b RISC-V°

RISC-V Supervisor Binary
INnterface Specification

RISC-V Platform Runtime Services Task Group

Version commit-fe4562532a9cc57e5743b6466946c5e5¢98c73ca, 2023-10-06: This document is
Frozen. Change is extremely unlikely. A high threshold will be used, and a change will only occur
because of some truly critical issue being identified during the public review cycle. Any other desired
or needed changes can be the subject of a follow-on new extension. Visit http://riscv.org/spec-state for
further details.

Table of Contents

Preamble
Copyright and license information
Contributors
Change Log
Version 2.0-rc5
Version 2.0-rc4
Version 2.0-rc3
Version 2.0-rc2
Version 2.0-rcl
Version 1.0.0
Version 1.0-rc3
Version 1.0-rc2
Version 1.0-rcl
Version 0.3.0
Version 0.3-rcl
Version 0.2
1. Introduction
2. Terms and Abbreviations
3. Binary Encoding
3.1. Hart list parameter
3.2. Shared memory physical address range parameter
4. Base Extension (EID #0x10)
4.1. Function: Get SBI specification version (FID #0)
4.2. Function: Get SBI implementation ID (FID #1)
4.3. Function: Get SBI implementation version (FID #2)
4.4. Function: Probe SBI extension (FID #3)
4.5. Function: Get machine vendor ID (FID #4)
4.6. Function: Get machine architecture ID (FID #5)
4.7. Function: Get machine implementation ID (FID #6)
4.8. Function Listing
4.9. SBI Implementation IDs
5. Legacy Extensions (EIDs #0x00 - #0xOF)
5.1. Extension: Set Timer (EID #0x00)
5.2. Extension: Console Putchar (EID #0x01)
5.3. Extension: Console Getchar (EID #0x02)
5.4. Extension: Clear IPI (EID #0x03)
5.5. Extension: Send IPI (EID #0x04)
5.6. Extension: Remote FENCE.I (EID #0x05)
5.7. Extension: Remote SFENCE.VMA (EID #0x06)

5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)

© N OO U U0 g0 g0 g g b B B B B B WON -~

e T e e e S SV S G G G VU Y VUGV S =
00 00 00 Gl Gl W oo oo oo R =2 o

5.9. Extension: System Shutdown (EID #0x08)
5.10. Function Listing
6. Timer Extension (EID #0x54494D45 "TIME")
6.1. Function: Set Timer (FID #0)
6.2. Function Listing
7.1PI Extension (EID #0x735049 "sPI: s-mode IPI")
7.1. Function: Send IPI (FID #0)
7.2. Function Listing
8. RFENCE Extension (EID #0x52464E43 "RFNC")
8.1. Function: Remote FENCE.I (FID #0)
8.2. Function: Remote SFENCE.VMA (FID #1)
8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
8.5. Function: Remote HFENCE.GVMA (FID #4)
8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
8.7. Function: Remote HFENCE.VVMA (FID #6)
8.8. Function Listing
9. Hart State Management Extension (EID #0x48534D "HSM")
9.1. Function: Hart start (FID #0)
9.2. Function: Hart stop (FID #1)
9.3. Function: Hart get status (FID #2)
9.4. Function: Hart suspend (FID #3)
9.5. Function Listing
10. System Reset Extension (EID #0x53525354 "SRST")
10.1. Function: System reset (FID #0)
10.2. Function Listing

11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")

11.1. Event: Hardware general events (Type #0)
11.2. Event: Hardware cache events (Type #1)
11.3. Event: Hardware raw events (Type #2)
114. Event: Firmware events (Type #15)
11.5. Function: Get number of counters (FID #0)
11.6. Function: Get details of a counter (FID #1)
11.7. Function: Find and configure a matching counter (FID #2)
11.8. Function: Start a set of counters (FID #3)
11.9. Function: Stop a set of counters (FID #4)
11.10. Function: Read a firmware counter (FID #5)
11.11. Function: Read a firmware counter high bits (FID #6)
11.12. Function: Set PMU snapshot shared memory (FID #7)
11.13. Function Listing
12. Debug Console Extension (EID #0x4442434E "DBCN")
12.1. Function: Console Write (FID #0)
12.2. Function: Console Read (FID #1)

17
17
19
19
19
20
20
20
21
21
21
22
22
23
23
24
24
25
26
28
28
28
30
31
31
32
33
33
34
35
36
37
37
38
39
40
41
42
42
43
44
44
45

12.3. Function: Console Write Byte (FID #2)
12.4. Function Listing
13. System Suspend Extension (EID #0x53555350 "SUSP")
13.1. Function: System Suspend (FID #0)
13.2. Function Listing
14. CPPC Extension (EID #0x43505043 "CPPC")
14.1. Function: Probe CPPC register (FID #0)
14.2. Function: Read CPPC register (FID #1)
14.3. Function: Read CPPC register high bits (FID #2)
14.4. Function: Write to CPPC register (FID #3)
14.5. Function Listing
15. Nested Acceleration Extension (EID #0x4E41434C "NACL")
15.1. Feature: Synchronize CSR (ID #0)
15.2. Feature: Synchronize HFENCE (ID #1)
15.3. Feature: Synchronize SRET (ID #2)
15.4. Feature: Autoswap CSR (ID #3)
15.5. Function: Probe nested acceleration feature (FID #0)
15.6. Function: Set nested acceleration shared memory (FID #1)
15.7. Function: Synchronize shared memory CSRs (FID #2)
15.8. Function: Synchronize shared memory HFENCEs (FID #3)
15.9. Function: Synchronize shared memory and emulate SRET (FID #4)
15.10. Function Listing
16. Steal-time Accounting Extension (EID #0x535441 "STA")
16.1. Function: Set Steal-time Shared Memory Address (FID #0)
16.2. Function Listing
17. Experimental SBI Extension Space (EIDs #0x08000000 - #0xO8FFFFFF)
18. Vendor Specific Extension Space (EIDs #0x09000000 - #0xO9FFFFFF)
19. Firmware Specific Extension Space (EIDs #0xOA000000 - #0xOAFFFFFF)

References

45
46
47
47
48
50
51
52
52
53
53
54
55
56
58
60
60
61
61
62
63
63
64
64
66
67
68
69
70

Preamble | Page 1

Preamble

This document is in the Frozen state

A Change is extremely unlikely. A high threshold will be used, and a change will only occur
because of some truly critical issue being identified during the public review cycle. Any
other desired or needed changes can be the subject of a follow-on new extension.

RISC-V Supervisor Binary Interface Specification | © RISC-V

http://riscv.org/spec-state

Copyright and license information | Page 2

Copyright and license information

This RISC-V SBI specification is © 2022 RISC-V International.

It is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full
license text is available at creativecommons.org/licenses/by/4.0/.

RISC-V Supervisor Binary Interface Specification | © RISC-V

https://creativecommons.org/licenses/by/4.0/

Contributors | Page 3

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

Abner Chang <abner.chang@hpe.com>

Al Stone <ahs3@ahs3.net>

Andrew Jones <ajones@ventanamicro.com>
Anup Patel <apatel@ventanamicro.com>

Atish Patra <atishpO4@gmail.com>

Atish Patra <atishp@rivosinc.com>

Bin Meng <bmeng.cn@gmail.com>

Chris Williams <diodesign@tuta.io>

Conor Dooley <conor.dooley@microchip.com>
Daniel Schaefer <git@danielschaefer.me>
Esteban Blanc <estblesk@gmail.com>
hasheddan <georgedanielmangum@gmail.com>
Heinrich Schuchardt <xypron.glpk@gmx.de>
Jetf Scheel <jeff@riscv.org>

Jessica Clarke <jrtc27@jrtc27.com>

john <799433746@qq.com>

Konrad Schwarz <konrad.schwarz@siemens.com>
Luo Jia / Zhougqi Jiang <luojia@hust.edu.cn>
Nick Kossifidis <mickflemm@gmail.com>
Palmer Dabbelt <palmer@dabbelt.com>

Paolo Bonzini <pbonzini@redhat.com>

Sean Anderson <seanga2@gmail.com>

Stefano Stabellini <stefano.stabellini@amd.com>
Sunil V L <sunilvl@ventanamicro.com>
Tsukasa OI <research _trasio@irg.a4lg.com>
Yiting Wang <yiting wang@windriver.com>

RISC-V Supervisor Binary Interface Specification | © RISC-V

mailto:abner.chang@hpe.com
mailto:ahs3@ahs3.net
mailto:ajones@ventanamicro.com
mailto:apatel@ventanamicro.com
mailto:atishp04@gmail.com
mailto:atishp@rivosinc.com
mailto:bmeng.cn@gmail.com
mailto:diodesign@tuta.io
mailto:conor.dooley@microchip.com
mailto:git@danielschaefer.me
mailto:estblcsk@gmail.com
mailto:georgedanielmangum@gmail.com
mailto:xypron.glpk@gmx.de
mailto:jeff@riscv.org
mailto:jrtc27@jrtc27.com
mailto:799433746@qq.com
mailto:konrad.schwarz@siemens.com
mailto:luojia@hust.edu.cn
mailto:mickflemm@gmail.com
mailto:palmer@dabbelt.com
mailto:pbonzini@redhat.com
mailto:seanga2@gmail.com
mailto:stefano.stabellini@amd.com
mailto:sunilvl@ventanamicro.com
mailto:research_trasio@irq.a4lg.com
mailto:yiting.wang@windriver.com

Version 2.0-rc5 | Page 4

Change Log

Version 2.0-rch

- Update the document state to Frozen

Version 2.0-rc4

- Added flags parameter to sbi_pmu_snapshot_set_shmem))

- Return error code SBI_ERR_NO_SHMEM in SBI PMU extension wherever applicable
- Made flags parameter of sbi_steal _time_set_shmem() as unsigned long

- Split the specification into multiple adoc files

- Add more clarification for firmware/vendor/experimental extension space.

- Fix ambiguous usage of normative statements.

Version 2.0-rc3

- Cl support added
. Fix revmark in the makefile.

- Few minor cleanups.

Version 2.0-rc2

- Added clarification for SUSP, NACL & STA extensions.
- Standardization of hart usage.

- Added an error code in SBI DBCN extension.

Version 2.0-rcl

- Added common description for shared memory physical address range parameter
- Added SBI debug console extension

- Relaxed the counter width requirement on SBI PMU firmware counters

- Added sbi_pmu_counter_fw_read_hi() in SBI PMU extension

- Reserved space for SBI implementation specific firmware events

- Added SBI system suspend extension

- Added SBI CPPC extension

- Clarified that an SBI extension can be partially implemented only if it defines a mechanism to
discover implemented SBI functions

- Added error code SBI_ERR_NO_SHMEM

RISC-V Supervisor Binary Interface Specification | © RISC-V

Version 1.0.0 | Page 5

- Added SBI nested acceleration extension
- Added common description for a virtual hart
- Added SBI steal-time accounting extension

- Added SBI PMU snapshot extension

Version 1.0.0

- Updated the version for ratification

Version 1.0-rc3

- Updated the calling convention
- Fixed a typo in PMU extension

- Added a abbreviation table

Version 1.0-rc2

- Update to RISC-V formatting
- Improved the introduction

- Removed all references to RV32

Version 1.0-rc]

- Atypo fix

Version 0.3.0

- Few typo fixes
- Updated the LICENSE with detailed text instead of a hyperlink

Version 0.3-rcl

- Improved document styling and naming conventions

- Added SBI system reset extension

- Improved SBI introduction section

- Improved documentation of SBI hart state management extension
- Added suspend function to SBI hart state management extension

- Added performance monitoring unit extension

- Clarified that an SBI extension shall not be partially implemented

RISC-V Supervisor Binary Interface Specification | © RISC-V

Version 0.2 | Page 6

Version 0.2

- The entire vO.1 SBI has been moved to the legacy extension, which is now an optional extension.
This is technically a backwards-incompatible change because the legacy extension is optional and
vO0.1 of the SBI doesn’t allow probing, but it’s as good as we can do.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 1. Introduction | Page 7

Chapter 1. Introduction

This specification describes the RISC-V Supervisor Binary Interface, known from here on as SBI. The
SBI allows supervisor-mode (S-mode or VS-mode) software to be portable across all RISC-V
implementations by defining an abstraction for platform (or hypervisor) specific functionality. The
design of the SBI follows the general RISC-V philosophy of having a small core along with a set of
optional modular extensions.

An SBI extension defines a set of SBI functions which provides a particular functionality to
supervisor-mode software. SBI extensions as a whole are optional and cannot be partially
implemented unless an SBI extension defines a mechanism to discover implemented SBI functions. If
sbi_probe_extension() signals that an extension is available, all functions present in the SBI version
reported by sbi_get_spec_version() must conform to that version of the SBI specification.

The higher privilege software providing SBI interface to the supervisor-mode software is referred as an
SBI implementation or Supervisor Execution Environment (SEE). An SBI implementation (or SEE)
can be platform runtime firmware executing in machine-mode (M-mode) (see below Figure 1) or it can
be some hypervisor executing in hypervisor-mode (HS-mode) (see below Figure 2).

T S —
i System Calls
iSBI
Figure 1. RISC-V System without H-extension
Virtualized World Host / Hypervisor World
VU-mode _ | Host Applications U-mode
i System Calls
VS-mode _ System Calls
¢SBI
¢SBI

Figure 2. RISC-V System with H-extension

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 1. Introduction | Page 8

Harts are provisioned by the SBI implementation for supervisor-mode software. Hence, from the
perspective of the SBI implementation, the S-mode hart contexts are referred to as virtual harts. In the
case that the implementation is a hypervisor, virtual harts represent the VS-mode guest contexts.

The SBI specification doesn’t specify any method for hardware discovery. The supervisor software
must rely on the other industry standard hardware discovery methods (i.e. Device Tree or ACPI) for

that.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 2. Terms and Abbreviations

Chapter 2. Terms and Abbreviations | Page 9

This specification uses the following terms and abbreviations:

Term

ACPI

ASID
BMC
CPPC

EID
FID
HSM
IPI
PMU
SBI
SEE
VMID

Meaning

Advanced Configuration and Power
Interface

Address Space Identifier
Baseboard Management Controller

Collaborative Processor Performance
Control

Extension ID

Function ID

Hart State Management

Inter Processor Interrupt
Performance Monitoring Unit
Supervisor Binary Interface
Supervisor Execution Environment

Virtual Machine Identifier

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 3. Binary Encoding | Page 10

Chapter 3. Binary Encoding

All SBI functions share a single binary encoding, which facilitates the mixing of SBI extensions. The

SBI specification follows the below calling convention.

- An ECALL is used as the control transfer instruction between the supervisor and the SEE.

- a7 encodes the SBI extension 1D (EID),

- a6 encodes the SBI function ID (FID) for a given extension ID encoded in a7 for any SBI extension

defined in or after SBI vO.2.

- All registers except a0 & al must be preserved across an SBI call by the callee.

- SBI functions must return a pair of values in a0 and a1, with a0 returning an error code. This is

analogous to returning the C structure

struct sbiret {
long error;
long value;

};

In the name of compatibility, SBI extension IDs (EIDs) and SBI function IDs (FIDs) are encoded as
signed 32-bit integers. When passed in registers these follow the standard above calling convention

rules.

The Table 1 below provides a list of Standard SBI error codes.

Table 1. Standard SBI Errors

Error Type

SBI_SUCCESS
SBI_ERR_FAILED

SBI _ERR_NOT_SUPPORTED
SBI _ERR_INVALID PARAM
SBI_ERR_DENIED
SBI_ERR_INVALID ADDRESS
SBI_ERR_ALREADY AVAILABLE
SBI ERR _ALREADY STARTED
SBI _ERR _ALREADY_ STOPPED
SBI_ERR_NO_SHMEM

Description
Completed successfully
Failed

Not supported

Invalid parameter(s)
Denied or not allowed
Invalid address(s)
Already available
Already started
Already stopped

Shared memory not available

An ECALL with an unsupported SBI extension ID (EID) or an unsupported SBI function ID (FID) must
return the error code SBI_ERR_NOT_SUPPORTED.

Every SBI function should prefer unsigned long as the data type. It keeps the specification simple
and easily adaptable for all RISC-V ISA types. In case the data is defined as 32bit wide, higher privilege
software must ensure that it only uses 32 bit data.

RISC-V Supervisor Binary Interface Specification | © RISC-V

3.1. Hart list parameter | Page 11

3.1. Hart list parameter

If an SBI function caller needs to pass a list of harts to the higher privilege mode, it must use a hart
mask as defined below. This is applicable to any extensions defined in or after vO.2.

Any SBI function, requiring a hart mask, must take the following two arguments:

- unsigned long hart_mask is a scalar bit-vector containing hartids

- unsigned long hart_mask_base is the starting hartid from which the bit-vector must be
computed.

In a single SBI function call, the maximum number of harts that can be set is always XLEN. If a lower
privilege mode needs to pass information about more than XLEN harts, it must invoke the SBI
function multiple times. hart_mask_base can be set to -1 to indicate that hart_mask shall be ignored
and all available harts must be considered.

Any SBI function taking hart mask arguments may return the error values listed in the Table 2 below
which are in addition to function specific error values.

Table 2. Hart Mask Errors

Error code Description

SBI_ERR_INVALID PARA Either hart_mask_base, or at least one hartid from
M hart_mask, is not valid, i.e. either the hartid is not enabled
by the platform or is not available to the supervisor.

3.2. Shared memory physical address range
parameter

If an SBI function needs to pass a shared memory physical address range to the SBI implementation
(or higher privilege mode), then this physical memory address range MUST satisfy the following
requirements:

- The SBI implementation MUST check that the supervisor-mode software is allowed to access the
specified physical memory range with the access type requested (read and/or write).

- The SBI implementation MUST access the specified physical memory range using the PMA
attributes.

If the supervisor-mode software accesses the same physical memory range using a

Dy memory type different than the PMA, then a loss of coherence or unexpected memory
ordering may occur. The invoking software should follow the rules and sequences defined
in the RISC-V Svpbmt specification to prevent the loss of coherence and memory ordering.

- The data in the shared memory MUST follow little-endian byte ordering.

It is recommended that a memory physical address passed to an SBI function should use at least two

unsigned long parameters to support platforms which have memory physical addresses wider than
XLEN bits.

RISC-V Supervisor Binary Interface Specification | © RISC-V

4.1. Function: Get SBI specification version (FID #0) | Page 12

Chapter 4. Base Extension (EID #0x10)

The base extension is designed to be as small as possible. As such, it only contains functionality for
probing which SBI extensions are available and for querying the version of the SBI. All functions in
the base extension must be supported by all SBI implementations, so there are no error returns

defined.

41. Function: Get SBI specification version (FID #0O)

struct sbiret sbi_get_spec_version(void);

Returns the current SBI specification version. This function must always succeed. The minor number
of the SBI specification is encoded in the low 24 bits, with the major number encoded in the next 7
bits. Bit 31 must be O and is reserved for future expansion.

4.2. Function: Get SBI implementation ID (FID #1)

struct sbiret sbi_get_impl_id(void);

Returns the current SBI implementation ID, which is different for every SBI implementation. It is
intended that this implementation ID allows software to probe for SBI implementation quirks.

4 3. Function: Get SBI implementation version
(FID #2)

struct sbiret sbi_get_impl_version(void);

Returns the current SBI implementation version. The encoding of this version number is specific to
the SBI implementation.

4 4 Function: Probe SBI extension (FID #3)

struct sbiret sbi_probe_extension(long extension_id);

Returns O if the given SBI extension ID (EID) is not available, or 1 if it is available unless defined as
any other non-zero value by the implementation.

45. Function: Get machine vendor ID (FID #4)

RISC-V Supervisor Binary Interface Specification | © RISC-V

4.6. Function: Get machine architecture ID (FID #5) | Page 13

struct sbiret sbi_get_mvendorid(void);

Return a value that is legal for the mvendorid CSR and O is always a legal value for this CSR.

4 6. Function: Get machine architecture ID (FID
#5)

struct sbiret sbi_get_marchid(void);

Return a value that is legal for the marchid CSR and O is always a legal value for this CSR.

47. Function: Get machine implementation |D
(FID #0)

struct sbiret sbi_get_mimpid(void);

Return a value that is legal for the mimpid CSR and O is always a legal value for this CSR.

4. 8. Function Listing

Table 3. Base Function List

Function Name SBI Version FID EID

sbi_get_sbi_spec_version 0.2 0 0x10

sbi_get_sbi_impl_id 0.2 1 0x10

sbi_get_sbi_impl_version 0.2 2 0x10

sbi_probe_extension 0.2 3 0x10

sbi_get_mvendorid 0.2 4 0x10

sbi_get_marchid 0.2 5 0x10

sbi_get_mimpid 0.2 6 0x10
49. SBI Implementation IDs

Table 4. SBI Implementation IDs

Implementation ID Name

0 Berkeley Boot Loader (BBL)

1 OpenSBI

2 Xvisor

RISC-V Supervisor Binary Interface Specification | © RISC-V

4.9. SBI Implementation IDs | Page 14

Implementation ID

3
4
5
6
7
8

Name

KVM
RustSBI
Diosix
Coffer

Xen Project

PolarFire Hart Software Services

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.1. Extension: Set Timer (EID #0x00) | Page 15

Chapter 5. Legacy Extensions (EIDs #0x00
- #OxOF)

The legacy SBI extensions follow a slightly different calling convention as compared to the SBI vO.2
(or higher) specification where:

- The SBI function ID field in a6 register is ignored because these are encoded as multiple SBI
extension IDs.

- Nothing is returned in a1 register.
- All registers except a0 must be preserved across an SBI call by the callee.

- The value returned in a0 register is SBI legacy extension specific.

The page and access faults taken by the SBI implementation while accessing memory on behalf of the
supervisor are redirected back to the supervisor with sepc CSR pointing to the faulting ECALL
instruction.

The legacy SBI extensions is deprecated in favor of the other extensions listed below.
51. Extension: Set Timer (EID #0x00)

long sbi_set_timer(uint64_t stime_value)

Programs the clock for next event after stime _value time. This function also clears the pending timer
interrupt bit.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e., (uint64_t)-1), or it can instead mask
the timer interrupt by clearing sie. STIE CSR bit.

This SBI call returns O upon success or an implementation specific negative error code.
5.2. Extension: Console Putchar (EID #0x01)

long sbi_console_putchar(int ch)

Write data present in ch to debug console.

Unlike sbi_console_getchar (), this SBI call will block if there remain any pending characters to be
transmitted or if the receiving terminal is not yet ready to receive the byte. However, if the console
doesn’t exist at all, then the character is thrown away.

This SBI call returns O upon success or an implementation specific negative error code.

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.3. Extension: Console Getchar (EID #0x02) | Page 16

5.3. Extension: Console Getchar (EID #0x02)

long sbi_console_getchar(void)

Read a byte from debug console.

The SBI call returns the byte on success, or -1 for failure.
54 Extension: Clear IPI (EID #0x03)

long sbi_clear_ipi(void)
Clears the pending IPIs if any. The IPI is cleared only in the hart for which this SBI call is invoked.
sbi_clear_ipi() is deprecated because S-mode code can clear sip.SSIP CSR bit directly.

This SBI call returns O if no IPI had been pending, or an implementation specific positive value if an
IPI had been pending.

55. Extension: Send IPI (EID #0x04)

long sbi_send_ipi(const unsigned long *hart_mask)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as Supervisor Software Interrupts.

hart_mask is a virtual address that points to a bit-vector of harts. The bit vector is represented as a
sequence of unsigned longs whose length equals the number of harts in the system divided by the
number of bits in an unsigned long, rounded up to the next integer.

This SBI call returns O upon success or an implementation specific negative error code.
5.6. Extension: Remote FENCE.| (EID #0x05)

long sbi_remote_fence_i(const unsigned long *hart_mask)

Instructs remote harts to execute FENCE. I instruction. The hart_mask is same as described in
sbi_send_ipi Q).

This SBI call returns O upon success or an implementation specific negative error code.

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.7. Extension: Remote SFENCE.VMA (EID #0x06) | Page 17

5.7. Extension: Remote SFENCE.VMA (EID #0x006)

long sbi_remote_sfence_vma(const unsigned long *hart_mask,
unsigned long start,
unsigned long size)

Instructs the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size.

This SBI call returns O upon success or an implementation specific negative error code.

5.8. Extension: Remote SFENCE.VMA with ASID
(EID #0x0O7)

long sbi_remote_sfence_vma_asid(const unsigned long *hart_mask,
unsigned long start,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size. This covers only the given ASID.

This SBI call returns O upon success or an implementation specific negative error code.
59. Extension: System Shutdown (EID #0x08)

void sbi_shutdown(void)

Puts all the harts to shutdown state from supervisor point of view.

This SBI call doesn’t return irrespective whether it succeeds or fails.

5.10. Function Listing

Table 5. Legacy Function List

Function Name SBI Version FID EID Replacement EID
sbi_set timer 01 0 0x00 0x54494D45
sbi_console _putchar 01 0 0x01 0x4442434E
sbi_console_getchar 01 0 0x02 0x4442434E
sbi_clear_ipi 01 0 0x03 N/A
sbi_send_ipi 0.1 0 0x04 0x735049

RISC-V Supervisor Binary Interface Specification | © RISC-V

5.10. Function Listing | Page 18

Function Name

sbi_remote fence i
sbi_remote sfence vma
sbi_remote sfence vma _asid
sbi_shutdown

RESERVED

SBI Version
01
01
01
01

FID

S © o O

RISC-V Supervisor Binary Interface Specification | © RISC-V

EID

0x05
0x06
0x07
0x08
0x09-0x0F

Replacement EID
0x52464E43
0x52464E43
0x52464E43
0x53525354

6.1. Function: Set Timer (FID #0) | Page 19

Chapter 6. Timer Extension (EID
HOX54494D45 "TIME")

This replaces legacy timer extension (EID #0x00). It follows the new calling convention defined in
v0.2.

o.1. Function: Set Timer (FID #0)

struct sbiret sbi_set_timer(uint64_t stime_value)
Programs the clock for next event after stime_value time. stime_value is in absolute time. This
function must clear the pending timer interrupt bit as well.

If the supervisor wishes to clear the timer interrupt without scheduling the next timer event, it can
either request a timer interrupt infinitely far into the future (i.e,, (uint64_t)-1), or it can instead mask
the timer interrupt by clearing sie.STIE CSR bit.

6.2. Function Listing

Table 6. TIME Function List
Function Name SBI Version FID EID
sbi_set timer 0.2 0 0x54494D45

RISC-V Supervisor Binary Interface Specification | © RISC-V

7.1. Function: Send IPI (FID #0) | Page 20

Chapter 7. IPl Extension (EID #0x735049
"sPIl: s-mode IP1")

This extension replaces the legacy extension (EID #0x04). The other IPI related legacy extension(0x3)
is deprecated now. All the functions in this extension follow the hart_mask as defined in the binary
encoding section.

7.1. Function: Send IPI (FID #0O)

struct sbiret sbi_send_ipi(unsigned long hart_mask,
unsigned long hart_mask_base)

Send an inter-processor interrupt to all the harts defined in hart_mask. Interprocessor interrupts
manifest at the receiving harts as the supervisor software interrupts.

The possible error codes returned in sbiret.error are shown in the Table 7 below.

Table 7. IPI Send Errors
Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

/2. Function Listing

Table 8. IPI Function List
Function Name SBI Version FID EID
sbi_send_ipi 0.2 0 0x735049

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.1. Function: Remote FENCE.I (FID #0) | Page 21

Chapter 8. RFENCE Extension (EID
HOx52464E43 "RENC")

This extension defines all remote fence related functions and replaces the legacy extensions (EIDs
#0x05 - #0x07). All the functions follow the hart_mask as defined in binary encoding section. Any
function wishes to use range of addresses (i.e. start_addr and size), have to abide by the below
constraints on range parameters.

The remote fence function acts as a full TLB flush if

. start_addr and size are both O

- sizeisequal to 2" XLEN-1

8.1. Function: Remote FENCE.I (FID #0)

struct sbiret sbi_remote_fence_i(unsigned long hart_mask,
unsigned long hart_mask_base)

Instructs remote harts to execute FENCE. I instruction.
The possible error codes returned in sbiret.error are shown in the Table 9 below.

Table 9. RFENCE Remote FENCE.I Errors
Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.

8.2. Function: Remote SFENCE.VMA (FID #1)

struct sbiret sbi_remote_sfence_vma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instructs the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size.

The possible error codes returned in sbiret.error are shown in the Table 10 below.

Table 10. RFENCE Remote SFENCE.VMA Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.
SBI_ERR_INVALID _ADDRESS start_addr or size is not valid

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.3. Function: Remote SFENCE.VMA with ASID (FID #2) | Page 22

8.3. Function: Remote SFENCE.VMA with ASID
(FID #2)

struct sbiret sbi_remote_sfence_vma_asid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more SFENCE. VMA instructions, covering the range of
virtual addresses between start and size. This covers only the given ASID.

The possible error codes returned in sbiret.error are shown in the Table 11 below.

Table 11. RFENCE Remote SFENCE.VMA with ASID Errors

Error code Description

SBI_SUCCESS IPI was sent to all the targeted harts successfully.
SBI _ERR_INVALID ADDRESS start_addr or size is not valid

8.4. Function: Remote HFENCE.GVMA with VMID
(FID #3)

struct sbiret sbi_remote_hfence_gvma_vmid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long vmid)

Instruct the remote harts to execute one or more HFENCE . GVMA instructions, covering the range of
guest physical addresses between start and size only for the given VMID. This function call is only valid
for harts implementing hypervisor extension.

The possible error codes returned in sbiret. error are shown in the Table 12 below.

Table 12. RFENCE Remote HFENCE.GVMA with VMID Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI_ERR_NOT_ SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI _ERR_INVALID ADDRESS start_addr or size is not valid

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.5. Function: Remote HFENCE.GVMA (FID #4) | Page 23

8.5. Function: Remote HFENCE.GVMA (FID #4)

struct sbiret sbi_remote_hfence_gvma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instruct the remote harts to execute one or more HFENCE . GVMA instructions, covering the range of
guest physical addresses between start and size for all the guests. This function call is only valid for
harts implementing hypervisor extension.

The possible error codes returned in sbiret . error are shown in the Table 13 below.

Table 13. RFENCE Remote HFENCE.GVMA Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI _ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI_ERR_INVALID ADDRESS start_addr or size is not valid

8.6. Function: Remote HFENCE. VVWMA with ASID
(FID #5)

struct sbiret sbi_remote_hfence_vvma_asid(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size,
unsigned long asid)

Instruct the remote harts to execute one or more HFENCE. VVMA instructions, covering the range of
guest virtual addresses between start and size for the given ASID and current VMID (in hgatp CSR) of
calling hart. This function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret . error are shown in the Table 14 below.

Table 14. RFENCE Remote HFENCE.VVMA with ASID Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI _ERR_NOT_SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI_ERR_INVALID ADDRESS start_addr or size is not valid

RISC-V Supervisor Binary Interface Specification | © RISC-V

8.7. Function: Remote HFENCE.VVMA (FID #6) | Page 24

8.7. Function: Remote HFENCE.VVMA (FID #0)

struct sbiret sbi_remote_hfence_vvma(unsigned long hart_mask,
unsigned long hart_mask_base,
unsigned long start_addr,
unsigned long size)

Instruct the remote harts to execute one or more HFENCE . VVMA instructions, covering the range of
guest virtual addresses between start and size for current VMID (in hgatp CSR) of calling hart. This
function call is only valid for harts implementing hypervisor extension.

The possible error codes returned in sbiret. error are shown in the Table 15 below.

Table 15. RFENCE Remote HFENCE.VVMA Errors
Error code Description
SBI_SUCCESS IPI was sent to all the targeted harts successfully.

SBI _ERR_NOT_ SUPPORTED This function is not supported as it is not
implemented or one of the target hart doesn’t support
hypervisor extension.

SBI _ERR_INVALID ADDRESS start_addr or size is not valid.

8.8. Function Listing

Table 16. RFENCE Function List

Function Name SBI Version FID EID

sbi_remote fence i 0.2 0 0x52464E43
sbi_remote sfence vma 0.2 1 0x52464E43
sbi remote sfence vma _asid 0.2 2 0x52464E43
sbi_remote_hfence_gvma_vmid 0.2 3 0x52464E43
sbi_remote_hfence_gvma 0.2 4 0x52464E43
sbi_remote hfence vvma_ asid 0.2 5 0x52464E43
sbi_remote hfence vvma 0.2 6 0x52464E43

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 9. Hart State Management Extension (EID #0x48534D "HSM") | Page 25

Chapter 9. Hart State Management
Extension (EID #0x48534D "HSM")

The Hart State Management (HSM) Extension introduces a set of hart states and a set of functions
which allow the supervisor-mode software to request a hart state change.

The Table 17 shown below describes all possible HSM states along with a unique HSM state id for

each state:

Table 17. HSM Hart States

State ID State Name

0 STARTED

1 STOPPED

2 START _PENDING

3 STOP_PENDING

4 SUSPENDED

5 SUSPEND PENDING
6 RESUME _PENDING

Description

The hart is physically powered-up and executing
normally.

The hart is not executing in supervisor-mode or any
lower privilege mode. It is probably powered-down by the
SBI implementation if the underlying platform has a
mechanism to physically power-down harts.

Some other hart has requested to start (or power-up) the
hart from the STOPPED state and the SBI
implementation is still working to get the hart in the
STARTED state.

The hart has requested to stop (or power-down) itself
from the STARTED state and the SBI implementation is
still working to get the hart in the STOPPED state.

This hart is in a platform specific suspend (or low power)
state.

The hart has requested to put itself in a platform specific
low power state from the STARTED state and the SBI
implementation is still working to get the hart in the
platform specific SUSPENDED state.

An interrupt or platform specific hardware event has
caused the hart to resume normal execution from the
SUSPENDED state and the SBI implementation is still
working to get the hart in the STARTED state.

At any point in time, a hart should be in one of the above mentioned hart states. The hart state
transitions by the SBI implementation should follow the state machine shown below in the Figure 3.

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.1. Function: Hart start (FID #0) | Page 26

STOPPED
sbi hart start()
SBI implementation called by some
stopping hart other hart
STOP_PENDING START_PENDING
. A . .
sbi_hart_stop() SBIl implementation
called b starting hart
hart itself
+—
STARTED
—P
sbi hart suspend()
SBI implementation called by
resuming hart hart itself
RESUME_PENDING SUSPEND_PENDING
Hart recieved SBIl implementation
an interrupt or suspending hart
platform event
SUSPENDED

Figure 3. SBI HSM State Machine

A platform can have multiple harts grouped into hierarchical topology groups (namely cores, clusters,
nodes, etc.) with separate platform specific low-power states for each hierarchical group. These
platform specific low-power states of hierarchical topology groups can be represented as platform
specific suspend states of a hart. An SBI implementation can utilize the suspend states of higher
topology groups using one of the following approaches:

1. Platform-coordinated: In this approach, when a hart becomes idle the supervisor-mode power-
managment software will request deepest suspend state for the hart and higher topology groups.
An SBI implementation should choose a suspend state at higher topology group which is:

a. Not deeper than the specified suspend state
b. Wake-up latency is not higher than the wake-up latency of the specified suspend state

2. OS-inititated: In this approach, the supervisor-mode power-managment software will directly
request a suspend state for higher topology group after the last hart in that group becomes idle.
When a hart becomes idle, the supervisor-mode power-managment software will always select
suspend state for the hart itself but it will select a suspend state for a higher topology group only if
the hart is the last running hart in the group. An SBI implementation should:

a. Never choose a suspend state for higher topology group different from the specified suspend
state

b. Always prefer most recent suspend state requested for higher topology group

9.1. Function: Hart start (FID #0O)

struct sbiret sbi_hart_start(unsigned long hartid,
unsigned long start_addr,
unsigned long opaque)

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.1. Function: Hart start (FID #0) | Page 27

Request the SBI implementation to start executing the target hart in supervisor-mode, at the address
specified by start_addr, with the specific register values described in Table 18.

Table 18. HSM Hart Start Register State

Register Name Register Value
satp @)

sstatus.SIE o)

a0 hartid

al opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient as start_addr, because the hart will
| yl start execution in supervisor-mode with the MMU off, hence start_addr must be less
than XLEN bits wide.

This call is asynchronous — more specifically, the sbi_hart_start () may return before the target
hart starts executing as long as the SBI implementation is capable of ensuring the return code is
accurate. If the SBI implementation is a platform runtime firmware executing in machine-mode (M-
mode), then it MUST configure any physical memory protection it supports, such as that defined by
PMP, and other M-mode state, before transferring control to supervisor-mode software.

The hartid parameter specifies the target hart which is to be started.

The start_addr parameter points to a runtime-specified physical address, where the hart can start
executing in supervisor-mode.

The opaque parameter is an XLEN-bit value which will be set in the a1 register when the hart starts
executing at start_addr.

The possible error codes returned in sbiret . error are shown in the Table 19 below.

Table 19. HSM Hart Start Errors

Error code Description
SBI_SUCCESS Hart was previously in stopped state. It will start executing from
start_addr.

SBI_ERR_INVALID _ADDRESS start_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.
* Executable access to the address is prohibited by a physical
memory protection mechanism or H-extension G-stage for
supervisor-mode.

SBI_ERR_INVALID_PARAM hartidis nota valid hartid as the corresponding hart cannot be
started in supervisor mode.

SBI_ERR_ALREADY_AVAILAB The given hartid is already started.
LE

SBI_ERR_FAILED The start request failed for unspecified or unknown other reasons.

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.2. Function: Hart stop (FID #1) | Page 28

9.2. Function: Hart stop (FID #1)

struct sbiret sbi_hart_stop(void)

Request the SBI implementation to stop executing the calling hart in supervisor-mode and return its
ownership to the SBI implementation. This call is not expected to return under normal conditions.
The sbi_hart_stop () must be called with supervisor-mode interrupts disabled.

The possible error codes returned in sbiret. error are shown in the Table 20 below.

Table 20. HSM Hart Stop Errors
Error code Description

SBI_ERR_FAILED Failed to stop execution of the current hart

9.3. Function: Hart get status (FID #2)

struct sbiret sbi_hart_get_status(unsigned long hartid)
Get the current status (or HSM state id) of the given hart in sbiret.value, or an error through
sbiret.error.
The hartid parameter specifies the target hart for which status is required.
The possible status (or HSM state id) values returned in sbiret.value are described in Table 17.
The possible error codes returned in sbiret.error are shown in the Table 21 below.

Table 21. HSM Hart Get Status Errors

Error code Description

SBI_ERR_INVALID_PARAM The given hartid is not valid.

The harts may transition HSM states at any time due to any concurrent sbi_hart_start () or
sbi_hart_stop() or sbi_hart_suspend() calls, the return value from this function may not
represent the actual state of the hart at the time of return value verification.

9.4. Function: Hart suspend (FID #3)

struct sbiret sbi_hart_suspend(uint32_t suspend_type,
unsigned long resume_addr,

unsigned long opaque)

Request the SBI implementation to put the calling hart in a platform specific suspend (or low power)
state specified by the suspend_type parameter. The hart will automatically come out of suspended
state and resume normal execution when it receives an interrupt or platform specific hardware event.

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.4. Function: Hart suspend (FID #3) | Page 29

The platform specific suspend states for a hart can be either retentive or non-retentive in nature. A
retentive suspend state will preserve hart register and CSR values for all privilege modes whereas a
non-retentive suspend state will not preserve hart register and CSR values.

Resuming from a retentive suspend state is straight forward and the supervisor-mode software will see
SBI suspend call return without any failures. The resume_addr parameter is unused during retentive
suspend.

Resuming from a non-retentive suspend state is relatively more involved and requires software to
restore various hart registers and CSRs for all privilege modes. Upon resuming from non-retentive
suspend state, the hart will jump to supervisor-mode at address specified by resume_addr with
specific registers values described in the Table 22 below.

Table 22. HSM Hart Resume Register State

Register Name Register Value
satp 0

sstatus.SIE 0

a0 hartid

al opaque parameter

All other registers remain in an undefined state.

A single unsigned long parameter is sufficient for resume_addr, because the hart will

| yl resume execution in supervisor-mode with the MMU off, hence resume_addr must be less
than XLEN bits wide.

The suspend_type parameter is 32 bits wide and the possible values are shown in Table 23 below.

Table 23. HSM Hart Suspend Types

Value Description

0x00000000 Default retentive suspend
0x00000001 - OxOFFFFFFF Reserved for future use
0x10000000 - Ox7FFFFFFF Platform specific retentive suspend

0x80000000 Default non-retentive suspend
0x80000001 - Ox8FFFFFFF Reserved for future use

0x90000000 - Platform specific non-retentive suspend
OxFFFFFFFF

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a non-retentive suspend.

The opaque parameter is an XLEN-bit value which will be set in the a1 register when the hart resumes
execution at resume_addr after a non-retentive suspend.

The possible error codes returned in sbiret . error are shown in the Table 24 below.

Table 24. HSM Hart Suspend Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V

9.5. Function Listing | Page 30

Error code

SBI_SUCCESS

SBI_ERR_INVALID PARAM

SBI_ERR_NOT_SUPPORTED

SBI_ERR_INVALID_ADDRESS

SBI_ERR_FAILED

Description

Hart has suspended and resumed successfully from a retentive
suspend state.

suspend_type is reserved or is platform-specific and
unimplemented.

suspend_type is not reserved and is implemented, but the
platform does not support it due to one or more missing
dependencies.

resume_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.

* Executable access to the address is prohibited by a physical
memory protection mechanism or H-extension G-stage for
supervisor-mode.

The suspend request failed for unspecified or unknown other
reasons.

9.5. Function Listing

Table 25. HSM Function List

Function Name
sbi_hart_start
sbi_hart_stop
sbi_hart_get_status

sbi_hart_suspend

SBI Version FID EID

0.2 0 0x48534D
0.2 1 0x48534D
0.2 2 0x48534D
0.3 3 0x48534D

RISC-V Supervisor Binary Interface Specification | © RISC-V

10.1. Function: System reset (FID #0) | Page 31

Chapter 10. System Reset Extension (EID
HOx53525354 "SRST")

The System Reset Extension provides a function that allow the supervisor software to request system-
level reboot or shutdown. The term "system" refers to the world-view of supervisor software and the
underlying SBI implementation could be provided by machine mode firmware or a hypervisor.

10.1. Function: System reset (FID #0)

struct sbiret sbi_system_reset(uint32_t reset_type, uint32_t reset_reason)

Reset the system based on provided reset_type and reset_reason. This is a synchronous call and
does not return if it succeeds.

The reset_type parameter is 32 bits wide and it’s possible values are shown in the Table 26 below.

Table 26. SRST System Reset Types

Value Description

0x00000000 Shutdown

0x00000001 Cold reboot

0x00000002 Warm reboot

0x00000003 - Reserved for future use

OxEFFFFFFF

O0xFO000000 - Vendor or platform specific reset type
OxFFFFFFFF

The reset_reason is an optional parameter representing the reason for system reset. This parameter
is 32 bits wide with possible values shown in the Table 27 below

Table 27. SRST System Reset Reasons

Value Description

0x00000000 No reason

0x00000001 System failure

0x00000002 - Reserved for future use

OxDFFFFFFF

OxE0000000 - SBI implementation specific reset reason
OxEFFFFFFF

0xFO0O00000 - Vendor or platform specific reset reason
OxFFFFFFFF

When supervisor software is running natively, the SBI implementation is provided by machine mode
firmware. In this case, shutdown is equivalent to a physical power down of the entire system and cold

RISC-V Supervisor Binary Interface Specification | © RISC-V

10.2. Function Listing | Page 32

reboot is equivalent to a physical power cycle of the entire system. Further, warm reboot is equivalent
to a power cycle of the main processor and parts of the system, but not the entire system. For example,
on a server class system with a BMC (board management controller), a warm reboot will not power
cycle the BMC whereas a cold reboot will definitely power cycle the BMC.

When supervisor software is running inside a virtual machine, the SBI implementation is provided by
a hypervisor. Shutdown, cold reboot and warm reboot will behave functionally the same as the native
case, but might not result in any physical power changes.

The possible error codes returned in sbiret.error are shown in the Table 28 below.

Table 28. SRST System Reset Errors
Error code Description

SBI_ERR_INVALID PARAM Atleastone of reset_type or reset_reason is reserved or is
platform-specific and unimplemented.

SBI_ERR_NOT_SUPPORTED reset_type is not reserved and is implemented, but the platform
does not support it due to one or more missing dependencies.

SBI_ERR_FAILED The reset request failed for unspecified or unknown other reasons.

10.2. Function Listing

Table 29. SRST Function List
Function Name SBI Version FID EID
sbi_system_reset 0.3 0 0x53525354

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.1. Event: Hardware general events (Type #0) | Page 33

Chapter 11. Performance Monitoring Unit
Extension (EID #0x504D55 "PMU")

The RISC-V hardware performance counters such as mcycle, minstret, and mhpmcounterX CSRs are
accessible as read-only from supervisor-mode using cycle, instret, and hpmcounterX CSRs. The SBI
performance monitoring unit (PMU) extension is an interface for supervisor-mode to configure and
use the RISC-V hardware performance counters with assistance from the machine-mode (or
hypervisor-mode). These hardware performance counters can only be started, stopped, or configured
from machine-mode using mcountinhibit and mhpmeventX CSRs. Due to this, a machine-mode SBI
implementation may choose to disallow SBI PMU extension if mcountinhibit CSR is not
implemented by the RISC-V platform.

A RISC-V platform generally supports monitoring of various hardware events using a limited number
of hardware performance counters which are up to 64 bits wide. In addition, a SBI implementation
can also provide firmware performance counters which can monitor firmware events such as number
of misaligned load/store instructions, number of RFENCESs, number of IPIs, etc. All firmware counters
must have same number of bits and can be up to 64 bits wide.

The SBI PMU extension provides:

1. An interface for supervisor-mode software to discover and configure per-hart hardware/firmware
counters
2. Atypical perf compatible interface for hardware/firmware performance counters and events
3. Full access to microarchitecture’s raw event encodings
To define SBI PMU extension calls, we first define important entities counter_idx, event_idx, and
event_data. The counter_idx is a logical number assigned to each hardware/firmware counter. The

event_idx represents a hardware (or firmware) event whereas the event_data is 64 bits wide and
represents additional configuration (or parameters) for a hardware (or firmware) event.

The event_idx is a 20 bits wide number encoded as follows:

event_idx[19:16] = type
event_idx[15:0] = code

11.1. Event: Hardware general events (Type #0)

The event_idx.type (i.e. event type) should be 0x0 for all hardware general events and each

hardware general event is identified by an unique event_idx.code (i.e. event code) described in the
Table 30 below.

Table 30. PMU Hardware Events

General Event Name Code Description

SBI PMU_ HW _ NO_ EVENT 0 Unused event because event_idx
cannot be zero

RISC-V Supervisor Binary Interface Specification | © RISC-V

https://en.wikipedia.org/wiki/Perf_(Linux)

11.2. Event: Hardware cache events (Type #1) | Page 34

General Event Name Code Description

SBI _PMU_HW_CPU_CYCLES 1 Event for each CPU cycle

SBI _PMU_HW _INSTRUCTIONS 2 Event for each completed
instruction

SBI PMU_HW _ CACHE_ REFERENCES 3 Event for cache hit

SBI_PMU_HW_CACHE_MISSES 4 Event for cache miss

SBI _PMU_HW _ BRANCH INSTRUCTIONS 5 Event for a branch instruction

SBI PMU_ HW _ BRANCH MISSES 6 Event for a branch misprediction

SBI _PMU_HW _BUS_ CYCLES 7 Event for each BUS cycle

SBI PMU HW STALLED CYCLES FRONTEND 8 Event for a stalled cycle in
microarchitecture frontend

SBI PMU_ HW STALLED CYCLES BACKEND 9 Event for a stalled cycle in
microarchitecture backend

SBI_PMU_HW _ REF_ CPU_CYCLES 10 Event for each reference CPU

cycle

The event_data (i.e. event data) is unused for hardware general events and all non-zero values of

event_data are reserved for future use.

A RISC-V platform might halt the CPU clock when it enters WAIT state using the WFI
instruction or enters platform specific SUSPEND state using the SBI HSM hart suspend
call.

The SBI_PMU_HW _CPU_CYCLES event counts CPU clock cycles as counted by the
cycle CSR. These may be variable frequency cycles, and are not counted when the CPU
clock is halted.

The SBI_PMU_HW _REF_CPU_CYCLES counts fixed-frequency clock cycles while the
CPU clock is not halted. The fixed-frequency of counting might, for example, be the same
frequency at which the time CSR counts.

The SBI_PMU_HW _BUS_CYCLES counts fixed-frequency clock cycles. The fixed-
frequency of counting might be the same frequency at which the time CSR counts, or may
be the frequency of the clock at the boundary between the hart (and it’s private caches)
and the rest of the system.

11.2. Event: Hardware cache events (Type #1)

The event_idx. type (i.e. event type) should be 0x1 for all hardware cache events and each hardware

cache event is identified by an unique event_idx. code (i.e. event code) which is encoded as follows:

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.3. Event: Hardware raw events (Type #2) | Page 35

event_idx.code[15:3] = cache_id
event_idx.code[2:1] = op_id
event_idx.code[0:0] = result_id

Below tables show possible values of: event_idx.code.cache_id (i.e. cache eventid),
event_idx.code.op_id (i.e. cache operation id) and event_idx.code.result_id (i.e. cache result

id).

Table 31. PMU Cache Event ID

Cache Event Name Event ID Description

SBI PMU_ HW _ CACHE LID 0 Levell data cache event

SBI PMU_ HW _ CACHE LII 1 Levell instruction cache event
SBI PMU_HW _ CACHE LL 2 Last level cache event
SBI_PMU_ HW_CACHE DTLB 3 Data TLB event

SBI _PMU_HW _ CACHE ITLB 4 Instruction TLB event
SBI_PMU_HW _CACHE_BPU 5 Branch predictor unit event
SBI _PMU_HW _ CACHE_ NODE 6 NUMA node cache event
Table 32. PMU Cache Operation ID

Cache Operation Name Operation ID Description

SBI _PMU_HW _ CACHE_OP_READ 0 Read cache line

SBI _PMU_HW _ CACHE_ OP_WRITE 1 Write cache line

SBI PMU HW CACHE OP_ PREFETCH 2 Prefetch cache line

Table 33. PMU Cache Operation Result ID

Cache Result Name Result ID Description

SBI PMU_HW_ CACHE_ RESULT_ACCESS O Cache access

SBI_PMU_ HW _CACHE RESULT_ MISS 1 Cache miss

The event_data (i.e. event data) is unused for hardware cache events and all non-zero values of
event_data are reserved for future use.

11.3. Event: Hardware raw events (Type #2)

The event_idx. type (i.e. event type) should be 0x2 for all hardware raw events and event_idx. code
(i.e. event code) should be zero.

On RISC-V platform with 32 bits wide mhpmeventX CSRs, the event_data configuration (or
parameter) should have the 32-bit value to to be programmed in the mhpmeventX CSR.

On RISC-V platform with 64 bits wide mhpmeventX CSRs, the event_data configuration (or
parameter) should have the 48-bit value to to be programmed in the lower 48-bits of mhpmeventX CSR
and the SBI implementation shall determine the value to be programmed in the upper 16 bits of

RISC-V Supervisor Binary Interface Specification | © RISC-V

114. Event: Firmware events (Type #15) | Page 36

mhpmeventX CSR.

The RISC-V platform hardware implementation may choose to define the expected value to
y be written to mhpmeventX CSR for a hardware event. In case of hardware general/cache
EI events, the RISC-V platform hardware implementation may use the zero-extended
event_idx as the expected value for simplicity.

11.4. Event: Firmware events (Type #15)

The event_idx.type (i.e. event type) should be 0xf for all firmware events and each firmware event

is identified by an unique event_idx. code (i.e. event code) described in the Table 34 below.

Table 34. PMU Firmware Events

Firmware Event Name
SBI_PMU_FW_MISALIGNED LOAD
SBI PMU_ FW_MISALIGNED STORE
SBI _PMU_FW_ACCESS_LOAD
SBI_PMU_FW_ACCESS STORE
SBI_PMU_FW _ILLEGAL INSN
SBI_PMU_FW_SET_TIMER

SBI PMU_FW _ IPI SENT
SBI_PMU_FW_IPI RECEIVED

SBI_PMU_FW_FENCE_I_SENT

SBI_PMU_FW_FENCE_I_RECEIVED

SBI_PMU_FW_SFENCE_VMA_SENT

SBI_PMU_FW_SFENCE_VMA_RECEIVED

SBI_PMU_FW_SFENCE_VMA _ASID SENT

SBI_PMU_FW_SFENCE_VMA_ASID_RECEIVE
D

SBI_PMU_FW_HFENCE_GVMA_SENT

SBI_PMU_FW_HFENCE GVMA_RECEIVED

RISC-V Supervisor Binary Interface Specification | © RISC-V

Code

~N 0O g W N

10

11

12

Description

Misaligned load trap event
Misaligned store trap event
Load access trap event

Store access trap event
Illegal instruction trap event
Set timer event

Sent IPI to other hart event

Received IPI from other hart
event

Sent FENCE.I request to other
hart event

Received FENCE.I request
from other hart event

Sent SFENCE.VMA request to
other hart event

Received SFENCE.VMA
request from other hart event

Sent SFENCE.VMA with ASID
request to other hart event

Received SFENCE.VMA with
ASID request from other hart
event

Sent HFENCE.GVMA request
to other hart event

Received HFENCE.GVMA
request from other hart event

11.5. Function: Get number of counters (FID #0) | Page 37

Firmware Event Name Code Description

SBI_PMU_FW_HFENCE GVMA VMID SENT 16 Sent HFENCE.GVMA with
VMID request to other hart
event

SBI _PMU_FW_ HFENCE GVMA_ VMID RECEI 17 Received HFENCE.GVMA with

VED VMID request from other hart
event

SBI_PMU_FW_HFENCE VVMA SENT 18 Sent HFENCE.VVMA request
to other hart event

SBI PMU_FW_ HFENCE VVMA RECEIVED 19 Received HFENCE.VVMA
request from other hart event

SBI_PMU_FW_HFENCE VVMA ASID SENT 20 Sent HFENCE.VVMA with
ASID request to other hart
event

SBI_PMU_FW_HFENCE VVMA ASID RECEI 21 Received HFENCE.VVMA with

VED ASID request from other hart
event

Reserved 22 - 255 Reserved for future use

Implementation specific events 256 - SBI implementation specific

65534 firmware events
SBI _PMU_FW_PLATFORM 65535 RISC-V platform specific

firmware events, where the
event_data configuration (or
parameter) contains the event
encoding.

For all firmware events except SBI_PMU_FW_PLATFORM, the event_data configuration (or
parameter) is unused and all non-zero values of event_data are reserved for future use.

11.5. Function: Get number of counters (FID #0O)

struct sbiret sbi_pmu_num_counters()

Returns the number of counters (both hardware and firmware) in sbiret.value and always returns
SBI_SUCCESS in sbiret.error.

11.6. Function: Get details of a counter (FID #1)

struct sbiret sbi_pmu_counter_get_info(unsigned long counter_idx)

Get details about the specified counter such as underlying CSR number, width of the counter, type of
counter hardware/firmware, etc.

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.7. Function: Find and configure a matching counter (FID #2) | Page 38

The counter_info returned by this SBI call is encoded as follows:
counter_info[11:0] = CSR (12bit CSR number)
counter_info[17:12] = Width (One less than number of bits in CSR)

counter_info [XLEN-2:18] = Reserved for future use
counter_info[XLEN-1] = Type (0 = hardware and 1 = firmware)

If counter_info.type == 1then counter_info.csr and counter_info.width should be ignored.
Returns the counter_info described above in sbiret.value.
The possible error codes returned in sbiret.error are shown in the Table 35 below.

Table 35. PMU Counter Get Info Errors

Error code Description
SBI_SUCCESS counter_info read successfully.
SBI _ERR_INVALID PARAM counter_idx points to an invalid counter.

11.7. Function: Find and configure a matching
counter (FID #2)

struct sbiret sbi_pmu_counter_config matching(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long config flags,
unsigned long event_idx,
uint64_t event_data)

Find and configure a counter from a set of counters which is not started (or enabled) and can monitor
the specified event. The counter_idx_base and counter_idx_mask parameters represent the set of
counters whereas event_idx represents the event to be monitored and event_data represents any
additional event configuration.

The config_flags parameter represents additional counter configuration and filter flags. The bit
definitions of the config_flags parameter are shown in the Table 36 below.

Table 36. PMU Counter Config Match Flags

Flag Name Bits Description

SBI PMU_ CFG_FLAG_ SKIP MATCH 0:0 Skip the counter matching

SBI_PMU_CFG_FLAG_CLEAR_VALUE 1:1 Clear (or zero) the counter
value in counter
configuration

SBI _PMU_ CFG_FLAG AUTO_ START 2:2 Start the counter after
configuring a matching
counter

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.8. Function: Start a set of counters (FID #3) | Page 39

Flag Name Bits Description

SBI _PMU_CFG_FLAG_SET_ VUINH 3:3 Event counting inhibited
in VU-mode

SBI_PMU_CFG_FLAG_SET_VSINH 4:4 Event counting inhibited
in VS-mode

SBI_PMU_CFG_FLAG_SET_UINH 5:5 Event counting inhibited
in U-mode

SBI PMU_ CFG_FLAG_ SET_SINH 6:6 Event counting inhibited
in S-mode

SBI _PMU_CFG_FLAG_SET_ MINH 7 Event counting inhibited
in M-mode

RESERVED 8:(XLEN-1) All non-zero values are

reserved for future use

When SBI_PMU_CFG_FLAG_SKIP_MATCH is set in config_flags, the SBI
| yl implementation will unconditionally select the first counter from the set of counters
specified by the counter_idx_base and counter_idx_mask.

y The SBI_PMU_CFG_FLAG_AUTO_START flag in config_flags has no impact on
EI the counter value.

. The config_flags[3:7] bits are event filtering hints so these can be ignored or
y; overridden by the SBI implementation for security concerns or due to lack of event filtering
support in the underlying RISC-V platform.

Returns the counter_idx in sbiret.value upon success.
In case of failure, the possible error codes returned in sbiret.error are shown in the Table 37 below.

Table 37. PMU Counter Config Match Errors

Error code Description
SBI_SUCCESS counter found and configured successfully.
SBI_ERR_INVALID PARAM set of counters has at least one invalid counter.

SBI _ERR_NOT_SUPPORTED none of the counters can monitor the specified event.

11.8. Function: Start a set of counters (FID #3)

struct sbiret sbi_pmu_counter_start(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long start_flags,
uint64_t initial_value)

Start or enable a set of counters on the calling hart with the specified initial value. The
counter_idx_base and counter_idx_mask parameters represent the set of counters whereas the

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.9. Function: Stop a set of counters (FID #4) | Page 40
initial_value parameter specifies the initial value of the counter.
The bit definitions of the start_flags parameter are shown in the Table 38 below.

Table 38. PMU Counter Start Flags

Flag Name Bits Description

SBI _PMU_START_SET_INIT VALUE 0:0 Set the value of counters
based on the initial_value
parameter

SBI _PMU_START _ FLAG_INIT _SNAPSH 11 Initialize the given counters

OoT from shared memory if
available.

RESERVED 2:(XLEN-1) Reserved for future use

y When SBI_PMU_START_SET_INIT_VALUE is not set in start_f1lags, the counter
EI value will not be modified and event counting will start from current counter value.

The shared memory address must be set during boot via sbi_pmu_snapshot_set_shmem before the
SBI_PMU_START_FLAG_INIT_SNAPSHOT flag may be used. The SBI implementation must initialize all
the given valid counters (to be started) from the value set in the shared snapshot memory.

y SBI_PMU_START_SET_INIT_VALUE and SBI_PMU_START_FLAG_INIT_SNAPSHOT are
EI mutually exclusive as the former is only valid for a single counter.

The possible error codes returned in sbiret.error are shown in the Table 39 below.

Table 39. PMU Counter Start Errors

Error code Description

SBI_SUCCESS counter started successfully.

SBI _ERR_INVALID PARAM set of counters has at least one invalid counter.

SBI ERR_ALREADY STARTED setof counters includes at least one counter which is
already started.

SBI_ERR_NO_ SHMEM the snapshot shared memory is not available and
SBI_PMU_START_FLAG_INIT_SNAPSHOT is set in the
flags.

11.9. Function: Stop a set of counters (FID #4)

struct sbiret sbi_pmu_counter_stop(unsigned long counter_idx_base,
unsigned long counter_idx_mask,
unsigned long stop_flags)

Stop or disable a set of counters on the calling hart. The counter_idx_base and counter_idx_mask

parameters represent the set of counters. The bit definitions of the stop_flags parameter are shown
in the Table 40 below.

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.10. Function: Read a firmware counter (FID #5) | Page 41

Table 40. PMU Counter Stop Flags

Flag Name Bits Description

SBI _PMU_STOP_FLAG_RESET 0:0 Reset the counter to event
mapping.

SBI _PMU_ STOP FLAG TAKE SNAPSHO 11 Save a snapshot of the given

T counter’s values in the shared

memory if available.

RESERVED 2:(XLEN-1) Reserved for future use

The shared memory address must be set during boot via sbi_pmu_snapshot_set_shmem before the
SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT flag may be used. The SBI implementation must save the
current value of all the stopped counters in the shared memory if
SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT is set. The values corresponding to all other counters must not
be modified. The SBI implementation must additionally update the overflown counter bitmap in the
shared memory.

The possible error codes returned in sbiret . error are shown in the Table 41 below.

Table 41. PMU Counter Stop Errors

Error code Description

SBI_SUCCESS counter stopped successfully.

SBI _ERR_INVALID PARAM set of counters has at least one invalid counter.

SBI _ERR_ALREADY STOPPED setof counters includes at least one counter which is
already stopped.

SBI_ERR_NO_ SHMEM the snapshot shared memory is not available and
SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT is set in the
flags.

11.10. Function: Read a firmware counter (FID #5)

struct sbiret sbi_pmu_counter_fw_read(unsigned long counter_idx)

Provide the current firmware counter value in sbiret.value. On RV32 systems, the sbiret.value
will only contain the lower 32 bits of the current firmware counter value.

The possible error codes returned in sbiret.error are shown in the Table 42 below.

Table 42. PMU Counter Firmware Read Errors

Error code Description
SBI_SUCCESS firmware counter read successfully.
SBI ERR_INVALID PARAM counter_idx points to a hardware counter or an

invalid counter.

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.11. Function: Read a firmware counter high bits (FID #6) | Page 42

11.11. Function: Read a firmware counter high bits
(FID #0)

struct sbiret sbi_pmu_counter_fw_read_hi(unsigned long counter_idx)
Provide the upper 32 bits of the current firmware counter value in sbiret.value. This function
always returns zero in sbiret.value for RV64 (or higher) systems.
The possible error codes returned in sbiret.error are shown in Table 43 below.

Table 43. PMU Counter Firmware Read High Errors

Error code Description
SBI_SUCCESS Firmware counter read successfully.
SBI_ERR_INVALID PARAM counter_idx points to a hardware counter or an

invalid counter.

11.12. Function: Set PMU snapshot shared memory
(FID #7)

struct sbiret sbi_pmu_snapshot_set_shmem(unsigned long shmem_phys_lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set and enable the PMU snapshot shared memory.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then shmem_phys_1lo
specifies the lower XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the snapshot
shared memory physical base address. The shmem_phys_lo MUST be 4096 bytes (i.e. page) aligned
and the size of the snapshot shared memory must be 4096 bytes. The layout of the snapshot shared
memory is described in Table 44,

If both shmem_phys_lo and shmem_phys_hi parameters are all-ones bitwise then the PMU snapshot
shared memory is cleared and disabled.

The flags parameter is reserved for future use and must be zero.

Table 44. SBI PMU Snapshot shared memory layout
Name Offset Size Description

counter_overflow_bitmap 0x0000 8 A bitmap of all logical
overflown counters. This is
valid only if the Sscofpmf ISA
extension is available.
Otherwise, it must be zero.

RISC-V Supervisor Binary Interface Specification | © RISC-V

11.13. Function Listing | Page 43

Name Offset Size Description

counter_values 0x0008 512 An array of 64-bit logical
counters where each index
represents the value of each
logical counter associated with
hardware/firmware.

Reserved 0x0208 3576 Reserved for future use

Any future revisions to this structure should be made in a backward compatible manner and will be
associated with an SBI version.

This function should be invoked only once per hart at boot time. Once configured, the SBI
implementation has read/write access to the shared memory when sbi_pmu_counter_stop is
invoked with the SBI_PMU_STOP_FLAG_TAKE_SNAPSHOT flag set. The SBI implementation has read
only access when sbi_pmu_counter_start is invoked with the
SBI_PMU_START_FLAG_INIT_SNAPSHOT flag set. The SBI implementation must not access this
memory any other time.

The possible error codes returned in sbiret. error are shown in Table 45 below.

Table 45. PMU Setup Snapshot Area Errors

Error code Description
SBI_SUCCESS Shared memory was set or cleared successfully.
SBI ERR_INVALID PARAM The flags parameter is not zero or the

shmem_phys_lo parameter is not 4096 bytes aligned.

SBI_ERR_INVALID _ADDRESS The shared memory pointed to by the
shmem_phys_lo and shmem_phys_hi parameters is
not writable or does not satisfy other requirements of
Section 3.2.

11.13. Function Listing

Table 46. PMU Function List

Function Name SBI Version FID EID

sbi_pmu_num_ counters 0.3 0 0x504D55
sbi_pmu_counter_get_info 0.3 1 0x504D55
sbi_pmu_counter_config_matching 0.3 2 0x504D55
sbi_pmu_counter_start 0.3 3 0x504D55
sbi_pmu_counter_stop 0.3 4 0x504D55
sbi_pmu_counter_fw_read 0.3 5 0x504D55
sbi_pmu_counter_fw_read_hi 2.0 6 0x504D55
sbi_pmu_snapshot_set_shmem 2.0 7 0x504D55

RISC-V Supervisor Binary Interface Specification | © RISC-V

12.1. Function: Console Write (FID #0) | Page 44

Chapter 12. Debug Console Extension
(EID #0x4442434E "DBCN")

The debug console extension defines a generic mechanism for debugging and boot-time early prints
from supervisor-mode software.

This extension replaces the legacy console putchar (EID #0x01) and console getchar (EID #0x02)
extensions. The debug console extension allows supervisor-mode software to write or read multiple
bytes in a single SBI call.

If the underlying physical console has extra bits for error checking (or correction) then these extra bits
should be handled by the SBI implementation.

y It is recommended that bytes sent/received using the debug console extension follow UTF-
EI 8 character encoding.

12.1. Function: Console Write (FID #0)

struct sbiret sbi_debug_console_write(unsigned long num_bytes,
unsigned long base_addr_lo,
unsigned long base_addr_hi)

Write bytes to the debug console from input memory.

The num_bytes parameter specifies the number of bytes in the input memory. The physical base
address of the input memory is represented by two XLEN bits wide parameters. The base_addr_lo
parameter specifies the lower XLEN bits and the base_addr_hi parameter specifies the upper XLEN
bits of the input memory physical base address.

This is a non-blocking SBI call and it may do partial/no writes if the debug console is not able to
accept more bytes.

The number of bytes written is returned in sbiret.value and the possible error codes returned in
sbiret.error are shown in Table 47 below.

Table 47. Debug Console Write Errors

Error code Description
SBI_SUCCESS Bytes written successfully.
SBI_ERR_INVALID PARAM The memory pointed to by the num_bytes,

base_addr_lo, and base_addr_hi parameters does
not satisfy the requirements described in the Section

3.2
SBI _ERR_DENIED Writes to the debug console is not allowed.
SBI_ERR_FAILED Failed to write due to I/O errors.

RISC-V Supervisor Binary Interface Specification | © RISC-V

12.2. Function: Console Read (FID #1) | Page 45

12.2. Function: Console Read (FID #1)

struct sbiret sbi_debug_console_read(unsigned long num_bytes,
unsigned long base_addr_lo,
unsigned long base_addr_hi)

Read bytes from the debug console into an output memory.

The num_bytes parameter specifies the maximum number of bytes which can be written into the
output memory. The physical base address of the output memory is represented by two XLEN bits
wide parameters. The base_addr_lo parameter specifies the lower XLEN bits and the base_addr_hi
parameter specifies the upper XLEN bits of the output memory physical base address.

This is a non-blocking SBI call and it will not write anything into the output memory if there are no
bytes to be read in the debug console.

The number of bytes read is returned in sbiret.value and the possible error codes returned in
sbiret.error are shown in Table 48 below.

Table 48. Debug Console Read Errors

Error code Description
SBI_SUCCESS Bytes read successfully.
SBI _ERR INVALID PARAM The memory pointed to by the num_bytes,

base_addr_lo, and base_addr_hi parameters does
not satisfy the requirements described in the Section

3.2
SBI _ERR_DENIED Reads from the debug console is not allowed.
SBI _ERR_FAILED Failed to read due to I/O errors.

12.3. Function: Console Write Byte (FID #2)

struct sbiret sbi_debug_console_write_byte(uint8_t byte)

Write a single byte to the debug console.

This is a blocking SBI call and it will only return after writing the specified byte to the debug console.
It will also return, with SBI_ERR _FAILED, if there are I/O errors.

The sbiret.value is set to zero and the possible error codes returned in sbiret.error are shown in
Table 49 below.

Table 49. Debug Console Write Byte Errors
Error code Description

SBI_SUCCESS Byte written successfully.

RISC-V Supervisor Binary Interface Specification | © RISC-V

12.4. Function Listing | Page 46

Error code Description
SBI _ERR_DENIED Write to the debug console is not allowed.
SBI_ERR_FAILED Failed to write the byte due to I/O errors.

12.4. Function Listing

Table 50. DBCN Function List

Function Name SBI Version FID EID

sbi_debug_console_write 2.0 0 0x4442434E
sbi_debug_console_read 2.0 1 0x4442434E
sbi_debug_console_write_byte 2.0 2 0x4442434E

RISC-V Supervisor Binary Interface Specification | © RISC-V

13.1. Function: System Suspend (FID #0) | Page 47

Chapter 13. System Suspend Extension
(EID #0x53555350 "SUSP")

The system suspend extension defines a set of system-level sleep states and a function which allows
the supervisor-mode software to request that the system transitions to a sleep state. Sleep states are
identified with 32-bit wide identifiers (sleep_type). The possible values for the identifiers are shown
in Table 51.

The term "system’ refers to the world-view of the supervisor software domain invoking the call. System
suspend may only suspend the part of the overall system which is visible to the invoking supervisor
software domain.

The system suspend extension does not provide any way for supported sleep types to be probed.
Platforms are expected to specify their supported system sleep types and per-type wake up devices in
their hardware descriptions. The SUSPEND_TO_RAM sleep type is the one exception, and its presence is
implied by that of the extension.

Table 51. SUSP System Sleep Types
Type Name Description

0 SUSPEND_TO_RAM This is a “suspend to RAM” sleep type,
similar to ACPI's S2 or S3. Entry requires all
but the calling hart be in the HSM STOPPED
state and all hart registers and CSRs saved to

RAM.
0x00000001 - Reserved for future use
Oxrfffftff
0x80000000 - Platform-specific system sleep types
Oxffffffff

13.1. Function: System Suspend (FID #0)

struct sbiret sbi_system_suspend(uint32_t sleep_type,
unsigned long resume_addr,
unsigned long opaque)

A return from a sbi_system_suspend () call implies an error and an error code from Table 53 will be
in sbiret.error. A successful suspend and wake up, results in the hart which initiated the suspend,
resuming from the STOPPED state. To resume, the hart will jump to supervisor-mode, at the address
specified by resume_addr, with the specific register values described in Table 52.

Table 52. SUSP System Resume Register State

Register Name Register Value
satp 0
sstatus.SIE o)

RISC-V Supervisor Binary Interface Specification | © RISC-V

13.2. Function Listing | Page 48

Register Name Register Value
a0 hartid
al opaque parameter

All other registers remain in an undefined state.

A singleunsigned long parameter is sufficient for resume_addr, because the hart will
| yl resume execution in supervisor-mode with the MMU off, hence resume_addr must be less
than XLEN bits wide.

The resume_addr parameter points to a runtime-specified physical address, where the hart can
resume execution in supervisor-mode after a system suspend.

The opaque parameter is an XLEN-bit value which will be set in the a1 register when the hart resumes
execution at resume_addr after a system suspend.

Besides ensuring all entry criteria for the selected sleep type are met, such as ensuring other harts are
in the STOPPED state, the caller must ensure all power units and domains are in a state compatible with
the selected sleep type. The preparation of the power units, power domains, and wake-up devices used
for resumption from the system sleep state is platform specific and beyond the scope of this
specification.

When supervisor software is running inside a virtual machine, the SBI implementation is provided by
a hypervisor. System suspend will behave similarly to the native case from the point of view of the
supervisor software.

The possible error codes returned in sbiret. error are shown in Table 53.

Table 53. SUSP System Suspend Errors
Error code Description
SBI_SUCCESS System has suspended and resumed successfully.

SBI_ERR_INVALID_PARAM sleep_type is reserved or is platform-specific and
unimplemented.

SBI_ERR_NOT_SUPPORTED sleep_type is not reserved and is implemented, but the platform
does not support it due to one or more missing dependencies.

SBI_ERR_INVALID_ADDRESS resume_addr is not valid, possibly due to the following reasons:
* It is not a valid physical address.
* Executable access to the address is prohibited by a physical
memory protection mechanism or H-extension G-stage for
supervisor mode.

SBI_ERR_DENIED The suspend request failed due to unsatisfied entry criteria.
SBI_ERR_FAILED The suspend request failed for unspecified or unknown other
reasons.

13.2. Function Listing

Table 54. SUSP Function List

RISC-V Supervisor Binary Interface Specification | © RISC-V

13.2. Function Listing | Page 49

Function Name SBI Version FID EID
sbi_system_suspend 2.0 0 0x53555350

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 14. CPPC Extension (EID #0x43505043 "CPPC") | Page 50

Chapter 14. CPPC Extension (EID
HOx43505043 "CPPC")

ACPI defines the Collaborative Processor Performance Control (CPPC) mechanism, which is an
abstract and flexible mechanism for the supervisor-mode power-management software to collaborate
with an entity in the platform to manage the performance of the processors.

The SBI CPPC extension provides an abstraction to access the CPPC registers through SBI calls. The
CPPC registers can be memory locations shared with a separate platform entity such as a BMC. Even
though CPPC is defined in the ACPI specification, it may be possible to implement a CPPC driver
based on Device Tree.

Table 55 defines 32-bit identifiers for all CPPC registers to be used by the SBI CPPC functions. The
first half of the 32-bit register space corresponds to the registers as defined by the ACPI specification.
The second half provides the information not defined in the ACPI specification, but is additionally
required by the supervisor-mode power-management software.

Table 55. CPPC Registers

Register ID Register Bit Attribut Description
Wwidth e
0x00000000 HighestPerformance 32 Read- ACPI Spec 6.5:
only 846111
0x00000001 NominalPerformance 32 Read- ACPI Spec 6.5:
only 84.6.112
0x00000002 LowestNonlinearPerformanc 32 Read- ACPI Spec 6.5:
e only 846114
0x00000003 LowestPerformance 32 Read- ACPI Spec 6.5:
only 84.6.115
0x00000004 GuaranteedPerformanceRegi 32 Read- ACPI Spec 6.5:
ster only 8.4.6.1.1.6
0x00000005 DesiredPerformanceRegister 32 Read / ACPI Spec 6.5:
Write 8.4.6.1.2.3
0x00000006 MinimumPerformanceRegist 32 Read / ACPI Spec 6.5:
er Write 84.6.12.2
0x00000007 MaximumPerformanceRegist 32 Read / ACPI Spec 6.5:
er Write 846121
0x00000008 PerformanceReductionToler 32 Read / ACPI Spec 6.5:
anceRegister Write 846124
0x00000009 TimeWindowRegister 32 Read / ACPI Spec 6.5:

Write 84.6.12.5

0x0000000A CounterWraparoundTime 32 /64 Read- ACPI Spec 6.5:
only 846131

0x0000000B ReferencePerformanceCount 32/64 Read- ACPI Spec 6.5:
erRegister only 84.6.1.31

RISC-V Supervisor Binary Interface Specification | © RISC-V

Register ID

0x0000000C

0x0000000D

0xO000000E

0xO00000O0O0F

0x00000010

0x00000011

0x00000012

0x00000013

0x00000014

0x00000015 -

Ox(FFFFFFF
0x80000000

0x80000001 -
OxFFFFFFFF

Register
DeliveredPerformanceCount
erRegister
PerformanceLimitedRegister
CPPCEnableRegister
AutonomousSelectionEnable
AutonomousActivityWindow

Register

EnergyPerformancePreferen
ceRegister
ReferencePerformance

LowestFrequency

NominalFrequency

TransitionLatency

14.1. Function: Probe CPPC register (FID #0) | Page 51

Bit
Width
32/ 64
32
32

32

32

32

32

Attribut Description

e

Read-
only

Read /
Write

Read /
Write

Read /
Write

Read /
Write

Read /
Write

Read-
only

Read-
only

Read-
only

Read-
only

ACPI Spec 6.5:
84.6131

ACPI Spec 6.5:
8.4.613.2

ACPI Spec 6.5:
8.4.6.14

ACPI Spec 6.5:
8.4.6.15

ACPI Spec 6.5:
8.4.6.1.6

ACPI Spec 6.5:
8.4.6.17

ACPI Spec 6.5:
8.4.6.113

ACPI Spec 6.5:
8.4.6.117

ACPI Spec 6.5:
8.4.6.117

Reserved for future
use.

Provides the
maximum (worst-
case) performance
state transition
latency in
nanoseconds.

Reserved for future
use.

14.1. Function: Probe CPPC register (FID #0)

struct sbiret sbi_cppc_probe(uint32_t cppc_reg_id)

Probe whether the CPPC register as specified by the cppc_reg_id parameter is implemented or not by

the platform.

If the register is implemented, sbiret.value will contain the register width. If the register is not
implemented, sbiret.value will be set to O.

The possible error codes returned in sbiret . error are shown in Table 56.

Table 56. CPPC Probe Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V

14.2. Function: Read CPPC register (FID #1) | Page 52

Error code Description
SBI_SUCCESS Probe completed successfully.
SBI_ERR_INVALID _PARAM cppc_reg_id is reserved.

SBI_ERR_FAILED The probe request failed for unspecified or unknown other reasons.

14.2. Function: Read CPPC register (FID #1)

struct sbiret sbi_cppc_read(uint32_t cppc_reg_id)

Reads the register as specified in the cppc_reg_id parameter and returns the value in sbiret.value.
When supervisor mode XLEN is 32, the sbiret.value will only contain the lower 32 bits of the CPPC
register value.

The possible error codes returned in sbiret . error are shown in Table 57.

Table 57. CPPC Read Errors

Error code Description

SBI_SUCCESS Read completed successfully.
SBI_ERR_INVALID _PARAM cppc_reg_id is reserved.
SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.
SBI_ERR_DENIED cppc_reg_id is a write-only register.

SBI_ERR_FAILED The read request failed for unspecified or unknown other reasons.

14.3. Function: Read CPPC register high bits (FID
#2)

struct sbiret sbi_cppc_read_hi(uint32_t cppc_reg_id)

Reads the upper 32-bit value of the register specified in the cppc_reg_id parameter and returns the

value in sbiret.value. This function always returns zero in sbiret.value when supervisor mode
XLEN is 64 or higher.

The possible error codes returned in sbiret.error are shown in Table 58.

Table 58. CPPC Read Hi Errors

Error code Description

SBI_SUCCESS Read completed successfully.
SBI_ERR_INVALID _PARAM cppc_reg_id is reserved.
SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.

SBI_ERR_DENIED cppc_reg_id is a write-only register.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Error code Description

14.4. Function: Write to CPPC register (FID #3) | Page 53

SBI_ERR_FAILED The read request failed for unspecified or unknown other reasons.

14.4. Function: Write to CPPC register (FID #3)

struct sbiret sbi_cppc_write(uint32_t cppc_reg_id, uint64_t val)

Writes the value passed in the val parameter to the register as specified in the cppc_reg_id

parameter.

The possible error codes returned in sbiret.error are shown in Table 59.

Table 59. CPPC Write Errors

Error code Description

SBI_SUCCESS Write completed successfully.

SBI_ERR_INVALID _PARAM cppc_reg_id is reserved.

SBI_ERR_NOT_SUPPORTED cppc_reg_id is not implemented by the platform.

SBI_ERR_DENIED cppc_reg_id is a read-only register.

SBI_ERR_FAILED The write request failed for unspecified or unknown other reasons.

14.5. Function Listing

Table 60. CPPC Function List

Function Name SBI Version FID EID

sbi_cppc_ probe 2.0 0 0x43505043
sbi_cppc_read 2.0 1 0x43505043
sbi_cppc_read_hi 2.0 2 0x43505043
sbi_cppc_write 2.0 3 0x43505043

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 15. Nested Acceleration Extension (EID #0x4E41434C "NACL") | Page 54

Chapter 15. Nested Acceleration
Extension (EID #0x4E41434C "NACL")

Nested virtualization is the ability of a hypervisor to run another hypervisor as a guest. RISC-V nested
virtualization requires an LO hypervisor (running in hypervisor-mode) to trap-and-emulate the RISC-
V H-extension [priv_v1.12] functionality (such as CSR accesses, HFENCE instructions, HLV/HSV
instructions, etc.) for the L1 hypervisor (running in virtualized supervisor-mode).

The SBI nested acceleration extension defines a shared memory based interface between the SBI
implementation (or LO hypervisor) and the supervisor software (or L1 hypervisor) which allows both
to collaboratively reduce traps taken by the LO hypervisor for emulating RISC-V H-extension
functionality. The nested acceleration shared memory allows the L1 hypervisor to batch multiple
RISC-V H-extension CSR accesses and HFENCE requests which are then emulated by the LO
hypervisor upon an explicit synchronization SBI call.

y The M-mode firmware should not implement the SBI nested acceleration extension if the
EI underlying platform has the RISC-V H-extension implemented in hardware.

This SBI extension defines optional features which MUST be discovered by the supervisor software (or
L1 hypervisor) before using the corresponding SBI functions. Each nested acceleration feature is
assigned a unique ID which is an unsigned 32-bit integer. The Table 61 below provides a list of all
nested acceleration features.

Table 61. Nested acceleration features

Feature ID Feature Name Description
0x00000000 SBI_NACL_FEAT_SYNC_CSR Synchronize CSR
0x00000001 SBI_NACL_FEAT_SYNC_HFENCE Synchronize HFENCE
0x00000002 SBI_NACL_FEAT_ SYNC_SRET Synchronize SRET
0x00000003 SBI_NACL_FEAT_AUTOSWAP_CSR Autoswap CSR
>0x00000003 RESERVED Reserved for future use

To use the SBI nested acceleration extension, the supervisor software (or L1 hypervisor) MUST set up a
nested acceleration shared memory physical address for each virtual hart at boot-time. The physical
base address of the nested acceleration shared memory MUST be 4096 bytes (i.e. page) aligned and
the size of the nested acceleration shared memory must be 4096 + (1024 * (XLEN / 8)) bytes. The
Table 62 below shows the layout of nested acceleration shared memory.

Table 62. Nested acceleration shared memory layout

Name Offset Size (bytes) Description
Scratch space 0x00000000 4096 Nested acceleration feature specific
data.

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.1. Feature: Synchronize CSR (ID #0) | Page 55

Name Offset Size (bytes) Description

CSR space 0x00001000 XLEN * 128 Anarray of 1024 XLEN-bit words
where each word corresponds to a
possible RISC-V H-extension CSR
defined in the Table 2.1 of the RISC-
V privileged specification
[priv_v1.12].

Any nested acceleration feature may define the contents of the scratch space shown in the Table 62
above if required.

The contents of the CSR space shown in the Table 62 above is an array of RISC-V H-extension CSR
values where CSR <x>is atindex <i> = ((<x> & 0xc00) >> 2) | (<x> & Oxff).The SBI
implementation (or LO hypervisor) MUST update the CSR space whenever the state of any RISC-V H-
extension CSR changes unless some nested acceleration feature defines a different behaviour. The
Table 63 below shows CSR space index ranges for all possible 1024 RISC-V H-extension CSRs.

Table 63. Nested acceleration H-extension CSR index ranges

H-extension CSR address SBI NACL CSR space index
[11:10] [9:8] [7:4] Hex Range Hex Range

00 10 XXXX 0x200 - 0Ox2ff 0x000 - 0xOff
01 10 Oxxx 0x600 - 0x67f 0x100 - Ox17f
01 10 10xx 0x680 - 0x6bf 0x180 - Ox1bf
01 10 11xx 0x6c0 - 0x6ff 0x1cO - Ox1ff
10 10 0xxx 0xa00 - OxaT7f 0x200 - 0x27f
10 10 10xx 0xa80 - Oxabf 0x280 - 0x2bf
10 10 11xx OxacO - Oxaff 0x2c0 - 0x2ff
11 10 0xxx 0xe00 - OxeTf 0x300 - 0x37f
11 10 10xx 0xe80 - Oxebf 0x380 - 0x3bf
11 10 11xx OxecO - Oxeff 0x3cO0 - 0x3ff

15.1. Feature: Synchronize CSR (1D #0)

The synchronize CSR feature describes the ability of the SBI implementation (or LO hypervisor) to
allow supervisor software (or L1 hypervisor) to write RISC-V H-extension CSRs using the CSR space.

This nested acceleration feature defines the scratch space offset range 0x0F80 - 0xOFFF (128 bytes)
as nested CSR dirty bitmap. The nested CSR dirty bitmap contains 1-bit for each possible RISC-V H-
extension CSR.

To write a CSR <x> in nested acceleration shared memory, the supervisor software (or L1 hypervisor)
MUST do the following:

L Compute <i> = ((<x> & 0xc00) >> 2) | (<x> & Oxff)

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.2. Feature: Synchronize HFENCE (ID #1) | Page 56

2. Write a new CSR value at word with index <i> in the CSR space

3. Set the <i> bit in the nested CSR dirty bitmap
To synchronize a CSR <x>, the SBI implementation (or LO hypervisor) MUST do the following:

L Compute<i> = ((<x> & 0xc00) >> 2) | (<x> & Oxff)
2. If bit <i> is not set in the nested CSR dirty bitmap then goto step 5

3. Emulate write to CSR <x> with the new CSR value taken from the word with index <i> in the CSR
space

4. Clear the <i> bit in the nested CSR dirty bitmap

5. Write back the latest CSR value of CSR <x> to the word with index <i> in the CSR space

When synchronizing multiple CSRs, if the value of a CSR <y> depends on the value of some other CSR
<x> then the SBI implementation (or LO hypervisor) MUST synchronize CSR <x> before CSR <y>. For
example, the value of CSR hip depends on the value of the CSR hvip, which means hvip is emulated
and written first, followed by hip.

15.2. Feature: Synchronize HFENCE (1D #1)

The synchronize HFENCE feature describes the ability of the SBI implementation (or LO hypervisor)
to allow supervisor software (or L1 hypervisor) to issue HFENCE using the scratch space.

This nested acceleration feature defines the scratch space offset range 0x0800 - 0x0F7F (1920 bytes)
as an array of nested HFENCE entries. The total number of nested HFENCE entries are 3840 / XLEN
where each nested HFENCE entry consists of four XLEN-bit words.

A nested HFENCE entry is equivalent to an HFENCE over a range of guest addresses. The Table 64
below shows the nested HFENCE entry format whereas Table 65 below provides a list of nested
HFENCE entry types. Upon an explicit synchronize HFENCE request from supervisor software (or L1
hypervisor), the SBI implementation (or LO hypervisor) will process nested HFENCE entries with the
Config.Pending bit set. After processing pending nested HFENCE entries, the SBI implementation
(or LO hypervisor) will clear the Config.Pending bit of these entries.

Table 64. Nested HFENCE entry format

RISC-V Supervisor Binary Interface Specification | © RISC-V

Word Name

0

Config

Page_Number
Reserved

Page Count

15.2. Feature: Synchronize HFENGE (ID #1) | Page 57

Encoding
Config information about the nested HFENCE entry

BIT[XLEN-1:XLEN-1] - Pending
BIT[XLEN-2:XLEN-4] - Reserved and must be zero
BIT[XLEN-5:XLEN-8] - Type
BIT[XLEN-9:XLEN-9] - Reserved and must be zero
BIT[XLEN-10:XLEN-16] - Order
if XLEN == 32 then

BIT[15:9] - VMID

BIT[8:0] - ASID
else

BIT[29:16] - VMID

BIT[15:0] - ASID

The page size for invalidation must be

1 << (Config.Order + 12) bytes.

Page address right shifted by Config.0Order + 12
Reserved for future use and must be zero

Number of pages to invalidate

Table 65. Nested HFENCE entry types

Type
0

Name

GVMA

GVMA_ALL

GVMA_VMID

Description

Invalidate a guest physical address range across all
VMIDs. The VMID and ASID fields of the Config word are
ignored and MUST be zero.

Invalidate all guest physical addresses across all VMIDs.
The Order, VMID and ASID fields of the Config word are
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

Invalidate a guest physical address range for a particular
VMID. The ASID field of the Config word is ignored and
MUST be zero.

GVMA_VMID_ALL Invalidate all guest physical addresses for a particular

VVMA

VVMA_ALL

VMID. The Order and ASID fields of the Config word are
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

Invalidate a guest virtual address range for a particular
VMID. The ASID field of the Config word is ignored and
MUST be zero.

Invalidate all guest virtual addresses for a particular
VMID. The Order and ASID fields of the Config word are
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.3. Feature: Synchronize SRET (ID #2) | Page 58

Type Name Description

6 VVMA_ASID Invalidate a guest virtual address range for a particular
VMID and ASID.

7 VVMA _ ASID ALL Invalidate all guest virtual addresses for a particular
VMID and ASID. The Order field of the Config word is
ignored and MUST be zero. The Page_Number and
Page_Count words are ignored and MUST be zero.

> 7 Reserved Reserved for future use.

To add a nested HFENCE entry, the supervisor software (or L1 hypervisor) MUST do the following:

1. Find an unused nested HFENCE entry with Config.Pending ==

2. Update the Page_Number and Page_Count words in the nested HFENCE entry

3. Update the Config word in the nested HFENCE entry such that Config.Pending bit is set
To synchronize a nested HFENCE entry, the SBI implementation (or LO hypervisor) MUST do the
following:

L IfConfig.Pending == 0 then do nothing and skip below steps

2. Process HFENCE based on details in the nested HFENCE entry

3. Clear the Config.Pending bit in the nested HFENCE entry

15.3. Feature: Synchronize SRET (ID #2)

The synchronize SRET feature describes the ability of the SBI implementation (or LO hypervisor) to
do synchronization of CSRs and HFENCEs in the nested acceleration shared memory for the
supervisor software (or L1 hypervisor) along with SRET emulation.

This nested acceleration feature defines the scratch space offset range 0x0000 - 0x01FF (512 bytes)
as nested SRET context. The Table 66 below shows contents of the nested SRET context.

Table 66. Nested SRET context

Offset Name Encoding

0 * (XLEN / 8) Reserved Reserved for future use and must be zero
1 * (XLEN / 8) X1 Value to be restored in GPR X1
2 x (XLEN / 8) X2 Value to be restored in GPR X2
3 *x (XLEN / 8) X3 Value to be restored in GPR X3
4 * (XLEN / 8) X4 Value to be restored in GPR X4
5 x (XLEN / 8) X5 Value to be restored in GPR X5
6 *x (XLEN / 8) X6 Value to be restored in GPR X6
7 x (XLEN / 8) X7 Value to be restored in GPR X7
8 * (XLEN / 8) X8 Value to be restored in GPR X8
9 x (XLEN / 8) X9 Value to be restored in GPR X9

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.3. Feature: Synchronize SRET (ID #2) | Page 59

Offset Name Encoding

10 * (XLEN / 8) X10 Value to be restored in GPR X10
11 * (XLEN / 8) X11 Value to be restored in GPR X11

12 * (XLEN / 8) X12 Value to be restored in GPR X12
13 * (XLEN / 8) X13 Value to be restored in GPR X13
14 * (XLEN / 8) X14 Value to be restored in GPR X14

15 * (XLEN / 8) X15 Value to be restored in GPR X15
16 * (XLEN / 8) X16 Value to be restored in GPR X16
17 * (XLEN / 8) X17 Value to be restored in GPR X17

18 * (XLEN / 8) X18 Value to be restored in GPR X18
19 * (XLEN / 8) X19 Value to be restored in GPR X19
20 = (XLEN / 8) X20 Value to be restored in GPR X20
21 * (XLEN / 8) X21 Value to be restored in GPR X21
22 * (XLEN / 8) X22 Value to be restored in GPR X22
23 * (XLEN / 8) X23 Value to be restored in GPR X23
24 * (XLEN / 8) X24 Value to be restored in GPR X24
25 * (XLEN / 8) X25 Value to be restored in GPR X25
26 * (XLEN / 8) X26 Value to be restored in GPR X26
27 * (XLEN / 8) X27 Value to be restored in GPR X27
28 * (XLEN / 8) X28 Value to be restored in GPR X28
29 x (XLEN / 8) X29 Value to be restored in GPR X29
30 = (XLEN / 8) X30 Value to be restored in GPR X30
31 * (XLEN / 8) X31 Value to be restored in GPR X31
32 * (XLEN / 8) - OxIFF Reserved Reserved for future use

Before sending a synchronize SRET request to the SBI implementation (or LO hypervisor), the
supervisor software (or L1 hypervisor) MUST write the GPR X<i> values to be restored at offset <i> *
(XLEN / 8) of the nested SRET context.

Upon a synchronize SRET request from the supervisor software (or L1 hypervisor), the SBI
implementation (or LO hypervisor) MUST do the following:
1. If SBI_NACL_ FEAT SYNC CSR feature is available then

a. All RISC-V H-extension CSRs implemented by the SBI implementation (or LO hypervisor) are
synchronized as described in the Section 15.1. This is equivalent to the SBI call
sbi_nacl_sync_csr(-1UL).

2. If SBI_NACL_FEAT_SYNC_HFENCE feature is available then

a. All nested HFENCE entries are synchronized as described in the Section 15.2. This is
equivalent to the SBI call sbi_nacl_sync_hfence(-1UL).

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.4. Feature: Autoswap CSR (ID #3) | Page 60

3. Restore GPR X<i> registers from the nested SRET context.

4. Emulate the SRET instruction as defined by the RISC-V Privilege specification |priv_v1.12].

15.4. Feature: Autoswap CSR (1D #3)

The autoswap CSR feature describes the ability of the SBI implementation (or LO hypervisor) to
automatically swap certain RISC-V H-extension CSR values from the nested acceleration shared
memory in the following situations:

- Before emulating the SRET instruction for a synchronized SRET request from the supervisor
software (or L1 hypervisor).

- After supervisor (or L1) virtualization state changes from ON to OFF.

y The supervisor software (or L1 hypervisor) should use the autoswap CSR feature in
EI conjunction with the synchronize SRET feature.

This nested acceleration feature defines the scratch space offset range 0x0200 - 0x027F (128 bytes)
as nested autoswap context. The Table 67 below shows contents of the nested autoswap context.

Table 67. Nested autoswap context
Offset Name Encoding
0 * (XLEN / 8) Autoswap_ Flags Autoswap flags

BIT[XLEN-1:1] - Reserved for future use
and must be zero
BIT[0:0] - HSTATUS

1 x (XLEN / 8) HSTATUS Value to be swapped with HSTATUS CSR

2 * (XLEN / 8) - Ox7F Reserved Reserved for future use.

To enable automatic swapping of CSRs from the nested autoswap context, the supervisor software (or
L1 hypervisor) MUST do the following:

1. Write the HSTATUS swap value in the nested autoswap context.

2. Set Autoswap_Flags .HSTATUS bit in the nested autoswap context.

To swap CSRs from the nested autoswap context, the SBI implementation (or LO hypervisor) MUST do
the following:

1 If Autoswap_Flags.HSTATUS bit is set in the nested autoswap context then swap the supervisor
HSTATUS CSR value with the HSTATUS value in the nested autoswap context.

15.5. Function: Probe nested acceleration feature
(FID #0O)

struct sbiret sbi_nacl_probe_feature(uint32_t feature_id)

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.6. Function: Set nested acceleration shared memory (FID #1) | Page 61

Probe a nested acceleration feature. This is a mandatory function of the SBI nested acceleration
extension. The feature_id parameter specifies the nested acceleration feature to probe. Table 61
provides a list of possible feature IDs.

This function always returns SBI_SUCCESS in sbiret.error. It returns 0 in sbiret.value if the
given feature_id is not available, or 1 in sbiret.value if it is available.

15.6. Function: Set nested acceleration shared
memory (FID #1)

struct sbiret sbi_nacl_set_shmem(unsigned long shmem_phys_lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set and enable the shared memory for nested acceleration on the calling hart. This is a mandatory
function of the SBI nested acceleration extension.

If both shmem_phys_lo and shmem_phys_hi parameters are not all-ones bitwise then shmem_phys_1lo
specifies the lower XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the shared
memory physical base address. shmem_phys_1lo MUST be 4096 bytes (i.e. page) aligned and the size of
the shared memory must be 4096 + (XLEN * 128) bytes.

If both shmem_phys_lo and shmem_phys_hi parameters are all-ones bitwise then the nested
acceleration features are disabled.

The flags parameter is reserved for future use and must be zero.
The possible error codes returned in sbiret.error are shown in Table 68.

Table 68. NACL Set Shared Memory Errors
Error code Description
SBI_SUCCESS Shared memory was set or cleared successfully.

SBI_ERR_INVALID_PARAM The flags parameter is not zero or or the shmem_phys_1lo
parameter is not 4096 bytes aligned.

SBI_ERR_INVALID _ADDRESS The shared memory pointed to by the shmem_phys_1o and
shmem_phys_hi parameters does not satisfy the requirements
described in Section 3.2.

15.7. Function: Synchronize shared memory CSRs
(FID #2)

struct sbiret sbi_nacl_sync_csr(unsigned long csr_num)

Synchronize CSRs in the nested acceleration shared memory. This is an optional function which is

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.8. Function: Synchronize shared memory HFENCEs (FID #3) | Page 62

only available if the SBI_NACL_FEAT_SYNC_CSR feature is available. The parameter csr_num
specifies the set of RISC-V H-extension CSRs to be synchronized.

If csr_num is all-ones bitwise then all RISC-V H-extension CSRs implemented by the SBI
implementation (or LO hypervisor) are synchronized as described in the Section 15.1.

If (csr_num & 0x300) == 0x200 and csr_num < 0x1000 then only a single RISC-V H-extension
CSR specified by the csr_num parameter is synchronized as described in the Section 15.1.

The possible error codes returned in sbiret.error are shown in Table 69.

Table 69. NACL Synchronize CSR Errors

Error code Description

SBI_SUCCESS CSRs synchronized successfully.

SBI_ERR_NOT_ SUPPORTED SBI_NACL_FEAT_ SYNC _CSR feature is not available.

SBI_ERR_INVALID PARAM csr_numis not all-ones bitwise and either:
* (csr_num & 0x300) != 0x200 or
* csr_num >= 0x1000 or

* csr_num is not implemented by the SBI implementation

SBI_ERR_NO_ SHMEM Nested acceleration shared memory not available.

15.8. Function: Synchronize shared memory
HFENCEs (FID #3)

struct sbiret sbi_nacl_sync_hfence(unsigned long entry_index)

Synchronize HFENCE:s in the nested acceleration shared memory. This is an optional function which
is only available if the SBI_NACL_FEAT_SYNC_HFENCE feature is available. The parameter
entry_index specifies the set of nested HFENCE entries to be synchronized.

If entry_index is all-ones bitwise then all nested HFENCE entries are synchronized as described in
the Section 15.2.

If entry_index < (3840 / XLEN) then only a single nested HFENCE entry specified by the
entry_index parameter is synchronized as described in the Section 15.2.

The possible error codes returned in sbiret . error are shown in Table 70.

Table 70. NACL Synchronize HFENCE Errors

Error code Description

SBI_SUCCESS HFENCESs synchronized successfully.

SBI _ERR_NOT_SUPPORTED SBI NACL FEAT SYNC_ HFENCE feature is not available.

SBI_ERR_INVALID_PARAM entry_index is not all-ones bitwise and
entry_index >= (3840 / XLEN).

SBI_ERR_NO_SHMEM Nested acceleration shared memory not available.

RISC-V Supervisor Binary Interface Specification | © RISC-V

15.9. Function: Synchronize shared memory and emulate SRET (FID #4) | Page 63

15.9. Function: Synchronize shared memory and
emulate SRET (FID #4)

struct sbiret sbi_nacl_sync_sret(void)

Synchronize CSRs and HFENCEs in the nested acceleration shared memory and emulate the SRET
instruction. This is an optional function which is only available if the
SBI_NACL_FEAT_ SYNC_SRET feature is available.

This function is used by supervisor software (or L1 hypervisor) to do a synchronize SRET request and
the SBI implementation (or LO hypervisor) MUST handle it as described in the Section 15.3.

This function does not return upon success and the possible error codes returned in sbiret.error
upon failure are shown in Table 71.

Table 71. NACL Synchronize SRET Errors

Error code Description
SBI_ERR_NOT_SUPPORTED SBI NACL_FEAT_ SYNC SRET feature is not available.
SBI_ERR_NO_ SHMEM Nested acceleration shared memory not available.

15.10. Function Listing

Table 72. NACL Function List

Function Name SBI Version FID EID

sbi_nacl_probe_feature 2.0 0 0x4E41434C
sbi_nacl set shmem 2.0 1 0x4E41434C
sbi_nacl_sync_csr 2.0 2 0x4E41434C
sbi_nacl_sync_hfence 2.0 3 0x4E41434C
sbi_nacl_sync_sret 2.0 4 0x4E41434C

RISC-V Supervisor Binary Interface Specification | © RISC-V

16.1. Function: Set Steal-time Shared Memory Address (FID #0) | Page 64

Chapter 16. Steal-time Accounting
Extension (EID #0x535441 "STA")

SBI implementations may encounter situations where virtual harts are ready to run, but must be
withheld from running. These situations may be, for example, when multiple SBI domains share
processors or when an SBI implementation is a hypervisor and guest contexts share processors with
other guest contexts or host tasks. When virtual harts are at times withheld from running, observers
within the contexts of the virtual harts may need a way to account for less progress than would
otherwise be expected. The time a virtual hart was ready, but had to wait, is called "stolen time" and the
tracking of it is referred to as steal-time accounting. The Steal-time Accounting (STA) extension
defines the mechanism in which an SBI implementation provides steal-time and preemption
information, for each virtual hart, to supervisor-mode software.

16.1. Function: Set Steal-time Shared Memory
Address (FID #0)

struct sbiret sbi_steal_time_set_shmem(unsigned long shmem_phys_lo,
unsigned long shmem_phys_hi,
unsigned long flags)

Set the shared memory physical base address for steal-time accounting of the calling virtual hart and
enable the SBI implementation’s steal-time information reporting.

If shmem_phys_lo and shmem_phys_hi are not all-ones bitwise, then shmem_phys_1o specifies the
lower XLEN bits and shmem_phys_hi specifies the upper XLEN bits of the shared memory physical
base address. shmem_phys_lo MUST be 64-byte aligned. The size of the shared memory must be at
least 64 bytes. All bytes MUST be set to zero by the SBI implementation before returning from the SBI
call.

If shmem_phys_lo and shmem_phys_hi are all-ones bitwise, the SBI implementation will stop
reporting steal-time information for the virtual hart.

The flags parameter is reserved for future use and MUST be zero.

It is not expected for the shared memory to be written by the supervisor-mode software while it is in
use for steal-time accounting. However, the SBI implementation MUST not misbehave if a write from
supervisor-mode software occurs, however, in that case, it MAY leave the shared memory filled with
inconsistent data.

The SBI implementation MUST stop writing to the shared memory when the supervisor-mode
software is not runnable, such as upon system reset or system suspend.

Not writing to the shared memory when the supervisor-mode software is not runnable

y avoids unnecessary work and supports repeatable capture of a system image while the
supervisor-mode software is suspended.

RISC-V Supervisor Binary Interface Specification | © RISC-V

16.1. Function: Set Steal-time Shared Memory Address (FID #0) | Page 65

The shared memory layout is defined in Table 73

Table 73. STA Shared Memory Structure
Name Offset Size Description

sequence 0 4 The SBI implementation MUST increment this
field to an odd value before writing the steal
field, and increment it again to an even value
after writing steal (i.e. an odd sequence
number indicates an in-progress update). The
SBI implementation SHOULD ensure that the
sequence field remains odd for only very short
periods of time.

The supervisor-mode software MUST check this
field before and after reading the steal field,
and repeat the read if it is different or odd.

This sequence field enables the value of the steal
field to be read by supervisor-mode software
executing in a 32-bit environment.

flags 4 4 Always zero.

Future extensions of the SBI call might allow the
supervisor-mode software to write to some of the
fields of the shared memory. Such extensions will
not be enabled as long as a zero value is used for
the flags argument to the SBI call.

steal 8 8 The amount of time in which this virtual hart
was not idle and scheduled out, in nanoseconds.
The time during which the virtual hart is idle
will not be reported as steal-time.

preempted 16 1 An advisory flag indicating whether the virtual
hart which registered this structure is running
or not. A non-zero value MAY be written by the
SBI implementation if the virtual hart has been
preempted (i.e. while the steal field is
increasing), while a zero value MUST be written
before the virtual hart starts to run again.

This preempted field can, for example, be used by
the supervisor-mode software to check if a lock
holder has been preempted, and, in that case,
disable optimistic spinning.

pad 17 47 Pad with zeros to a 64 byte boundary.

sbiret.value is set to zero and the possible error codes returned in sbiret.error are shown in
Table 74 below.

Table 74. STA Set Steal-time Shared Memory Address Errors

RISC-V Supervisor Binary Interface Specification | © RISC-V

16.2. Function Listing | Page 66

Error code Description

SBI_SUCCESS The steal-time shared memory physical base address was set or
cleared successfully.

SBI_ERR_INVALID_PARAM The flags parameter is not zero or the shmem_phys_1o is not 64-
byte aligned.

SBI_ERR_INVALID _ADDRESS The shared memory pointed to by the shmem_phys_1o and
shmem_phys_hi parameters is not writable or does not satisfy other
requirements of Section 3.2.

SBI_ERR_FAILED The request failed for unspecified or unknown other reasons.

16.2. Function Listing

Table 75. STA Function List
Function Name SBI Version FID EID
sbi_steal time set shmem 2.0 0 0x535441

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 17. Experimental SBI Extension Space (EIDs #0x08000000 - #0xO8FFFFFF) | Page 67

Chapter 17. Experimental SBI Extension
Space (EIDs #0x08000000 -
HOXO8FFFFFF)

The SBI specification doesn’t define any rules for the EID management for experimental SBI
extensions.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 18. Vendor Specific Extension Space (EIDs #0x09000000 - #0xO9FFFFFF) | Page 68

Chapter 18. Vendor Specific Extension
Space (EIDs #0x09000000 -
HOXO9OFFFFFF)

The lower 24 bits of vendor specific EID must match the lower 24 bits of the mvendorid value.

RISC-V Supervisor Binary Interface Specification | © RISC-V

Chapter 19. Firmware Specific Extension Space (EIDs #0xOA000000 - #OxOAFFFFFF) | Page 69

Chapter 19. Firmware Specific Extension
Space (EIDs #OxOA000000 -
HOXOAFFFFFF)

The lower 24 bits of the firmware EID must match the lower 24 bits of the SBI implementation ID. The
firmware specific SBI extensions space is reserved for SBI implementations. It provides firmware
specific SBI functions which are defined in the external firmware specification.

RISC-V Supervisor Binary Interface Specification | © RISC-V

References | Page 70

References

= [priv_v112] The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document
Version 20211203, URL: github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

RISC-V Supervisor Binary Interface Specification | © RISC-V

https://github.com/riscv/riscv-isa-manual/releases/tag/Priv-v1.12

	RISC-V Supervisor Binary Interface Specification
	Table of Contents
	Preamble
	Copyright and license information
	Contributors
	Change Log
	Version 2.0-rc5
	Version 2.0-rc4
	Version 2.0-rc3
	Version 2.0-rc2
	Version 2.0-rc1
	Version 1.0.0
	Version 1.0-rc3
	Version 1.0-rc2
	Version 1.0-rc1
	Version 0.3.0
	Version 0.3-rc1
	Version 0.2

	Chapter 1. Introduction
	Chapter 2. Terms and Abbreviations
	Chapter 3. Binary Encoding
	3.1. Hart list parameter
	3.2. Shared memory physical address range parameter

	Chapter 4. Base Extension (EID #0x10)
	4.1. Function: Get SBI specification version (FID #0)
	4.2. Function: Get SBI implementation ID (FID #1)
	4.3. Function: Get SBI implementation version (FID #2)
	4.4. Function: Probe SBI extension (FID #3)
	4.5. Function: Get machine vendor ID (FID #4)
	4.6. Function: Get machine architecture ID (FID #5)
	4.7. Function: Get machine implementation ID (FID #6)
	4.8. Function Listing
	4.9. SBI Implementation IDs

	Chapter 5. Legacy Extensions (EIDs #0x00 - #0x0F)
	5.1. Extension: Set Timer (EID #0x00)
	5.2. Extension: Console Putchar (EID #0x01)
	5.3. Extension: Console Getchar (EID #0x02)
	5.4. Extension: Clear IPI (EID #0x03)
	5.5. Extension: Send IPI (EID #0x04)
	5.6. Extension: Remote FENCE.I (EID #0x05)
	5.7. Extension: Remote SFENCE.VMA (EID #0x06)
	5.8. Extension: Remote SFENCE.VMA with ASID (EID #0x07)
	5.9. Extension: System Shutdown (EID #0x08)
	5.10. Function Listing

	Chapter 6. Timer Extension (EID #0x54494D45 "TIME")
	6.1. Function: Set Timer (FID #0)
	6.2. Function Listing

	Chapter 7. IPI Extension (EID #0x735049 "sPI: s-mode IPI")
	7.1. Function: Send IPI (FID #0)
	7.2. Function Listing

	Chapter 8. RFENCE Extension (EID #0x52464E43 "RFNC")
	8.1. Function: Remote FENCE.I (FID #0)
	8.2. Function: Remote SFENCE.VMA (FID #1)
	8.3. Function: Remote SFENCE.VMA with ASID (FID #2)
	8.4. Function: Remote HFENCE.GVMA with VMID (FID #3)
	8.5. Function: Remote HFENCE.GVMA (FID #4)
	8.6. Function: Remote HFENCE.VVMA with ASID (FID #5)
	8.7. Function: Remote HFENCE.VVMA (FID #6)
	8.8. Function Listing

	Chapter 9. Hart State Management Extension (EID #0x48534D "HSM")
	9.1. Function: Hart start (FID #0)
	9.2. Function: Hart stop (FID #1)
	9.3. Function: Hart get status (FID #2)
	9.4. Function: Hart suspend (FID #3)
	9.5. Function Listing

	Chapter 10. System Reset Extension (EID #0x53525354 "SRST")
	10.1. Function: System reset (FID #0)
	10.2. Function Listing

	Chapter 11. Performance Monitoring Unit Extension (EID #0x504D55 "PMU")
	11.1. Event: Hardware general events (Type #0)
	11.2. Event: Hardware cache events (Type #1)
	11.3. Event: Hardware raw events (Type #2)
	11.4. Event: Firmware events (Type #15)
	11.5. Function: Get number of counters (FID #0)
	11.6. Function: Get details of a counter (FID #1)
	11.7. Function: Find and configure a matching counter (FID #2)
	11.8. Function: Start a set of counters (FID #3)
	11.9. Function: Stop a set of counters (FID #4)
	11.10. Function: Read a firmware counter (FID #5)
	11.11. Function: Read a firmware counter high bits (FID #6)
	11.12. Function: Set PMU snapshot shared memory (FID #7)
	11.13. Function Listing

	Chapter 12. Debug Console Extension (EID #0x4442434E "DBCN")
	12.1. Function: Console Write (FID #0)
	12.2. Function: Console Read (FID #1)
	12.3. Function: Console Write Byte (FID #2)
	12.4. Function Listing

	Chapter 13. System Suspend Extension (EID #0x53555350 "SUSP")
	13.1. Function: System Suspend (FID #0)
	13.2. Function Listing

	Chapter 14. CPPC Extension (EID #0x43505043 "CPPC")
	14.1. Function: Probe CPPC register (FID #0)
	14.2. Function: Read CPPC register (FID #1)
	14.3. Function: Read CPPC register high bits (FID #2)
	14.4. Function: Write to CPPC register (FID #3)
	14.5. Function Listing

	Chapter 15. Nested Acceleration Extension (EID #0x4E41434C "NACL")
	15.1. Feature: Synchronize CSR (ID #0)
	15.2. Feature: Synchronize HFENCE (ID #1)
	15.3. Feature: Synchronize SRET (ID #2)
	15.4. Feature: Autoswap CSR (ID #3)
	15.5. Function: Probe nested acceleration feature (FID #0)
	15.6. Function: Set nested acceleration shared memory (FID #1)
	15.7. Function: Synchronize shared memory CSRs (FID #2)
	15.8. Function: Synchronize shared memory HFENCEs (FID #3)
	15.9. Function: Synchronize shared memory and emulate SRET (FID #4)
	15.10. Function Listing

	Chapter 16. Steal-time Accounting Extension (EID #0x535441 "STA")
	16.1. Function: Set Steal-time Shared Memory Address (FID #0)
	16.2. Function Listing

	Chapter 17. Experimental SBI Extension Space (EIDs #0x08000000 - #0x08FFFFFF)
	Chapter 18. Vendor Specific Extension Space (EIDs #0x09000000 - #0x09FFFFFF)
	Chapter 19. Firmware Specific Extension Space (EIDs #0x0A000000 - #0x0AFFFFFF)
	References

