data Packet

Receiver

Application
Utilising
Library

Uni 3, Sync 2
Data Packet

Library

Synchronisation packets trigger all data packets
waiting for that synchronisation address (note the

sync packet itself isn't passed on).

Uni 2, Sync 3
Data Packet

Sync 2
Sync Packet

Receiver

Application
Utilising
Library

Library

Synchronisation packets may have no effect if no
data is waiting for the corresponding synchronisation

address

Uni 2, Sync 3
Data Packet

Sync 1
Sync Packet

Keeps waiting for the
corresponding synchronisation

packet

Receiver

Application
Utilising
Library

Library

Note that Universe discovery packets have no direct
effect on this mechanism and cannot be synchronised

Uni 2, Sync 3
Data Packet

Universe
Discovery

sACN Project Synchronisation Mechanism

Note that any source can
trigger synchronisation not

just the one that sent the data
originally

Key

This diagram runs through an example scenario of packets being
received to demonstrate how the project sACN receiver mechanism should behave.

Receiver The entire receiving program, split between the project Library
(what is being created) and the Application code which is utilising the library.

Uni 1, Sync 0
Data Packet

An sACN packet which has been received from the network,
Uni: refers to the data universe and Sync refers to the synchronisation address.

The dotted line shows the seperation between the library and the application code utilising
the library. Once a packet has crossed this dotted line it is out of the scope of this project.
The arrows show the movement of the packet information, so an arrow coming into the Library
represents a packet being received from the network and an arrow moving out of the library
represents the packet data being passed upto the application. No arrow on a packet shows that
the packet has been stored and is waiting.

Red indicates that the packet has been deleted

Orange indicates that a packet has been combined with another packet through a merge.

The scenario below follows a story board style going from left to right and top to bottom.
The number in bold indicates the current position in the scenario with the numbers increasing sequentially
starting at 1.

1.

3. 4.

Receiver

Library

Application
Utilising
Library

Uni 1, Sync 1
Data Packet

Data with a synchronisation address > 0 is
synchronised and so therefore is held by the

library.
2.

5. 6.

7. 8.

Grey Arrows Indicate Explanation

9.

14.4 Discovery Mechanism

Receiver

Library

Application
Utilising
Library

P: 0, LP: 0,
SRC: 1

A universe discovery packet with a page of 0, an
LP of 0, this is already a complete list so is

avaliable immediately.

sACN Project Discovery Mechanism

Key

This diagram runs through an example scenario of packets being
received to demonstrate how the project sACN receiver mechanism should behave.

Receiver The entire receiving program, split between the project Library
(what is being created) and the Application code which is utilising the library.

P: 0, LP: 1,
SRC: 1

An sACN discovery packet that has been received from the network. 'P' refers to the page
of the packet, 'LP' refers to the last expected page and 'src' refers to the sACN source.

The dotted line shows the seperation between the library and the application code utilising
the library. Once a discovered source + universe list has crossed this dotted line it is ready to be
used but if it isn't accessed in time it might be removed if it times out.
The arrows show the movement of the packet information, so an arrow coming into the Library
represents a packet being received from the network and an arrow moving out of the library
represents the packet data being passed up to the application. In this case passed up to the
application may mean that the user can access the data but they may not have yet.
No arrow coming from a packet shows that the packet has been stored and is waiting.

Red indicates that a packet has been deleted.

The scenario below follows a story board style going from left to right and top to bottom.
The number in bold indicates the current position in the scenario with the numbers increasing sequentially
starting at 1.

1.

Receiver

Library

Application
Utilising
Library

P: 0, LP: 1,
SRC: 2

The first part of a universe discovery list is
received, as it is not complete it waits

2.

P: 0, LP: 1,
SRC: 2

Receiver

Library Application
Utilising
Library

P: 0, LP: 1,
SRC: 2

The second part of the universe discovery list is
received and because the list is now complete
the entire list is now avaliable to the application

3.

P: 1, LP: 1,
SRC: 2

Receiver

Library Application
Utilising
Library

Pages can be received out of order, here the
second page is received first and waits.

4.

P: 1, LP: 1,
SRC: 2

Receiver

Library Application
Utilising
Library

The first page is then received completing the
list and triggering the complete universe

discovery list to be avaliable to the application
5.

P: 1, LP: 1,
SRC: 2

P: 0, LP: 1,
SRC: 2

Receiver

Library Application
Utilising
Library

Multiple sources can be sending discovery
packets simultaneously. Here 2 sources have

sent the first page.
6.

P: 0, LP: 1,
SRC: 2

P: 0, LP: 1,
SRC: 1

Receiver

Library Application
Utilising
Library

The last page for the list from source 1 is
received and the list is passed up.

7.

P: 0, LP: 1,
SRC: 2

P: 0, LP: 1,
SRC: 1

P: 1, LP: 1,
SRC: 1

Receiver

Library Application
Utilising
Library

If a required page isn't received eventually the
waiting page will timeout after waiting for

an E131_NETWORK_DATA_LOSS_TIMEOUT
8.

P: 0, LP: 1,
SRC: 2

The timeouts also apply to discovered sources,
if data is received from a source within an

E131_NETWORK_DATA_LOSS_TIMEOUT
then the discovered source is timed out and

should be removed from the list of discovered
sources.

14.5 ANSI E1.31-2018 Compliance Testing Check List

ANSI E1.31-2018 Protocol Compliance Checklist
Green = Passed, White = Not Checked, Purple = Outside Library Scope, Blue = Not Implemented/Attempted, Grey = Already covered by another point
Section of ANSI E1.31-2018 Specific functionality required for compliance, functionality listing ommitted or greyed out

if already checked in a previous section.
Test(s) which show compliance

1.2 Overview and Architecture - Allows transfer of arbitary START code DMX512-A data: test_send_recv_single_universe_alternative_startcode_multicast_ipv4,
test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6,
test_send_recv_single_universe_alternative_startcode_multicast_ipv6

- DMX data can be synchronized across multiple receivers using universe syncronisation: test_send_across_universe_multiple_receivers_sync_multicast_ipv4,
test_send_across_universe_multiple_receivers_sync_multicast_ipv6

- Uses a ACN wrapper meaning it is compatiable with devices following the ANSI E.1.17 [ACN]
standard:

test_sync_packet_transmit_format, test_discovery_packet_transmit_format,
test_data_packet_transmit_format

- Uses UDP as the transport/IP layer protocol: test_data_packet_transmit_format, test_sync_packet_transmit_format
- Supports multicast addressing: test_send_recv_single_universe_multicast_ipv6, test_send_recv_single_universe_multicast_ipv4
- Supports unicast addressing: test_send_recv_single_universe_unicast_ipv6, test_send_recv_single_universe_unicast_ipv4

1.3 Appropriate Use of This Standard - Uses UDP to provide a non-reliable IP transport mechanism:
- Allows multiple senders and receivers: test_three_senders_three_recv_multicast_ipv4, test_three_senders_three_recv_multicast_ipv6

1.4 Classes of Data Appropriate for Transmission - Allows transfer of arbitary START code DMX512-A data:
1.5 Universe Synchronization - Allows synchronisation through the universe synchronisation mechanism:
1.6 Universe Discovery - Allows universe discovery through the universe discovery mechanism: test_universe_discovery_one_universe_one_source_ipv4,

test_universe_discovery_one_universe_one_source_ipv6
3.5 Source - A source is uniquely identified by the CID in the header of the packet: Relies on library user to ensure CID's are unique, protocol doesn't specify a mechanism for this

- A source may send multiple streams of data for different universes: test_send_recv_two_universe_multicast_ipv4, test_send_recv_two_universe_multicast_ipv6
- Multiple sources may output data for a given universe: test_two_senders_one_recv_same_universe_no_sync_multicast_ipv4,

test_two_senders_one_recv_same_universe_no_sync_multicast_ipv6
3.6 Receiver - A receiever may listen on multiple universes: test_two_senders_one_recv_same_universe_no_sync_multicast_ipv4,

 test_two_senders_one_recv_same_universe_no_sync_multicast_ipv6
3.7 Active Data Slots - Sources for E1.31 should specify the location and amount of active data slots using the DMP

First Property Address and DMP Property Count fields (shown in Table 4-1):
data_parse_tests::test_data_packet_parse_pack, data_parse_tests::
test_malformed_data_packet_dmp_layer_too_low_property_count_parse, data_parse_tests::
test_malformed_data_packet_dmp_layer_too_high_property_count_parse,

3.8 E1.31 Data Packet - Identified by being transmitted with the VECTOR_E131_DATA_PACKET vector: data_parse_tests::test_data_packet_parse_pack, data_parse_tests::
test_malformed_data_packet_extended_acn_vector_parse, data_parse_tests::
test_malformed_data_packet_dmp_layer_wrong_vector_parse

3.9 E.31 Synchronization Packet - Contains only universe synchronisation information and no additional data: sync_parse_tests::test_synchronization_packet_parse_pack
- Identified by being transmitted with the VECTOR_E131_EXTENDED_SYNCHRONIZATION
vector:

sync_parse_tests::test_synchronization_packet_parse_pack, sync_parse_tests::
test_sync_packet_framing_layer_unknown_vector, sync_parse_tests::
test_sync_packet_framing_layer_discovery_vector

3.10 E1.31 Universe Discovery Packet - Identified by being transmitted with the VECTOR_E131_EXTENDED_DISCOVERY vector: discovery_parse_tests::test_discovery_packet_parse_pack, discovery_parse_tests::
test_discovery_packet_unknown_framing_vector_parse, discovery_parse_tests::
test_discovery_packet_sync_framing_vector_parse

4 Protocol Packet Structure Summary - E1.31 components must support the £1.31 Data Packet and E1.31. Universe Discovery Packet: test_send_recv_across_universe_multicast_ipv4,
test_send_recv_across_universe_multicast_ipv6,
test_universe_discovery_one_universe_one_source_ipv4,
test_universe_discovery_one_universe_one_source_ipv6

- E1.31 components may support the E1.31 synchronization packet:
4.1 E1.31 Data Packet - Data is formatted as specified in Table 4-1 data_parse_tests::test_data_packet_parse_pack

- Detection of malformed packets: data_parse_tests
- All packet content must be transmitted in network byte order (big endian): data_parse_tests

4.2 E1.31 Synchronization Packet - A universe can be used as a synchronisation universe and to transmit data on simultaneously: test_send_recv_across_universe_multicast_ipv4, test_send_recv_across_universe_multicast_ipv6
- Packet is formatted as specified in Table 4-2 sync_parse_tests::test_synchronization_packet_parse_pack
- Detection of malformed packets: sync_parse_tests
- All packet content must be transmitted in network byte order (big endian): sync_parse_tests

4.3 E1.31 Universe Discovery Packet - A set of universe discovery packets shall be sent once every
E131_UNIVERSE_DISCOVERY_INTERVAL:

test_universe_discovery_interval_ipv4

- The list of E1.31 universes must be sorted: test_discovery_packet_random_order_parse
- The list of universes may include synchronisation universes: test_universe_discovery_multiple_universe_one_source_ipv4
- If the list of universes changes within an E131_UNIVERSE_DISCOVERY_INTERVAL a source
may send upto one additional set of packets to update the information:

Source only sends updates on interval only:
test_universe_discovery_interval_with_updates_ipv4

- Packet is formatted as specified in Table 4-3 discovery_parse_tests::test_discovery_packet_parse_pack,
- Detection of malformed packets: discovery_parse_tests
- All packet content must be transmitted in network byte order (big endian): discovery_parse_tests

5 E1.31 use of the ACN Root Layer Protocol - All E1.31 packets should use the ACN Root Layer Protocol as defined in ANSI E1.17 [ACN]
specifically the fields specified in Table 5-4 which is for E1.31 on UDP.

data_parse_tests::test_data_packet_parse_pack, sync_parse_tests::
test_synchronization_packet_parse_pack, discovery_parse_tests::
test_discovery_packet_parse_pack,

- Detection of malformed packets:
5.1 Preamble Size - The preamble size field must be 0x0010: data_parse_tests::test_data_packet_parse_pack

- Packets with a different preamble size must be discarded: data_parse_tests::test_malformed_data_packet_wrong_preample_upper_byte_parse,
data_parse_tests::test_malformed_data_packet_wrong_preample_lower_byte_parse

- The preamble (preamble size field, post-amble size field and ACN packet identifier) length must
match the size given in the field (0x10 octets):

data_parse_tests::test_data_packet_parse_pack
data_parse_tests::test_malformed_data_packet_wrong_preample_upper_byte_parse,
data_parse_tests::test_malformed_data_packet_wrong_preample_lower_byte_parse

5.2 Post-amble Size - There is no post amble for RLP over UDP so the post-amble size field must be 0 and E1.31
receivers must discard packets if the post-amble size is not 0x0000.

data_parse_tests::test_malformed_data_packet_wrong_postample_upper_byte_parse,
data_parse_tests::test_malformed_data_packet_wrong_postample_lower_byte_parse

5.3 ACN Packet Identifier - The ACN packet identifier must be exactly 0x41 0x53 0x43 0x2d 0x45 0x31 0x2e 0x31 0x37 0x00
0x00 0x00 and must discard packets if the ACN packet identifier doesn't match above:

data_parse_tests::test_malformed_data_packet_wrong_acn_identifier_parse, data_parse_tests::
test_data_packet_parse_pack

5.4 Flags & Length - The PDU length must be encoded in the low 12 bits of the root layer flags and length field: test_malformed_data_packet_root_layer_too_low_length,
test_malformed_data_packet_root_layer_too_high_length

- The flags (top 4 bits) must be 0x7: test_malformed_data_packet_root_layer_wrong_flags
- The PDU length is computed started with octet 16 and counting all remaining octets in the packet
including all payload:

test_malformed_data_packet_root_layer_too_low_length,
test_malformed_data_packet_root_layer_too_high_length

- A ful payload data packet should have a length of 638 octets: test_data_packet_full_length_expected
- A synchronisation packet should have a length of 49 octets: test_sync_packet_length
- A universe discovery packet length should be computed to the end of the list of universes field: discovery_parse_tests

5.5 Vector The root layer vector must be VECTOR_ROOT_E131_DATA if the packet contains E1.31 data: test_data_packet_parse_pack, test_malformed_data_packet_unknown_acn_vector_parse,
test_malformed_data_packet_extended_acn_vector_parse

The root layer vector must be VECTOR_ROOT_E131_EXTENDED if the packet is for universe
discovery or synchronisation:

test_synchronization_packet_parse_pack, test_sync_packet_root_layer_data_vector_parse,
test_sync_packet_root_layer_unknown_vector_parse, test_discovery_packet_parse_pack,
test_discovery_packet_root_layer_unknown_vector_parse,
test_discovery_packet_root_layer_data_vector_parse

Receivers must discard a packet if the vector isn't one of the above
5.6 CID (Component Identifier) Must be a UUID - a universally unique identifier that is 128 bit number unique across space and

time:
Provided by the user of the library, not the responsibility of the library

The CID must be compliant with RFC 4122 [UUID]: Provided by the user of the library, not the responsibility of the library
A piece of equipment must maintain the same CID for its entire lifetime: Provided by the user of the library, not the responsibility of the library
Must be transmitted in network byte order (big endian): Provided by the user of the library, not the responsibility of the library

6.1 Flags & Length - Each framing layer must start with the flags & length field, The field must be 16 bit with the PDU
length encoded in the low 12 bits and 0x7 in the top 4 bits, The PDU length must be computed
starting with octet 38 and continue through the last octet provided by the underlying layer

test_malformed_data_packet_framing_layer_wrong_flags_parse,
test_malformed_data_packet_framing_layer_low_length_parse,
test_malformed_data_packet_framing_layer_high_length_parse,
test_sync_packet_framing_layer_wrong_flags_parse,
test_sync_packet_framing_layer_length_too_long_parse,
test_sync_packet_framing_layer_length_too_short_parse,
test_discovery_packet_framing_layer_wrong_flags_parse,
test_discovery_packet_framing_layer_length_too_short_parse,
test_discovery_packet_framing_layer_length_too_long_parse

- An E1.31 Data Packet with full payload must have a length of 638:
- An E1.31 Universe Discovery Packet must have a length between 120 and 1144 depending on
the list of universes:

test_discovery_packet_no_universes, test_discovery_packet_max_universe_capacity

6.2 E1.31 Data Packet Framing Layer - The packet must be formatted as specified in Table 6-5: data_parse_tests
6.2.1 E1.31 Data Packet: Vector - The E1.31 layer vector must be VECTOR_E131_DATA_PACKET for an E1.31 Data Packet test_data_packet_parse_pack, test_malformed_data_packet_framing_layer_wrong_vector_parse
6.2.2 E1.31 Data Packet: Source Name - The source name must be null-terminated: test_malformed_data_packet_source_name_not_null_terminated_parse,

test_data_packet_max_source_name_length_parse
- The source name of a component must match the UACN field as specified in EPI 19 [ACN]: Left to the user as source name is provided
- The source name may be the same across multiple universes sourced by the same component: Left to the user as source name is provided
- The source name should be unique: Left to the implementer / user-configuration as not specified in protocol how this should be done

6.2.3 E1.31 Data Packet: Priority - The most recent E1.31 Data Packet from a single source must supersede any previous packet
from that source:

This refers to how the data is treated on the device after the implementation since the
implementation parses the data and returns it to the user immediately (no background parsing).
The only time data waits is when waiting for synchronisation in which case the highest priority
packet is kept and if at the same priority then the latest packet.
test_store_2_same_universe_diff_priority_waiting_data,
test_store_2_same_universe_same_priority_waiting_data,
test_send_recv_diff_priority_same_universe_multicast_ipv4,
test_send_recv_two_packets_same_priority_same_universe_multicast_ipv4

- Data from sources with a higher priority (e.g. 200 vs 100) will be treated as the defininive data for
that universe.
- If the E1.31 receiver is also doing universe syncronisation then the behaviour is undefined:

- A receiver may receive data for the same universe from multiple sources which is distinguished
by examining the CID in the packet:

test_two_senders_one_recv_same_universe_no_sync_multicast_ipv4,
test_two_senders_one_recv_same_universe_no_sync_multicast_ipv6

6.2.3 E1.31 Data Packet: Priority

- The priority field must be in the range 0 to 200 test_data_packet_lowest_priority_parse, test_malformed_data_packet_too_high_priority_parse,
test_send_above_priorty

6.2.3.1 Multiple Sources at Highest Priority - If there are multiple sources transmitting data at the same highest currently active priority for a
given universe then this must be handled:

test_two_senders_one_recv_same_universe_custom_merge_fn_sync_multicast_ipv4

- If a receiver is only capable of processing a certain number of sources of data it will encounter a
sources exceeded condition when a greater number of sources are present:

Left to implementer to decided the number of sources allowed, provided as an argument when
creating receiver.
test_receiver_sources_exceeded_3, test_receiver_source_limit_2,
test_receiver_source_limit_2_termination_check

6.2.3.2 Note on Merge and Arbitration Algorithms - Allow various merging algorithms for combining data from multiple sources: User can provide an alternative merge function for the part within the implementation (during
synchronisation)
test_two_senders_one_recv_same_universe_custom_merge_fn_sync_multicast_ipv4

6.2.3.3 Note on Resolution of Sources Exceeded Condition - Various possible resolution mechanisms should be possible: Left to the implementer, dependent on computational resources avaliable, not limited by library
- Resolution mechanisms are recommended to not generate different results from the same source
combination on different occasions as it can make troubleshooting more difficult:

6.2.3.4 Requirements for Merging and Arbitrating - The ability to merge/arbitrate between multiple sources, the maximum number of sources which
can be handled and the algorithm used should all be declared in user documentation for the
device:

6.2.3.5 Requirements for Sources Exceeded Resolution - The resolution behaviour for equipment to resolve a source exceeded condition should be
specified in the user documentation:

Left to the implementer, dependent on specific device
- The sources exceeded condition is highly recommended to be easily detected at the device
aswell as potentially through the network:

6.2.3.6 Requirements for Devices with Multiple Operating Modes - All different operating modes for a device should be compliant with the standard or or non-
compliant configurations should be clearly declared as such. This library aims to be compliant however the device might have other modes

6.2.4.1 Synchronization Address Usage in an E1.31 Data Packet - A synchronisation address of value 0 indicates that the data isn't synchronised meaning any
waiting data must be discarded and the data acted on immediately.

test_send_recv_sync_then_nosync_packet_same_universe_multicast_ipv4

- A nonzero synchronization address means that the data is synchronised, if the receiever doesn't
support universe synchronisation the packet should be processed normally: Doesn't apply as the implementation supports universe synchronisation.
- A nonzero synchronisation address means that the data packet should be held until the arrival of
the corresponding E1.31 synchronisation packet to release it:

test_send_across_universe_multiple_receivers_sync_multicast_ipv4,
test_send_across_universe_multiple_receivers_sync_multicast_ipv6

- A receiver must not synchronise any data until it has receieved its first E1.31 synchronisation
packet on the synchronisation address:

6.2.5 E1.31 Data Packet: Sequence Number - Sources must maintain a sequence number for each universe transmitted:

test_track_data_packet_seq_numbers

- The sequence number should be incremented by one for each packet sent on the universe:

6.2.6 E1.31 Data Packet: Options - The most significant bit is the Preview_Data, when set to 1 this means that the data is intended
for use that doesn't affect the live output e.g. for visualisers or media server preview applications:

test_preview_data_2_receiver_1_sender

- The Stream_Terminated bit (2nd most significant) triggers the termination of a stream or universe
synchronisation without waiting for timeout and to indicate that the termination is not due to a fault
condition. When set to 1 the source of data for the universe specified has terminated transmission
of the universe:

test_termination_packet_empty_property_values_parse,
test_termination_packet_partial_property_values_parse,
test_termination_packet_full_property_values_parse

- A source should send three packets when terminating the universe source: test_terminate_stream
- A receiver should enter network data loss condition when a packet with the stream terminated bit
is set:

test_receiver_source_limit_2_termination_check

- A receiver should ignore any property values in a packet with the stream termination bit set: test_termination_packet_empty_property_values_parse,
test_termination_packet_partial_property_values_parse,
test_termination_packet_full_property_values_parse

- The Force_Synchronisation bit (3rd most significant) says how a receiver should handle the loss
of synchronisation, if set to 0 then on synchronisation loss the reciever must not update / process
any new packets until syncronisation is re-established / resumes:

Not implemented as part of the project

- If the Force_Synchronisation bit is set to 1 then if synchronisation is lost receivers may continue
to process new E1.31 data packets without having to wait for synchronisation to resume / re-
etablish:

Not implemented as part of the project

- The least significant 5 bits of the field are reserved for future use and must be transmitted as 0: test_data_packet_transmit_format
- The least significant 5 bits of the field should be ignored by receivers: test_data_packet_options_bit_4_set_parse, test_data_packet_options_bit_3_set_parse,

test_data_packet_options_bit_2_set_parse, test_data_packet_options_bit_1_set_parse,
test_data_packet_options_bit_0_set_parse

6.2.7 E1.31 Data Packet: Universe - Universe values must be in the range 1 to 63999 inclusive, other universe values are reserved for
future use and must not be used except for the E131_DISCOVERY UNIVERSE:

test_malformed_data_packet_too_low_universe_parse,
test_malformed_data_packet_too_high_universe_parse, test_register_min_universe,
test_register_max_universe, test_register_discovery_universe,
test_register_above_max_universe, test_register_below_min_universe

- The E131_DISCOVERY_UNIVERSE: is used for universe discovery: test_discovery_packet_transmit_format
6.3 E1.31 Synchronization Packet Framing Layer - The synchronisation packet framing layer must conform to Table 6-6: sync_parse_tests

6.3.1 E1.31 Synchronization Packet: Vector - The E1.31 layer vector must have a value of VECTOR_E131_EXTENDED_SYNCHRONIZATION
for an E1.31 Synchronization Packet:

6.3.2 E1.31 Synchronization Packet: Sequence Number - Sources must maintain a sequence number for each universe transmitted:

test_track_sync_packet_seq_numbers- The sequence number should be incremented by one for each packet sent on the universe:
6.3.3.1 Synchronization Address Usage in an E1.31 Synchronization
Packet

- A synchronisation packet with a synchronisation address of 0 is meaningless as the entire
purpose of the packet is to be used for universe synchronisation so should never be transmitted:

test_sync_addr_0

- A synchronisation packet with a synchronisation address of 0 should be ignored by receievers: test_sync_packet_too_low_sync_addr
- When sending via multicast synchronisation packets must be sent only to the address
corresponding to the synchronisation address: test_sync_packet_multicast_address
- Receievers may ignore synchronization packets sent to multicast address not corresponding to
synchronisation addresses:

This implementation does not ignore packets sent to the wrong multicast universe.
test_send_recv_wrong_multicast_universe

6.3.4 E1.31 Synchronization Packet: Reserved - Octets 47-48 of a E1.31 Synchronisation packet are reserved for future used and must be
transmitted as 0: test_sync_packet_transmit_format
- Octets 47-48 of a E1.31 Synchronisation packet must be ignored by receievers: test_sync_packet_arbitary_reserved

6.4 E1.31 Universe Discovery Packet Framing Layer - Packets must be formatted as specified in Table 6-7: discovery_parse_tests
6.4.1 E1.31 Universe Discovery Packet: Vector - E1.31 Universe Discovery Packets must have the E1.31 layer vector set to

VECTOR_E131_EXTENDED_DISCOVERY:
6.4.2 E1.31 Universe Discovery Packet: Source Name - The source name must be null-terminated:

- The source name of a component must match the UACN field as specified in EPI 19 [ACN]:
- The source name may be the same across multiple universes sourced by the same component:
- The source name should be unique: Left to the implementer / user-configuration

6.4.3 E1.31 Universe Discovery Packet: Reserved - Octets 108-111 of the E1.31 Universe Discovery Packets are reserved for future use and must be
transmitted as 0: test_discovery_packet_transmit_format
- Octets 108-111 of the E1.31 Universe Discovery Packets must be ignored by receievers: test_discovery_packet_arbitary_reserved_parse

6.5 Processing by Receivers - Receievers must discard packets if the receieved value is not VECTOR_E131_DATA_PACKET,
VECTOR_E131_EXTENDED_SYNCHRONIZATION or
VECTOR_E131_EXTENDED_DISCOVERY:

test_discovery_packet_unknown_framing_vector_parse,
test_sync_packet_framing_layer_unknown_vector,
test_malformed_data_packet_framing_layer_wrong_vector_parse

- Receivers that do not support universe synchronisation may ignore packets with
VECTOR_E131_EXTENDED_SYNCHRONISATION:

Doesn't apply as implementation supports universe synchronisation.

6.6.1 Transmission Rate - E1.31 sources must not transmit packets for a given universe number at a rate which exceeds
the maximum refresh rate specified in E1.11 [DMX] unless configured by the user to do so:

Left to the implementation using the library

- E1.11 places special restrictions on the maximum rate for alternate START Code packets in
Section 8.5.3.2:

6.6.2 Null START Code Transmission Requirements in E1.31 Data
Packets

- Transmission of Null START code data should only be done when it changes:
- Before entering this period of transmission suppression three packets of the values should be
sent:
- During transmission suppression a single keep-alive packet should be transmitted at intervals of
between 800mS and 1000mS, each keep-alive packet should have identical content to the last Null
START Code data packet sent (but with sequence number still incremented normally):
- These requirements do not apply to alternate START code data:

6.7.1 Network Data Loss - Network data loss is a conditional defined as the absence of reception of E1.31 packets from a
given source for a period of E131_NETWORK_DATA_LOSS_TIMEOUT:

test_source_1_universe_timeout

- or the receipt of a packet containing the options field Stream_Terminated set to 1:
- Data loss is specific to a universe not a source, a specific universe is considered disconnected on
data loss:

test_source_2_universe_1_timeout

6.7.1.1 Network Data Loss and Universe Discovery - Sources experiencing a network data loss condition must reflect the change in the E1.31
Universe discovery list of universes no later than 2 E131_UNIVERSE_DISCOVER_INTERVAL's

Left to the implementation using the library to de-register a source that it is no longer sending on
because it has lost its upstream source of data

6.7.2 Sequence Numbering - Receivers that do not support sequence numbering of packets should ignore these fields: Sequence numbering is supported, see below
- Receivers that support sequence numbering should evaluate sequence numbers seperately for
each E1.31 packet type and within each packet type seperately for each universe: test_sequence_number_packet_type_independence, test_data_packet_sequence_number_universe_independence, test_sync_packet_sequence_number_universe_independence
- Receivers should process packets in the order received unless the sequence number of the
packet receieved minus the sequence number of the last accepted sequence number is less than
or equal to 0 but greater than -20:

test_data_packet_sequence_number_below_expected,
test_sync_packet_sequence_number_below_expected,
test_data_packet_sequence_number_exhaustive,
test_sync_packet_sequence_number_exhaustive

7 DMP Layer Protocol - DMP data should only appear in E1.31 Data Packets and not E1.31 Sync or Discovery packets sync_parse_tests, discovery_parse_tests
- The DMP data should be formatted as specified in Table 7-8 data_parse_tests

7.1 DMP Layer: Flags & Length - The PDU length is encoded at the low 12 bits: test_malformed_data_packet_dmp_layer_too_high_length_parse,
test_malformed_data_packet_dmp_layer_too_low_length_parse

- 0x7 must appear in the top 4 bits: test_malformed_data_packet_dmp_layer_wrong_flags_parse
- The DMP layer PDU length is computed starting at octet 115 and ends including the last value in
the DMP PDU (octet 637 for a full payload):

test_malformed_data_packet_dmp_layer_too_high_length_parse,
test_malformed_data_packet_dmp_layer_too_low_length_parse

7.2 DMP Layer: Vector - The DMP layer vector must be set to VECTOR_DMP_SET_PROPERTY, receivers should
discard packets if the receieved value is not VECTOR_DMP_SET_PROPERTY:

test_malformed_data_packet_dmp_layer_wrong_vector_parse

7.3 Address Type and Data Type - The DMP layer address type and data type must be 0xa1, receivers must discard packets if the
value is not 0xa1

test_malformed_data_packet_dmp_layer_wrong_address_data_parse

7.4 First Property Address - The DMP Layers first property address must be 0x0000, receivers must discard packets if the
value is not 0x0000:

test_malformed_data_packet_dmp_layer_wrong_first_property_address_parse

7.5 Address Increment - The DMP layer address increment must be 0x0001, receivers must discard packets if the value is
not 0x0001:

test_malformed_data_packet_dmp_layer_wrong_address_increment_parse

7.6 Property Value Count - Must contain the number of DMX512-A [DMX] slots including the START code slot: test_malformed_data_packet_dmp_layer_too_high_property_count_parse,
test_malformed_data_packet_dmp_layer_too_low_property_count_parse

7.7 Property Values (DMX512-A Data) - The first octet of the property values field is the DMX512-A START Code, The maximum number
of data slots excluding the START Code is 512 data slots:

test_termination_packet_full_property_values_parse,
test_malformed_data_packet_dmp_layer_too_high_property_count_parse

- Alternate START Code data much be processed in compliance with ANSI E1.11 [DMX] Section
8.5.3.3: "DMX512 processing devices or any device that receives and re-transmits DMX512 shall
state in the manual for the product how they process Alternate START Code packets. The
acceptable processing methods are: 1) Block all packets containing particular Alternate START
Codes. The START Codes blocked shall be declared (and may be all Alternate START Codes). 2)
Pass unmodified all packets containing particular Alternate START Codes. The START Codes
passed shall be declared. 3) Process the information contained in packets containing particular
Alternate START Codes. The algorithm shall be declared in enough detail to allow the user to
decide if the device will satisfy their needs.
DMX512 in-line repeating transmitters shall not pass some packets with a particular Alternate
START Code while blocking other packets containing the same Alternate START Code unless
doing so as part of a stated processing algorithm."

Left to the implementation using the library, alternative start-code data is treated the same as any
other start-code data within the implementation allowing the user of the library to choose how to
handle the payload.

test_send_recv_single_universe_alternative_startcode_multicast_ipv4
test_send_recv_single_universe_alternative_startcode_multicast_ipv6

8 Universe Discovery Layer - The packet must be formatted as specified in Table 8-9: discovery_parse_tests
8.1 Flags and Length - The PDU length is encoded in the low 12 bits: test_discovery_packet_discovery_layer_length_too_short_parse,

test_discovery_packet_discovery_layer_length_too_long_parse
- 0x7 must be encoded in the top 4 bits: test_discovery_packet_discovery_layer_wrong_flags_parse
- The PDU length is computed from octet 112 upto and including the last universe in the universe
discovery PDU (octet 1143 for a full payload):

test_discovery_packet_discovery_layer_length_too_short_parse,
test_discovery_packet_discovery_layer_length_too_long_parse

8.2 Universe Discovery Layer: Vector - The university discovery layer vector must be
VECTOR_UNIVERSE_DISCOVERY_UNIVERSE_LIST, receievers should discard packets if the
received value is not VECTOR_UNIVERSE_DISCOVERY_UNIVERSE_LIST:

test_discovery_packet_discovery_layer_vector_unknown_parse

8.3 Page - Indicates the page being specified in the set of universe discovery packets starting at 0: test_discovery_packet_page_higher_than_last_page_parse
8.4 Last Page - Indicates the index of the last page in the set of universe discovery packets: test_discovery_packet_page_higher_than_last_page_parse
8.5 List of Universes - Must be numerically sorted: Taken to mean numerically sorted in accending order with lower universe numbers at a lower

position (octet) within the packet.
test_discovery_packet_random_order_parse, test_discovery_packet_decending_order_parse

- May be empty: test_discovery_packet_no_universes
- Should contain all of the universes upon which a source is actively transmitting test_universe_discovery_multiple_universe_one_source_ipv4

E1.31 Data and Synchronisation information:
9 Operation of E1.31 in IPv4 and IPv6 Networks - The standard can work over either and which modes are supported should be indicated: Implementation supports either IPv4 or IPv6

test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6
9.1 Association of Multicast Addresses and Universe - The standard should work over multicasting test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6

- The standard should also work using unicast test_send_recv_single_universe_unicast_ipv4, test_send_recv_single_universe_unicast_ipv6
- Addressing of multicast traffic done by setting 2 least significant bytes to the desired universe
number or synchronisation address:

test_universe_to_ip_ipv4_both_bytes_normal, test_universe_to_ip_ipv6_both_bytes_normal

- Sources operating over IPv4 and IPv6 simultaneously should transmit identical E1.31 packets
regardless of IP transport used:

test_ip_equivalence

- Recievers operating in IPv4 and IPV6 simultaneously should not process E1.31 packets
differently based on the IP transport:

The library passes data up without specifying IP version used with same recv() usage regardless of
ipv4 or ipv6 which shows no difference dependent on IP version.
test_discover_recv_sync_runthrough_ipv6, test_ansi_e131_appendix_b_runthrough_ipv6,
test_discover_recv_sync_runthrough_ipv4, test_ansi_e131_appendix_b_runthrough_ipv4

- Receivers operating in IPv4 and IPv6 simultaneously seeing the same packet via both IP
transports shall only act on one instance of that packet:

Receiver only operates in one IP version at once, the user of the library can use 2 receivers in
different ip version simultaneously but it is left to them to only act on one instance of the packet.

9.1.1 Multicast Addressing - E1.31 devices should not transmit on address 239.255.255.0 through 239.255.255.255: test_universe_to_ip_ipv4_limit_high
- E1.31 devices shall not used universe number 0 or univere numbers [64000 - 65535] excluding
universe 64214 (used for universe discovery only):
- The identity of the universe must be determined by the universe number in packet and not
assumed from multicast address:

test_send_recv_wrong_multicast_universe

- E1.31 devices should also respond to E1.31 data receieved on its unicast address: test_send_recv_single_universe_unicast_ipv4
- When multicast addressing is used the UDP destination port shall be set to the standard ACN-
SDT multicast port ACN_SDT_MULTICAST_PORT:

test_universe_to_ip_ipv4_both_bytes_normal, test_universe_to_ipv4_lowest_byte_normal,
test_universe_to_ip_ipv4_limit_high, test_universe_to_ip_ipv4_limit_low

- For unicast communication the ACN-SDT multicast port shall be used by default but may be
configured differently test_send_recv_single_universe_unicast_ipv4

9.2 Multicast Subscription - Receivers supporting IPv4 must support IGMP v2 or any subsequent superset of IGMPv2's
functionality:

Provided by underlying Socket2 rust library

- Receivers supporting IPv6 shall support MLD V1 or any subsequent subset of MLD1's
functionality:

Provided by underlying Socket2 rust library

9.3.1 Allocation of IPv4 Multicast Addresses - Multicast IPv4 addresses must be defined as in Table 9-10 test_universe_to_ipv4_lowest_byte_normal, test_universe_to_ip_ipv4_both_bytes_normal,
test_universe_to_ip_ipv4_limit_high, test_universe_to_ip_ipv4_limit_low

9.3.2 Allocation of IPv6 Multicast Addresses - Multicast IPv6 addresses must be defined as in Table 9-11 and Table 9-12 test_universe_to_ipv6_lowest_byte_normal, test_universe_to_ip_ipv6_both_bytes_normal,
test_universe_to_ip_ipv6_limit_high, test_universe_to_ip_ipv6_limit_low

9.4 IPv4 and IPv6 Support Requirements - E1.31 sources need to be able to operate on both IPv4 and IPv6 potentially simultaneously:
- The state of IPv4 / IPv6 operation should be configurable by the end user: Library allows providing IPv4 or IPv6 address to decide.

test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6
10.1.1 Boot Condition - A DMX512-A [DMX] to E1.31 translator shall not transmit E1.31 data packets for a given universe

until it has received at least one valid DMX512-A input packet for that universe:
Left to the user of the library, this library may or may not be used as part of a DMX512-A translator

10.1.2 Temporal Sequence - A DMX512-A [DMX] to E1.31 translator shall transmit packets in the order in which they were
received from the DMX512-A source:

10.1.3 Loss of Data - On loss of data as defined in DMX512-A a source shall terminate transmission as per Section
6.7.1:

10.2.2 Loss of Data - There must be an operating mode where upon detection of loss of data as defined in 6.7.1 for all
sources of a universe a source shall immediately stop transmitting DMX512-A packets:

This is out of the scope of the library and is upto the user of the library (if they are transmitting
DMX packets)

11 Universe Synchronization - There is no restriction on the number of synchronisation addresses allowed on a single network: Implementation enforces no restriction except for the limit of possible universes allowed by the
protocol [0, 63999]

- It is possible to have multiple independent universes configured for E1.31 synchronisation
concurrently:

test_send_recv_multiple_sync_universes

11.1.1 When to Begin Synchronizing Data - A receiever should begin universe synchronisation upon receipt of the first syncronisation packet
for that universe:

test_send_recv_across_universe_multicast_ipv4, test_send_recv_across_universe_multicast_ipv6

11.1.2 When to Stop Synchronizing Data - A receiever should stop universe synchronisation if it does not receieve an E1.31 synchronisation
packet on that universe within E131_NETWORK_DATA_LOSS_TIMEOUT:

test_send_sync_timeout

- The behaviour on timeout may be determined by the Force Synchronisation Option bit: Not implemented in this library
11.2.1 Arrival of Multiple Packets Before Processing - An E1.31 receiever should only synchronise using the definitive E1.31 data for that universe:

- If there is a single source the definitive data is the data packet with the most recent valid
sequence number:
- If there are multiple active synchronisation sources on the same synchronisation address it is
beyond the scope of the standard:

11.2.2 Delays Before Universe Synchronization - Recommended to add a configurable delay between data packets and transmission of an E1.31
synchronisation packet:

Left to the user of the library

12 Universe Discovery - Legacy devices may not implement it even though to be compliant they should: The library does not rely on other sources implementing universe discovery, data send/recv works
without requiring it
test_send_recv_single_universe_multicast_ipv4, test_send_recv_single_universe_multicast_ipv6

12.1 Universe Discovery and Termination - A source that is not sending any universe data may stop sending E1.31 Universe Discovery
Packets until transmission resumes or alternatively a source could send an empty list of universes:

The implemention keeps sending discovery packets with an empty list of universes,
test_universe_discovery_no_universes_ipv4

12.2 Termination of Stream Transmission - A E1.31 data stream is terminated when either a Stream_Terminated packet is receieved:
- or if no packet is receieved for an interval of E131_NETWORK_DATA_LOSS_TIMEOUT:
- A source that has terminated transmission for an E1.31 universe must reflect the change no later
than the end of the second E131_UNIVERSE_DISCOVERY_INTERVAL

Left to the user of the library to indicate that it has terminated transmission by deregistering the
universe from the sACN source provided by the library

Appendix A: Defined Parameters (Normative) - All parameters used must match those specified in Appendix A: check_ansi_e131_2018_parameter_values
B.1 Universe Synchronization for Sources - The completed implementation must produce exactly the example response given for the given

conditions / inputs:
Example walked through in the below test, including noting differences between the example and
actual due to force_synchronisation not being implemented
test_ansi_e131_appendix_b_runthroughB.2 Universe Synchronization for Receivers - The completed implementation must produce exactly the example response given for the given

conditions / inputs:

14.6 Usage

sACN Library Usage Instructions April 2020

Installation
The library can be installed by putting the Lib folder within an accessible path and then adding sacn as
dependency within the cargo.toml of your project.

[dependencies]
sacn = { path = "../Lib"}

The library can then be accessed within your project using an extern crate import
extern crate sacn;

Usage Documentation
The documentation demonstrating usage of the library is included in the docs/sacn folder. This documentation can
be re-generated using the cargo doc command. This command includes the first argument to not document
external dependencies and the second argument to include documentation of non-public items. If you are just
utilising the library rather than adding features then the second argument can be omitted to reduce the
documentation size. The last argument opens the documentation automatically after generation.

cargo doc --no-deps --document-private-items --open

Running the demo programs
The demo programs which are used to demonstrate the library in use as-well-as for the tests which require them
can be built and run using the commands. These commands should be run from inside the sACN folder.

cargo run --bin demo_src <interface_IP> <source_name>
cargo run --bin demo_rcv <interface_IP>
Where:
<interface_IP> is the IP of the interface that the demo program should use.
<source_name> is the name of the source within the sACN packets.

Testing the library - Unit Tests

To see the usage instructions for the demo programs once running type 'h' to display the help.

The library unit tests are created using the standard rust unit testing system and can therefore be run directly from
cargo.

cargo test

Testing the library - Single Machine Integration Tests
The single machine integration tests are also run from cargo but require some machine configuration. The
machine should be setup to use multiple IP addresses within the same subnet with the defaults required for the
test being "192.168.0.6", "192.168.0.7" and "192.168.0.8" for IPv4
and "2a02:c7f:d20a:c600:a502:2dae:7716:601b", "2a02:c7f:d20a:c600:a502:2dae:7716:601c" and
"2a02:c7f:d20a:c600:a502:2dae:7716:601d" for IPv6. Theses defaults can be changed and different addreses
used by modifying the 'TEST_NETWORK_INTERFACE_IPV4' constant at the top of the ipv4_tests.rs file to
change the IPv4 addresses and modifying the 'TEST_NETWORK_INTERFACE_IPV6' constant at the top of the
ipv6_tests.rs file.
Once configured the tests can be run using the command below. Note that some of these tests require the
network to support IP multicast. This command will only run the tests relevant to the current OS (IPv6 multicast
receive tests skipped on windows).

cargo test -- --ignored --test-threads=1

Testing the library - Code Coverage
To view the code coverage of the library the grcov tool from Mozilla is used. Once setup (as detailed within the
grcov documentation) the following commands can be run to install the nightly toolchain (required for grcov), build
the library and run the tests (run from the parent top-level project directory). This will generate a coverage folder in
target/debug/ which contains a webpage (index.html) with the details of the code coverage.

export CARGO_INCREMENTAL=0

Testing the library - Compile Errors / Warnings
To check that the library compiles as expected without errors or warnings (none should be expected) run:

cargo check

Testing the library - Multi-Machine Integration Tests
The setup of these tests is detailed in the report. These tests require a specific machine configuration with a
shared file system as detailed within the report. Once set up there are two sets of tests. The single-rcv-src folder
allows running tests that work between just 2 machines, a distinct sender and receiver. To run these modify the
'test_run'.sh so that 'REMOTE_PC' and 'REMOTE_PC_2' contain the addresses of the 2 machines to use for the
test. The tests can then be run using:

sh ./test.sh

Testing the library - Interoperability Testing
The library was tested for interoperability with three external programs, Avolites Titan v11.4, sACNView version
2.1.0 and Vectorworks Vision Plus 2019 version 24.0.6.521266. This testing is detailed within the report and in the
'CS4099 - Interoperability Testing.pdf' file. The Interoperability Testing folder also includes videos showing the
various tests and the results with details allowing recreation if desired.

export RUSTFLAGS="-Zprofile -Ccodegen-units=1 -Copt-level=0 -Clink-dead-code -
Coverflow-checks=off -Zno-landing-pads"
rustup run nightly cargo build
rustup run nightly cargo test -- --ignored --test-threads=1
rustup run nightly cargo test
grcov ./target/debug/ -s . -t html --llvm --branch --ignore-not-existing -o
./target/debug/coverage/

To run the tests which show the protocol working between multiple machines enter the 'multiple-rcv-src' folder, the
'REMOTE_PC' array within the 'test_run_multiple.sh' file can then be modified to include the test machines to use.
The tests are then run using sh ./test.sh. Note that as discussed in the report these tests do not automatically
check if the test succeeded and require manual intervention to check the produced output is correct as there are
multiple possible correct outputs. The tests can be run using:

sh ./test.sh

The library parsing function is tested using fuzz testing. This utilises a rust version of American Fuzzy Lop with run
instructions described here https://rust-fuzz.github.io/book/afl/setup.html. This AFL only supports linux. For this
project afl can be installed by running(from the Fuzzing/sacn-parse-fuzz-target folder):

cargo install afl
The fuzzer can then be run using the following commands (from the Fuzzing/ folder), note that sometimes
depending on the machine more configuration is needed by afl and this will be prompted for.

cargo afl build
cargo afl fuzz -i fuzz_in/ -o out target/debug/sacn-fuzz-target

The fuzzer will then run forever until stopped.

Testing the library - Fuzz Testing - Linux Only

