/************************************************************************* * Written in 2020-2022 by Elichai Turkel * * To the extent possible under law, the author(s) have dedicated all * * copyright and related and neighboring rights to the software in this * * file to the public domain worldwide. This software is distributed * * without any warranty. For the CC0 Public Domain Dedication, see * * EXAMPLES_COPYING or https://creativecommons.org/publicdomain/zero/1.0 * *************************************************************************/ #include #include #include #include #include #include "examples_util.h" int main(void) { unsigned char seckey1[32]; unsigned char seckey2[32]; unsigned char compressed_pubkey1[33]; unsigned char compressed_pubkey2[33]; unsigned char shared_secret1[32]; unsigned char shared_secret2[32]; unsigned char randomize[32]; int return_val; size_t len; rustsecp256k1_v0_9_2_pubkey pubkey1; rustsecp256k1_v0_9_2_pubkey pubkey2; /* Before we can call actual API functions, we need to create a "context". */ rustsecp256k1_v0_9_2_context* ctx = rustsecp256k1_v0_9_2_context_create(SECP256K1_CONTEXT_NONE); if (!fill_random(randomize, sizeof(randomize))) { printf("Failed to generate randomness\n"); return 1; } /* Randomizing the context is recommended to protect against side-channel * leakage See `rustsecp256k1_v0_9_2_context_randomize` in secp256k1.h for more * information about it. This should never fail. */ return_val = rustsecp256k1_v0_9_2_context_randomize(ctx, randomize); assert(return_val); /*** Key Generation ***/ /* If the secret key is zero or out of range (bigger than secp256k1's * order), we try to sample a new key. Note that the probability of this * happening is negligible. */ while (1) { if (!fill_random(seckey1, sizeof(seckey1)) || !fill_random(seckey2, sizeof(seckey2))) { printf("Failed to generate randomness\n"); return 1; } if (rustsecp256k1_v0_9_2_ec_seckey_verify(ctx, seckey1) && rustsecp256k1_v0_9_2_ec_seckey_verify(ctx, seckey2)) { break; } } /* Public key creation using a valid context with a verified secret key should never fail */ return_val = rustsecp256k1_v0_9_2_ec_pubkey_create(ctx, &pubkey1, seckey1); assert(return_val); return_val = rustsecp256k1_v0_9_2_ec_pubkey_create(ctx, &pubkey2, seckey2); assert(return_val); /* Serialize pubkey1 in a compressed form (33 bytes), should always return 1 */ len = sizeof(compressed_pubkey1); return_val = rustsecp256k1_v0_9_2_ec_pubkey_serialize(ctx, compressed_pubkey1, &len, &pubkey1, SECP256K1_EC_COMPRESSED); assert(return_val); /* Should be the same size as the size of the output, because we passed a 33 byte array. */ assert(len == sizeof(compressed_pubkey1)); /* Serialize pubkey2 in a compressed form (33 bytes) */ len = sizeof(compressed_pubkey2); return_val = rustsecp256k1_v0_9_2_ec_pubkey_serialize(ctx, compressed_pubkey2, &len, &pubkey2, SECP256K1_EC_COMPRESSED); assert(return_val); /* Should be the same size as the size of the output, because we passed a 33 byte array. */ assert(len == sizeof(compressed_pubkey2)); /*** Creating the shared secret ***/ /* Perform ECDH with seckey1 and pubkey2. Should never fail with a verified * seckey and valid pubkey */ return_val = rustsecp256k1_v0_9_2_ecdh(ctx, shared_secret1, &pubkey2, seckey1, NULL, NULL); assert(return_val); /* Perform ECDH with seckey2 and pubkey1. Should never fail with a verified * seckey and valid pubkey */ return_val = rustsecp256k1_v0_9_2_ecdh(ctx, shared_secret2, &pubkey1, seckey2, NULL, NULL); assert(return_val); /* Both parties should end up with the same shared secret */ return_val = memcmp(shared_secret1, shared_secret2, sizeof(shared_secret1)); assert(return_val == 0); printf("Secret Key1: "); print_hex(seckey1, sizeof(seckey1)); printf("Compressed Pubkey1: "); print_hex(compressed_pubkey1, sizeof(compressed_pubkey1)); printf("\nSecret Key2: "); print_hex(seckey2, sizeof(seckey2)); printf("Compressed Pubkey2: "); print_hex(compressed_pubkey2, sizeof(compressed_pubkey2)); printf("\nShared Secret: "); print_hex(shared_secret1, sizeof(shared_secret1)); /* This will clear everything from the context and free the memory */ rustsecp256k1_v0_9_2_context_destroy(ctx); /* It's best practice to try to clear secrets from memory after using them. * This is done because some bugs can allow an attacker to leak memory, for * example through "out of bounds" array access (see Heartbleed), Or the OS * swapping them to disk. Hence, we overwrite the secret key buffer with zeros. * * Here we are preventing these writes from being optimized out, as any good compiler * will remove any writes that aren't used. */ secure_erase(seckey1, sizeof(seckey1)); secure_erase(seckey2, sizeof(seckey2)); secure_erase(shared_secret1, sizeof(shared_secret1)); secure_erase(shared_secret2, sizeof(shared_secret2)); return 0; }