/* Formatting library for C++ Copyright (c) 2012 - present, Victor Zverovich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --- Optional exception to the license --- As an exception, if, as a result of your compiling your source code, portions of this Software are embedded into a machine-executable object form of such source code, you may redistribute such embedded portions in such object form without including the above copyright and permission notices. */ #ifndef FMT_FORMAT_H_ #define FMT_FORMAT_H_ #include "core.h" #include #include #include #include #include #include #include #ifdef __clang__ # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #ifdef __INTEL_COMPILER # define FMT_ICC_VERSION __INTEL_COMPILER #elif defined(__ICL) # define FMT_ICC_VERSION __ICL #else # define FMT_ICC_VERSION 0 #endif #ifdef __NVCC__ # define FMT_CUDA_VERSION (__CUDACC_VER_MAJOR__ * 100 + __CUDACC_VER_MINOR__) #else # define FMT_CUDA_VERSION 0 #endif #ifdef __has_builtin # define FMT_HAS_BUILTIN(x) __has_builtin(x) #else # define FMT_HAS_BUILTIN(x) 0 #endif #if FMT_HAS_CPP_ATTRIBUTE(fallthrough) && \ (__cplusplus >= 201703 || FMT_GCC_VERSION != 0) # define FMT_FALLTHROUGH [[fallthrough]] #else # define FMT_FALLTHROUGH #endif #ifndef FMT_THROW # if FMT_EXCEPTIONS # if FMT_MSC_VER FMT_BEGIN_NAMESPACE namespace internal { template inline void do_throw(const Exception& x) { // Silence unreachable code warnings in MSVC because these are nearly // impossible to fix in a generic code. volatile bool b = true; if (b) throw x; } } // namespace internal FMT_END_NAMESPACE # define FMT_THROW(x) internal::do_throw(x) # else # define FMT_THROW(x) throw x # endif # else # define FMT_THROW(x) \ do { \ static_cast(sizeof(x)); \ FMT_ASSERT(false, ""); \ } while (false) # endif #endif #ifndef FMT_USE_USER_DEFINED_LITERALS // For Intel and NVIDIA compilers both they and the system gcc/msc support UDLs. # if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 407 || \ FMT_MSC_VER >= 1900) && \ (!(FMT_ICC_VERSION || FMT_CUDA_VERSION) || FMT_ICC_VERSION >= 1500 || \ FMT_CUDA_VERSION >= 700) # define FMT_USE_USER_DEFINED_LITERALS 1 # else # define FMT_USE_USER_DEFINED_LITERALS 0 # endif #endif #ifndef FMT_USE_UDL_TEMPLATE // EDG front end based compilers (icc, nvcc) do not support UDL templates yet // and GCC 9 warns about them. # if FMT_USE_USER_DEFINED_LITERALS && FMT_ICC_VERSION == 0 && \ FMT_CUDA_VERSION == 0 && \ ((FMT_GCC_VERSION >= 600 && FMT_GCC_VERSION <= 900 && \ __cplusplus >= 201402L) || \ FMT_CLANG_VERSION >= 304) # define FMT_USE_UDL_TEMPLATE 1 # else # define FMT_USE_UDL_TEMPLATE 0 # endif #endif // __builtin_clz is broken in clang with Microsoft CodeGen: // https://github.com/fmtlib/fmt/issues/519 #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clz)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZ(n) __builtin_clz(n) #endif #if (FMT_GCC_VERSION || FMT_HAS_BUILTIN(__builtin_clzll)) && !FMT_MSC_VER # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n) #endif // Some compilers masquerade as both MSVC and GCC-likes or otherwise support // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the // MSVC intrinsics if the clz and clzll builtins are not available. #if FMT_MSC_VER && !defined(FMT_BUILTIN_CLZLL) && !defined(_MANAGED) # include // _BitScanReverse, _BitScanReverse64 FMT_BEGIN_NAMESPACE namespace internal { // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning. # ifndef __clang__ # pragma intrinsic(_BitScanReverse) # endif inline uint32_t clz(uint32_t x) { unsigned long r = 0; _BitScanReverse(&r, x); FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress : 6102) return 31 - r; } # define FMT_BUILTIN_CLZ(n) internal::clz(n) # if defined(_WIN64) && !defined(__clang__) # pragma intrinsic(_BitScanReverse64) # endif inline uint32_t clzll(uint64_t x) { unsigned long r = 0; # ifdef _WIN64 _BitScanReverse64(&r, x); # else // Scan the high 32 bits. if (_BitScanReverse(&r, static_cast(x >> 32))) return 63 - (r + 32); // Scan the low 32 bits. _BitScanReverse(&r, static_cast(x)); # endif FMT_ASSERT(x != 0, ""); // Static analysis complains about using uninitialized data // "r", but the only way that can happen is if "x" is 0, // which the callers guarantee to not happen. # pragma warning(suppress : 6102) return 63 - r; } # define FMT_BUILTIN_CLZLL(n) internal::clzll(n) } // namespace internal FMT_END_NAMESPACE #endif // Enable the deprecated numeric alignment. #ifndef FMT_NUMERIC_ALIGN # define FMT_NUMERIC_ALIGN 1 #endif // Enable the deprecated percent specifier. #ifndef FMT_DEPRECATED_PERCENT # define FMT_DEPRECATED_PERCENT 0 #endif FMT_BEGIN_NAMESPACE namespace internal { // A helper function to suppress bogus "conditional expression is constant" // warnings. template inline T const_check(T value) { return value; } // An equivalent of `*reinterpret_cast(&source)` that doesn't have // undefined behavior (e.g. due to type aliasing). // Example: uint64_t d = bit_cast(2.718); template inline Dest bit_cast(const Source& source) { static_assert(sizeof(Dest) == sizeof(Source), "size mismatch"); Dest dest; std::memcpy(&dest, &source, sizeof(dest)); return dest; } inline bool is_big_endian() { auto u = 1u; struct bytes { char data[sizeof(u)]; }; return bit_cast(u).data[0] == 0; } // A fallback implementation of uintptr_t for systems that lack it. struct fallback_uintptr { unsigned char value[sizeof(void*)]; fallback_uintptr() = default; explicit fallback_uintptr(const void* p) { *this = bit_cast(p); if (is_big_endian()) { for (size_t i = 0, j = sizeof(void*) - 1; i < j; ++i, --j) std::swap(value[i], value[j]); } } }; #ifdef UINTPTR_MAX using uintptr_t = ::uintptr_t; inline uintptr_t to_uintptr(const void* p) { return bit_cast(p); } #else using uintptr_t = fallback_uintptr; inline fallback_uintptr to_uintptr(const void* p) { return fallback_uintptr(p); } #endif // Returns the largest possible value for type T. Same as // std::numeric_limits::max() but shorter and not affected by the max macro. template constexpr T max_value() { return (std::numeric_limits::max)(); } template constexpr int num_bits() { return std::numeric_limits::digits; } template <> constexpr int num_bits() { return static_cast(sizeof(void*) * std::numeric_limits::digits); } // An approximation of iterator_t for pre-C++20 systems. template using iterator_t = decltype(std::begin(std::declval())); // Detect the iterator category of *any* given type in a SFINAE-friendly way. // Unfortunately, older implementations of std::iterator_traits are not safe // for use in a SFINAE-context. template struct iterator_category : std::false_type {}; template struct iterator_category { using type = std::random_access_iterator_tag; }; template struct iterator_category> { using type = typename It::iterator_category; }; // Detect if *any* given type models the OutputIterator concept. template class is_output_iterator { // Check for mutability because all iterator categories derived from // std::input_iterator_tag *may* also meet the requirements of an // OutputIterator, thereby falling into the category of 'mutable iterators' // [iterator.requirements.general] clause 4. The compiler reveals this // property only at the point of *actually dereferencing* the iterator! template static decltype(*(std::declval())) test(std::input_iterator_tag); template static char& test(std::output_iterator_tag); template static const char& test(...); using type = decltype(test(typename iterator_category::type{})); public: static const bool value = !std::is_const>::value; }; // A workaround for std::string not having mutable data() until C++17. template inline Char* get_data(std::basic_string& s) { return &s[0]; } template inline typename Container::value_type* get_data(Container& c) { return c.data(); } #ifdef _SECURE_SCL // Make a checked iterator to avoid MSVC warnings. template using checked_ptr = stdext::checked_array_iterator; template checked_ptr make_checked(T* p, std::size_t size) { return {p, size}; } #else template using checked_ptr = T*; template inline T* make_checked(T* p, std::size_t) { return p; } #endif template ::value)> inline checked_ptr reserve( std::back_insert_iterator& it, std::size_t n) { Container& c = get_container(it); std::size_t size = c.size(); c.resize(size + n); return make_checked(get_data(c) + size, n); } template inline Iterator& reserve(Iterator& it, std::size_t) { return it; } // An output iterator that counts the number of objects written to it and // discards them. class counting_iterator { private: std::size_t count_; public: using iterator_category = std::output_iterator_tag; using difference_type = std::ptrdiff_t; using pointer = void; using reference = void; using _Unchecked_type = counting_iterator; // Mark iterator as checked. struct value_type { template void operator=(const T&) {} }; counting_iterator() : count_(0) {} std::size_t count() const { return count_; } counting_iterator& operator++() { ++count_; return *this; } counting_iterator operator++(int) { auto it = *this; ++*this; return it; } value_type operator*() const { return {}; } }; template class truncating_iterator_base { protected: OutputIt out_; std::size_t limit_; std::size_t count_; truncating_iterator_base(OutputIt out, std::size_t limit) : out_(out), limit_(limit), count_(0) {} public: using iterator_category = std::output_iterator_tag; using difference_type = void; using pointer = void; using reference = void; using _Unchecked_type = truncating_iterator_base; // Mark iterator as checked. OutputIt base() const { return out_; } std::size_t count() const { return count_; } }; // An output iterator that truncates the output and counts the number of objects // written to it. template ::value_type>::type> class truncating_iterator; template class truncating_iterator : public truncating_iterator_base { using traits = std::iterator_traits; mutable typename traits::value_type blackhole_; public: using value_type = typename traits::value_type; truncating_iterator(OutputIt out, std::size_t limit) : truncating_iterator_base(out, limit) {} truncating_iterator& operator++() { if (this->count_++ < this->limit_) ++this->out_; return *this; } truncating_iterator operator++(int) { auto it = *this; ++*this; return it; } value_type& operator*() const { return this->count_ < this->limit_ ? *this->out_ : blackhole_; } }; template class truncating_iterator : public truncating_iterator_base { public: using value_type = typename OutputIt::container_type::value_type; truncating_iterator(OutputIt out, std::size_t limit) : truncating_iterator_base(out, limit) {} truncating_iterator& operator=(value_type val) { if (this->count_++ < this->limit_) this->out_ = val; return *this; } truncating_iterator& operator++() { return *this; } truncating_iterator& operator++(int) { return *this; } truncating_iterator& operator*() { return *this; } }; // A range with the specified output iterator and value type. template class output_range { private: OutputIt it_; public: using value_type = T; using iterator = OutputIt; struct sentinel {}; explicit output_range(OutputIt it) : it_(it) {} OutputIt begin() const { return it_; } sentinel end() const { return {}; } // Sentinel is not used yet. }; template inline size_t count_code_points(basic_string_view s) { return s.size(); } // Counts the number of code points in a UTF-8 string. inline size_t count_code_points(basic_string_view s) { const char8_t* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80) ++num_code_points; } return num_code_points; } template inline size_t code_point_index(basic_string_view s, size_t n) { size_t size = s.size(); return n < size ? n : size; } // Calculates the index of the nth code point in a UTF-8 string. inline size_t code_point_index(basic_string_view s, size_t n) { const char8_t* data = s.data(); size_t num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i] & 0xc0) != 0x80 && ++num_code_points > n) { return i; } } return s.size(); } inline char8_t to_char8_t(char c) { return static_cast(c); } template using needs_conversion = bool_constant< std::is_same::value_type, char>::value && std::is_same::value>; template ::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { return std::copy(begin, end, it); } template ::value)> OutputIt copy_str(InputIt begin, InputIt end, OutputIt it) { return std::transform(begin, end, it, to_char8_t); } #ifndef FMT_USE_GRISU # define FMT_USE_GRISU 1 #endif template constexpr bool use_grisu() { return FMT_USE_GRISU && std::numeric_limits::is_iec559 && sizeof(T) <= sizeof(double); } template template void buffer::append(const U* begin, const U* end) { std::size_t new_size = size_ + to_unsigned(end - begin); reserve(new_size); std::uninitialized_copy(begin, end, make_checked(ptr_, capacity_) + size_); size_ = new_size; } } // namespace internal // A range with an iterator appending to a buffer. template class buffer_range : public internal::output_range< std::back_insert_iterator>, T> { public: using iterator = std::back_insert_iterator>; using internal::output_range::output_range; buffer_range(internal::buffer& buf) : internal::output_range(std::back_inserter(buf)) {} }; // A UTF-8 string view. class u8string_view : public basic_string_view { public: u8string_view(const char* s) : basic_string_view(reinterpret_cast(s)) {} u8string_view(const char* s, size_t count) FMT_NOEXCEPT : basic_string_view(reinterpret_cast(s), count) { } }; #if FMT_USE_USER_DEFINED_LITERALS inline namespace literals { inline u8string_view operator"" _u(const char* s, std::size_t n) { return {s, n}; } } // namespace literals #endif // The number of characters to store in the basic_memory_buffer object itself // to avoid dynamic memory allocation. enum { inline_buffer_size = 500 }; /** \rst A dynamically growing memory buffer for trivially copyable/constructible types with the first ``SIZE`` elements stored in the object itself. You can use one of the following type aliases for common character types: +----------------+------------------------------+ | Type | Definition | +================+==============================+ | memory_buffer | basic_memory_buffer | +----------------+------------------------------+ | wmemory_buffer | basic_memory_buffer | +----------------+------------------------------+ **Example**:: fmt::memory_buffer out; format_to(out, "The answer is {}.", 42); This will append the following output to the ``out`` object: .. code-block:: none The answer is 42. The output can be converted to an ``std::string`` with ``to_string(out)``. \endrst */ template > class basic_memory_buffer : private Allocator, public internal::buffer { private: T store_[SIZE]; // Deallocate memory allocated by the buffer. void deallocate() { T* data = this->data(); if (data != store_) Allocator::deallocate(data, this->capacity()); } protected: void grow(std::size_t size) FMT_OVERRIDE; public: using value_type = T; using const_reference = const T&; explicit basic_memory_buffer(const Allocator& alloc = Allocator()) : Allocator(alloc) { this->set(store_, SIZE); } ~basic_memory_buffer() FMT_OVERRIDE { deallocate(); } private: // Move data from other to this buffer. void move(basic_memory_buffer& other) { Allocator &this_alloc = *this, &other_alloc = other; this_alloc = std::move(other_alloc); T* data = other.data(); std::size_t size = other.size(), capacity = other.capacity(); if (data == other.store_) { this->set(store_, capacity); std::uninitialized_copy(other.store_, other.store_ + size, internal::make_checked(store_, capacity)); } else { this->set(data, capacity); // Set pointer to the inline array so that delete is not called // when deallocating. other.set(other.store_, 0); } this->resize(size); } public: /** \rst Constructs a :class:`fmt::basic_memory_buffer` object moving the content of the other object to it. \endrst */ basic_memory_buffer(basic_memory_buffer&& other) FMT_NOEXCEPT { move(other); } /** \rst Moves the content of the other ``basic_memory_buffer`` object to this one. \endrst */ basic_memory_buffer& operator=(basic_memory_buffer&& other) FMT_NOEXCEPT { FMT_ASSERT(this != &other, ""); deallocate(); move(other); return *this; } // Returns a copy of the allocator associated with this buffer. Allocator get_allocator() const { return *this; } }; template void basic_memory_buffer::grow(std::size_t size) { #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (size > 1000) throw std::runtime_error("fuzz mode - won't grow that much"); #endif std::size_t old_capacity = this->capacity(); std::size_t new_capacity = old_capacity + old_capacity / 2; if (size > new_capacity) new_capacity = size; T* old_data = this->data(); T* new_data = std::allocator_traits::allocate(*this, new_capacity); // The following code doesn't throw, so the raw pointer above doesn't leak. std::uninitialized_copy(old_data, old_data + this->size(), internal::make_checked(new_data, new_capacity)); this->set(new_data, new_capacity); // deallocate must not throw according to the standard, but even if it does, // the buffer already uses the new storage and will deallocate it in // destructor. if (old_data != store_) Allocator::deallocate(old_data, old_capacity); } using memory_buffer = basic_memory_buffer; using wmemory_buffer = basic_memory_buffer; /** A formatting error such as invalid format string. */ class FMT_API format_error : public std::runtime_error { public: explicit format_error(const char* message) : std::runtime_error(message) {} explicit format_error(const std::string& message) : std::runtime_error(message) {} format_error(const format_error&) = default; format_error& operator=(const format_error&) = default; format_error(format_error&&) = default; format_error& operator=(format_error&&) = default; ~format_error() FMT_NOEXCEPT FMT_OVERRIDE; }; namespace internal { // Returns true if value is negative, false otherwise. // Same as `value < 0` but doesn't produce warnings if T is an unsigned type. template ::is_signed)> FMT_CONSTEXPR bool is_negative(T value) { return value < 0; } template ::is_signed)> FMT_CONSTEXPR bool is_negative(T) { return false; } // Smallest of uint32_t, uint64_t, uint128_t that is large enough to // represent all values of T. template using uint32_or_64_or_128_t = conditional_t< std::numeric_limits::digits <= 32, uint32_t, conditional_t::digits <= 64, uint64_t, uint128_t>>; // Static data is placed in this class template for the header-only config. template struct FMT_EXTERN_TEMPLATE_API basic_data { static const uint64_t powers_of_10_64[]; static const uint32_t zero_or_powers_of_10_32[]; static const uint64_t zero_or_powers_of_10_64[]; static const uint64_t pow10_significands[]; static const int16_t pow10_exponents[]; static const char digits[]; static const char hex_digits[]; static const char foreground_color[]; static const char background_color[]; static const char reset_color[5]; static const wchar_t wreset_color[5]; static const char signs[]; }; FMT_EXTERN template struct basic_data; // This is a struct rather than an alias to avoid shadowing warnings in gcc. struct data : basic_data<> {}; #ifdef FMT_BUILTIN_CLZLL // Returns the number of decimal digits in n. Leading zeros are not counted // except for n == 0 in which case count_digits returns 1. inline int count_digits(uint64_t n) { // Based on http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 // and the benchmark https://github.com/localvoid/cxx-benchmark-count-digits. int t = (64 - FMT_BUILTIN_CLZLL(n | 1)) * 1233 >> 12; return t - (n < data::zero_or_powers_of_10_64[t]) + 1; } #else // Fallback version of count_digits used when __builtin_clz is not available. inline int count_digits(uint64_t n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000u; count += 4; } } #endif #if FMT_USE_INT128 inline int count_digits(uint128_t n) { int count = 1; for (;;) { // Integer division is slow so do it for a group of four digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. if (n < 10) return count; if (n < 100) return count + 1; if (n < 1000) return count + 2; if (n < 10000) return count + 3; n /= 10000U; count += 4; } } #endif // Counts the number of digits in n. BITS = log2(radix). template inline int count_digits(UInt n) { int num_digits = 0; do { ++num_digits; } while ((n >>= BITS) != 0); return num_digits; } template <> int count_digits<4>(internal::fallback_uintptr n); #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_ALWAYS_INLINE inline __attribute__((always_inline)) #else # define FMT_ALWAYS_INLINE #endif #ifdef FMT_BUILTIN_CLZ // Optional version of count_digits for better performance on 32-bit platforms. inline int count_digits(uint32_t n) { int t = (32 - FMT_BUILTIN_CLZ(n | 1)) * 1233 >> 12; return t - (n < data::zero_or_powers_of_10_32[t]) + 1; } #endif template FMT_API std::string grouping_impl(locale_ref loc); template inline std::string grouping(locale_ref loc) { return grouping_impl(loc); } template <> inline std::string grouping(locale_ref loc) { return grouping_impl(loc); } template FMT_API Char thousands_sep_impl(locale_ref loc); template inline Char thousands_sep(locale_ref loc) { return Char(thousands_sep_impl(loc)); } template <> inline wchar_t thousands_sep(locale_ref loc) { return thousands_sep_impl(loc); } template FMT_API Char decimal_point_impl(locale_ref loc); template inline Char decimal_point(locale_ref loc) { return Char(decimal_point_impl(loc)); } template <> inline wchar_t decimal_point(locale_ref loc) { return decimal_point_impl(loc); } // Formats a decimal unsigned integer value writing into buffer. // add_thousands_sep is called after writing each char to add a thousands // separator if necessary. template inline Char* format_decimal(Char* buffer, UInt value, int num_digits, F add_thousands_sep) { FMT_ASSERT(num_digits >= 0, "invalid digit count"); buffer += num_digits; Char* end = buffer; while (value >= 100) { // Integer division is slow so do it for a group of two digits instead // of for every digit. The idea comes from the talk by Alexandrescu // "Three Optimization Tips for C++". See speed-test for a comparison. auto index = static_cast((value % 100) * 2); value /= 100; *--buffer = static_cast(data::digits[index + 1]); add_thousands_sep(buffer); *--buffer = static_cast(data::digits[index]); add_thousands_sep(buffer); } if (value < 10) { *--buffer = static_cast('0' + value); return end; } auto index = static_cast(value * 2); *--buffer = static_cast(data::digits[index + 1]); add_thousands_sep(buffer); *--buffer = static_cast(data::digits[index]); return end; } template constexpr int digits10() noexcept { return std::numeric_limits::digits10; } template <> constexpr int digits10() noexcept { return 38; } template <> constexpr int digits10() noexcept { return 38; } template inline Iterator format_decimal(Iterator out, UInt value, int num_digits, F add_thousands_sep) { FMT_ASSERT(num_digits >= 0, "invalid digit count"); // Buffer should be large enough to hold all digits (<= digits10 + 1). enum { max_size = digits10() + 1 }; Char buffer[2 * max_size]; auto end = format_decimal(buffer, value, num_digits, add_thousands_sep); return internal::copy_str(buffer, end, out); } template inline It format_decimal(It out, UInt value, int num_digits) { return format_decimal(out, value, num_digits, [](Char*) {}); } template inline Char* format_uint(Char* buffer, UInt value, int num_digits, bool upper = false) { buffer += num_digits; Char* end = buffer; do { const char* digits = upper ? "0123456789ABCDEF" : data::hex_digits; unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--buffer = static_cast(BASE_BITS < 4 ? static_cast('0' + digit) : digits[digit]); } while ((value >>= BASE_BITS) != 0); return end; } template Char* format_uint(Char* buffer, internal::fallback_uintptr n, int num_digits, bool = false) { auto char_digits = std::numeric_limits::digits / 4; int start = (num_digits + char_digits - 1) / char_digits - 1; if (int start_digits = num_digits % char_digits) { unsigned value = n.value[start--]; buffer = format_uint(buffer, value, start_digits); } for (; start >= 0; --start) { unsigned value = n.value[start]; buffer += char_digits; auto p = buffer; for (int i = 0; i < char_digits; ++i) { unsigned digit = (value & ((1 << BASE_BITS) - 1)); *--p = static_cast(data::hex_digits[digit]); value >>= BASE_BITS; } } return buffer; } template inline It format_uint(It out, UInt value, int num_digits, bool upper = false) { // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1). char buffer[num_bits() / BASE_BITS + 1]; format_uint(buffer, value, num_digits, upper); return internal::copy_str(buffer, buffer + num_digits, out); } #ifndef _WIN32 # define FMT_USE_WINDOWS_H 0 #elif !defined(FMT_USE_WINDOWS_H) # define FMT_USE_WINDOWS_H 1 #endif // Define FMT_USE_WINDOWS_H to 0 to disable use of windows.h. // All the functionality that relies on it will be disabled too. #if FMT_USE_WINDOWS_H // A converter from UTF-8 to UTF-16. // It is only provided for Windows since other systems support UTF-8 natively. class utf8_to_utf16 { private: wmemory_buffer buffer_; public: FMT_API explicit utf8_to_utf16(string_view s); operator wstring_view() const { return wstring_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const wchar_t* c_str() const { return &buffer_[0]; } std::wstring str() const { return std::wstring(&buffer_[0], size()); } }; // A converter from UTF-16 to UTF-8. // It is only provided for Windows since other systems support UTF-8 natively. class utf16_to_utf8 { private: memory_buffer buffer_; public: utf16_to_utf8() {} FMT_API explicit utf16_to_utf8(wstring_view s); operator string_view() const { return string_view(&buffer_[0], size()); } size_t size() const { return buffer_.size() - 1; } const char* c_str() const { return &buffer_[0]; } std::string str() const { return std::string(&buffer_[0], size()); } // Performs conversion returning a system error code instead of // throwing exception on conversion error. This method may still throw // in case of memory allocation error. FMT_API int convert(wstring_view s); }; FMT_API void format_windows_error(internal::buffer& out, int error_code, string_view message) FMT_NOEXCEPT; #endif template struct null {}; // Workaround an array initialization issue in gcc 4.8. template struct fill_t { private: Char data_[6]; public: FMT_CONSTEXPR Char& operator[](size_t index) { return data_[index]; } FMT_CONSTEXPR const Char& operator[](size_t index) const { return data_[index]; } static FMT_CONSTEXPR fill_t make() { auto fill = fill_t(); fill[0] = Char(' '); return fill; } }; } // namespace internal // We cannot use enum classes as bit fields because of a gcc bug // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414. namespace align { enum type { none, left, right, center, numeric }; } using align_t = align::type; namespace sign { enum type { none, minus, plus, space }; } using sign_t = sign::type; // Format specifiers for built-in and string types. template struct basic_format_specs { int width; int precision; char type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). internal::fill_t fill; constexpr basic_format_specs() : width(0), precision(-1), type(0), align(align::none), sign(sign::none), alt(false), fill(internal::fill_t::make()) {} }; using format_specs = basic_format_specs; namespace internal { // A floating-point presentation format. enum class float_format : unsigned char { general, // General: exponent notation or fixed point based on magnitude. exp, // Exponent notation with the default precision of 6, e.g. 1.2e-3. fixed, // Fixed point with the default precision of 6, e.g. 0.0012. hex }; struct float_specs { int precision; float_format format : 8; sign_t sign : 8; bool upper : 1; bool locale : 1; bool percent : 1; bool binary32 : 1; bool use_grisu : 1; bool trailing_zeros : 1; }; // Writes the exponent exp in the form "[+-]d{2,3}" to buffer. template It write_exponent(int exp, It it) { FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range"); if (exp < 0) { *it++ = static_cast('-'); exp = -exp; } else { *it++ = static_cast('+'); } if (exp >= 100) { const char* top = data::digits + (exp / 100) * 2; if (exp >= 1000) *it++ = static_cast(top[0]); *it++ = static_cast(top[1]); exp %= 100; } const char* d = data::digits + exp * 2; *it++ = static_cast(d[0]); *it++ = static_cast(d[1]); return it; } template class float_writer { private: // The number is given as v = digits_ * pow(10, exp_). const char* digits_; int num_digits_; int exp_; size_t size_; float_specs specs_; Char decimal_point_; template It prettify(It it) const { // pow(10, full_exp - 1) <= v <= pow(10, full_exp). int full_exp = num_digits_ + exp_; if (specs_.format == float_format::exp) { // Insert a decimal point after the first digit and add an exponent. *it++ = static_cast(*digits_); int num_zeros = specs_.precision - num_digits_; bool trailing_zeros = num_zeros > 0 && specs_.trailing_zeros; if (num_digits_ > 1 || trailing_zeros) *it++ = decimal_point_; it = copy_str(digits_ + 1, digits_ + num_digits_, it); if (trailing_zeros) it = std::fill_n(it, num_zeros, static_cast('0')); *it++ = static_cast(specs_.upper ? 'E' : 'e'); return write_exponent(full_exp - 1, it); } if (num_digits_ <= full_exp) { // 1234e7 -> 12340000000[.0+] it = copy_str(digits_, digits_ + num_digits_, it); it = std::fill_n(it, full_exp - num_digits_, static_cast('0')); if (specs_.trailing_zeros) { *it++ = decimal_point_; int num_zeros = specs_.precision - full_exp; if (num_zeros <= 0) { if (specs_.format != float_format::fixed) *it++ = static_cast('0'); return it; } #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (num_zeros > 1000) throw std::runtime_error("fuzz mode - avoiding excessive cpu use"); #endif it = std::fill_n(it, num_zeros, static_cast('0')); } } else if (full_exp > 0) { // 1234e-2 -> 12.34[0+] it = copy_str(digits_, digits_ + full_exp, it); if (!specs_.trailing_zeros) { // Remove trailing zeros. int num_digits = num_digits_; while (num_digits > full_exp && digits_[num_digits - 1] == '0') --num_digits; if (num_digits != full_exp) *it++ = decimal_point_; return copy_str(digits_ + full_exp, digits_ + num_digits, it); } *it++ = decimal_point_; it = copy_str(digits_ + full_exp, digits_ + num_digits_, it); if (specs_.precision > num_digits_) { // Add trailing zeros. int num_zeros = specs_.precision - num_digits_; it = std::fill_n(it, num_zeros, static_cast('0')); } } else { // 1234e-6 -> 0.001234 *it++ = static_cast('0'); int num_zeros = -full_exp; if (specs_.precision >= 0 && specs_.precision < num_zeros) num_zeros = specs_.precision; int num_digits = num_digits_; if (!specs_.trailing_zeros) while (num_digits > 0 && digits_[num_digits - 1] == '0') --num_digits; if (num_zeros != 0 || num_digits != 0) { *it++ = decimal_point_; it = std::fill_n(it, num_zeros, static_cast('0')); it = copy_str(digits_, digits_ + num_digits, it); } } return it; } public: float_writer(const char* digits, int num_digits, int exp, float_specs specs, Char decimal_point) : digits_(digits), num_digits_(num_digits), exp_(exp), specs_(specs), decimal_point_(decimal_point) { int full_exp = num_digits + exp - 1; int precision = specs.precision > 0 ? specs.precision : 16; if (specs_.format == float_format::general && !(full_exp >= -4 && full_exp < precision)) { specs_.format = float_format::exp; } size_ = prettify(counting_iterator()).count(); size_ += specs.sign ? 1 : 0; } size_t size() const { return size_; } size_t width() const { return size(); } template void operator()(It&& it) { if (specs_.sign) *it++ = static_cast(data::signs[specs_.sign]); it = prettify(it); } }; template int format_float(T value, int precision, float_specs specs, buffer& buf); // Formats a floating-point number with snprintf. template int snprintf_float(T value, int precision, float_specs specs, buffer& buf); template T promote_float(T value) { return value; } inline double promote_float(float value) { return value; } template FMT_CONSTEXPR void handle_int_type_spec(char spec, Handler&& handler) { switch (spec) { case 0: case 'd': handler.on_dec(); break; case 'x': case 'X': handler.on_hex(); break; case 'b': case 'B': handler.on_bin(); break; case 'o': handler.on_oct(); break; case 'n': handler.on_num(); break; default: handler.on_error(); } } template FMT_CONSTEXPR float_specs parse_float_type_spec( const basic_format_specs& specs, ErrorHandler&& eh = {}) { auto result = float_specs(); result.trailing_zeros = specs.alt; switch (specs.type) { case 0: result.format = float_format::general; result.trailing_zeros |= specs.precision != 0; break; case 'G': result.upper = true; FMT_FALLTHROUGH; case 'g': result.format = float_format::general; break; case 'E': result.upper = true; FMT_FALLTHROUGH; case 'e': result.format = float_format::exp; result.trailing_zeros |= specs.precision != 0; break; case 'F': result.upper = true; FMT_FALLTHROUGH; case 'f': result.format = float_format::fixed; result.trailing_zeros |= specs.precision != 0; break; #if FMT_DEPRECATED_PERCENT case '%': result.format = float_format::fixed; result.percent = true; break; #endif case 'A': result.upper = true; FMT_FALLTHROUGH; case 'a': result.format = float_format::hex; break; case 'n': result.locale = true; break; default: eh.on_error("invalid type specifier"); break; } return result; } template FMT_CONSTEXPR void handle_char_specs(const basic_format_specs* specs, Handler&& handler) { if (!specs) return handler.on_char(); if (specs->type && specs->type != 'c') return handler.on_int(); if (specs->align == align::numeric || specs->sign != sign::none || specs->alt) handler.on_error("invalid format specifier for char"); handler.on_char(); } template FMT_CONSTEXPR void handle_cstring_type_spec(Char spec, Handler&& handler) { if (spec == 0 || spec == 's') handler.on_string(); else if (spec == 'p') handler.on_pointer(); else handler.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_string_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 's') eh.on_error("invalid type specifier"); } template FMT_CONSTEXPR void check_pointer_type_spec(Char spec, ErrorHandler&& eh) { if (spec != 0 && spec != 'p') eh.on_error("invalid type specifier"); } template class int_type_checker : private ErrorHandler { public: FMT_CONSTEXPR explicit int_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_dec() {} FMT_CONSTEXPR void on_hex() {} FMT_CONSTEXPR void on_bin() {} FMT_CONSTEXPR void on_oct() {} FMT_CONSTEXPR void on_num() {} FMT_CONSTEXPR void on_error() { ErrorHandler::on_error("invalid type specifier"); } }; template class char_specs_checker : public ErrorHandler { private: char type_; public: FMT_CONSTEXPR char_specs_checker(char type, ErrorHandler eh) : ErrorHandler(eh), type_(type) {} FMT_CONSTEXPR void on_int() { handle_int_type_spec(type_, int_type_checker(*this)); } FMT_CONSTEXPR void on_char() {} }; template class cstring_type_checker : public ErrorHandler { public: FMT_CONSTEXPR explicit cstring_type_checker(ErrorHandler eh) : ErrorHandler(eh) {} FMT_CONSTEXPR void on_string() {} FMT_CONSTEXPR void on_pointer() {} }; template void arg_map::init(const basic_format_args& args) { if (map_) return; map_ = new entry[internal::to_unsigned(args.max_size())]; if (args.is_packed()) { for (int i = 0;; ++i) { internal::type arg_type = args.type(i); if (arg_type == internal::none_type) return; if (arg_type == internal::named_arg_type) push_back(args.values_[i]); } } for (int i = 0, n = args.max_size(); i < n; ++i) { auto type = args.args_[i].type_; if (type == internal::named_arg_type) push_back(args.args_[i].value_); } } template struct nonfinite_writer { sign_t sign; const char* str; static constexpr size_t str_size = 3; size_t size() const { return str_size + (sign ? 1 : 0); } size_t width() const { return size(); } template void operator()(It&& it) const { if (sign) *it++ = static_cast(data::signs[sign]); it = copy_str(str, str + str_size, it); } }; // This template provides operations for formatting and writing data into a // character range. template class basic_writer { public: using char_type = typename Range::value_type; using iterator = typename Range::iterator; using format_specs = basic_format_specs; private: iterator out_; // Output iterator. locale_ref locale_; // Attempts to reserve space for n extra characters in the output range. // Returns a pointer to the reserved range or a reference to out_. auto reserve(std::size_t n) -> decltype(internal::reserve(out_, n)) { return internal::reserve(out_, n); } template struct padded_int_writer { size_t size_; string_view prefix; char_type fill; std::size_t padding; F f; size_t size() const { return size_; } size_t width() const { return size_; } template void operator()(It&& it) const { if (prefix.size() != 0) it = copy_str(prefix.begin(), prefix.end(), it); it = std::fill_n(it, padding, fill); f(it); } }; // Writes an integer in the format // // where are written by f(it). template void write_int(int num_digits, string_view prefix, format_specs specs, F f) { std::size_t size = prefix.size() + to_unsigned(num_digits); char_type fill = specs.fill[0]; std::size_t padding = 0; if (specs.align == align::numeric) { auto unsiged_width = to_unsigned(specs.width); if (unsiged_width > size) { padding = unsiged_width - size; size = unsiged_width; } } else if (specs.precision > num_digits) { size = prefix.size() + to_unsigned(specs.precision); padding = to_unsigned(specs.precision - num_digits); fill = static_cast('0'); } if (specs.align == align::none) specs.align = align::right; write_padded(specs, padded_int_writer{size, prefix, fill, padding, f}); } // Writes a decimal integer. template void write_decimal(Int value) { auto abs_value = static_cast>(value); bool negative = is_negative(value); // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer. if (negative) abs_value = ~abs_value + 1; int num_digits = count_digits(abs_value); auto&& it = reserve((negative ? 1 : 0) + static_cast(num_digits)); if (negative) *it++ = static_cast('-'); it = format_decimal(it, abs_value, num_digits); } // The handle_int_type_spec handler that writes an integer. template struct int_writer { using unsigned_type = uint32_or_64_or_128_t; basic_writer& writer; const Specs& specs; unsigned_type abs_value; char prefix[4]; unsigned prefix_size; string_view get_prefix() const { return string_view(prefix, prefix_size); } int_writer(basic_writer& w, Int value, const Specs& s) : writer(w), specs(s), abs_value(static_cast(value)), prefix_size(0) { if (is_negative(value)) { prefix[0] = '-'; ++prefix_size; abs_value = 0 - abs_value; } else if (specs.sign != sign::none && specs.sign != sign::minus) { prefix[0] = specs.sign == sign::plus ? '+' : ' '; ++prefix_size; } } struct dec_writer { unsigned_type abs_value; int num_digits; template void operator()(It&& it) const { it = internal::format_decimal(it, abs_value, num_digits); } }; void on_dec() { int num_digits = count_digits(abs_value); writer.write_int(num_digits, get_prefix(), specs, dec_writer{abs_value, num_digits}); } struct hex_writer { int_writer& self; int num_digits; template void operator()(It&& it) const { it = format_uint<4, char_type>(it, self.abs_value, num_digits, self.specs.type != 'x'); } }; void on_hex() { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = specs.type; } int num_digits = count_digits<4>(abs_value); writer.write_int(num_digits, get_prefix(), specs, hex_writer{*this, num_digits}); } template struct bin_writer { unsigned_type abs_value; int num_digits; template void operator()(It&& it) const { it = format_uint(it, abs_value, num_digits); } }; void on_bin() { if (specs.alt) { prefix[prefix_size++] = '0'; prefix[prefix_size++] = static_cast(specs.type); } int num_digits = count_digits<1>(abs_value); writer.write_int(num_digits, get_prefix(), specs, bin_writer<1>{abs_value, num_digits}); } void on_oct() { int num_digits = count_digits<3>(abs_value); if (specs.alt && specs.precision <= num_digits && abs_value != 0) { // Octal prefix '0' is counted as a digit, so only add it if precision // is not greater than the number of digits. prefix[prefix_size++] = '0'; } writer.write_int(num_digits, get_prefix(), specs, bin_writer<3>{abs_value, num_digits}); } enum { sep_size = 1 }; struct num_writer { unsigned_type abs_value; int size; const std::string& groups; char_type sep; template void operator()(It&& it) const { basic_string_view s(&sep, sep_size); // Index of a decimal digit with the least significant digit having // index 0. int digit_index = 0; std::string::const_iterator group = groups.cbegin(); it = format_decimal( it, abs_value, size, [this, s, &group, &digit_index](char_type*& buffer) { if (*group <= 0 || ++digit_index % *group != 0 || *group == max_value()) return; if (group + 1 != groups.cend()) { digit_index = 0; ++group; } buffer -= s.size(); std::uninitialized_copy(s.data(), s.data() + s.size(), make_checked(buffer, s.size())); }); } }; void on_num() { std::string groups = grouping(writer.locale_); if (groups.empty()) return on_dec(); auto sep = thousands_sep(writer.locale_); if (!sep) return on_dec(); int num_digits = count_digits(abs_value); int size = num_digits; std::string::const_iterator group = groups.cbegin(); while (group != groups.cend() && num_digits > *group && *group > 0 && *group != max_value()) { size += sep_size; num_digits -= *group; ++group; } if (group == groups.cend()) size += sep_size * ((num_digits - 1) / groups.back()); writer.write_int(size, get_prefix(), specs, num_writer{abs_value, size, groups, sep}); } FMT_NORETURN void on_error() { FMT_THROW(format_error("invalid type specifier")); } }; template struct str_writer { const Char* s; size_t size_; size_t size() const { return size_; } size_t width() const { return count_code_points(basic_string_view(s, size_)); } template void operator()(It&& it) const { it = copy_str(s, s + size_, it); } }; template struct pointer_writer { UIntPtr value; int num_digits; size_t size() const { return to_unsigned(num_digits) + 2; } size_t width() const { return size(); } template void operator()(It&& it) const { *it++ = static_cast('0'); *it++ = static_cast('x'); it = format_uint<4, char_type>(it, value, num_digits); } }; public: explicit basic_writer(Range out, locale_ref loc = locale_ref()) : out_(out.begin()), locale_(loc) {} iterator out() const { return out_; } // Writes a value in the format // // where is written by f(it). template void write_padded(const format_specs& specs, F&& f) { // User-perceived width (in code points). unsigned width = to_unsigned(specs.width); size_t size = f.size(); // The number of code units. size_t num_code_points = width != 0 ? f.width() : size; if (width <= num_code_points) return f(reserve(size)); auto&& it = reserve(width + (size - num_code_points)); char_type fill = specs.fill[0]; std::size_t padding = width - num_code_points; if (specs.align == align::right) { it = std::fill_n(it, padding, fill); f(it); } else if (specs.align == align::center) { std::size_t left_padding = padding / 2; it = std::fill_n(it, left_padding, fill); f(it); it = std::fill_n(it, padding - left_padding, fill); } else { f(it); it = std::fill_n(it, padding, fill); } } void write(int value) { write_decimal(value); } void write(long value) { write_decimal(value); } void write(long long value) { write_decimal(value); } void write(unsigned value) { write_decimal(value); } void write(unsigned long value) { write_decimal(value); } void write(unsigned long long value) { write_decimal(value); } #if FMT_USE_INT128 void write(int128_t value) { write_decimal(value); } void write(uint128_t value) { write_decimal(value); } #endif template void write_int(T value, const Spec& spec) { handle_int_type_spec(spec.type, int_writer(*this, value, spec)); } template ::value)> void write(T value, format_specs specs = {}) { float_specs fspecs = parse_float_type_spec(specs); fspecs.sign = specs.sign; if (std::signbit(value)) { // value < 0 is false for NaN so use signbit. fspecs.sign = sign::minus; value = -value; } else if (fspecs.sign == sign::minus) { fspecs.sign = sign::none; } if (!std::isfinite(value)) { auto str = std::isinf(value) ? (fspecs.upper ? "INF" : "inf") : (fspecs.upper ? "NAN" : "nan"); return write_padded(specs, nonfinite_writer{fspecs.sign, str}); } if (specs.align == align::none) { specs.align = align::right; } else if (specs.align == align::numeric) { if (fspecs.sign) { auto&& it = reserve(1); *it++ = static_cast(data::signs[fspecs.sign]); fspecs.sign = sign::none; if (specs.width != 0) --specs.width; } specs.align = align::right; } memory_buffer buffer; if (fspecs.format == float_format::hex) { if (fspecs.sign) buffer.push_back(data::signs[fspecs.sign]); snprintf_float(promote_float(value), specs.precision, fspecs, buffer); write_padded(specs, str_writer{buffer.data(), buffer.size()}); return; } int precision = specs.precision >= 0 || !specs.type ? specs.precision : 6; if (fspecs.format == float_format::exp) ++precision; if (const_check(std::is_same())) fspecs.binary32 = true; fspecs.use_grisu = use_grisu(); if (const_check(FMT_DEPRECATED_PERCENT) && fspecs.percent) value *= 100; int exp = format_float(promote_float(value), precision, fspecs, buffer); if (const_check(FMT_DEPRECATED_PERCENT) && fspecs.percent) { buffer.push_back('%'); --exp; // Adjust decimal place position. } fspecs.precision = precision; char_type point = fspecs.locale ? decimal_point(locale_) : static_cast('.'); write_padded(specs, float_writer(buffer.data(), static_cast(buffer.size()), exp, fspecs, point)); } void write(char value) { auto&& it = reserve(1); *it++ = value; } template ::value)> void write(Char value) { auto&& it = reserve(1); *it++ = value; } void write(string_view value) { auto&& it = reserve(value.size()); it = copy_str(value.begin(), value.end(), it); } void write(wstring_view value) { static_assert(std::is_same::value, ""); auto&& it = reserve(value.size()); it = std::copy(value.begin(), value.end(), it); } template void write(const Char* s, std::size_t size, const format_specs& specs) { write_padded(specs, str_writer{s, size}); } template void write(basic_string_view s, const format_specs& specs = {}) { const Char* data = s.data(); std::size_t size = s.size(); if (specs.precision >= 0 && to_unsigned(specs.precision) < size) size = code_point_index(s, to_unsigned(specs.precision)); write(data, size, specs); } template void write_pointer(UIntPtr value, const format_specs* specs) { int num_digits = count_digits<4>(value); auto pw = pointer_writer{value, num_digits}; if (!specs) return pw(reserve(to_unsigned(num_digits) + 2)); format_specs specs_copy = *specs; if (specs_copy.align == align::none) specs_copy.align = align::right; write_padded(specs_copy, pw); } }; using writer = basic_writer>; template struct is_integral : std::is_integral {}; template <> struct is_integral : std::true_type {}; template <> struct is_integral : std::true_type {}; template class arg_formatter_base { public: using char_type = typename Range::value_type; using iterator = typename Range::iterator; using format_specs = basic_format_specs; private: using writer_type = basic_writer; writer_type writer_; format_specs* specs_; struct char_writer { char_type value; size_t size() const { return 1; } size_t width() const { return 1; } template void operator()(It&& it) const { *it++ = value; } }; void write_char(char_type value) { if (specs_) writer_.write_padded(*specs_, char_writer{value}); else writer_.write(value); } void write_pointer(const void* p) { writer_.write_pointer(internal::to_uintptr(p), specs_); } protected: writer_type& writer() { return writer_; } FMT_DEPRECATED format_specs* spec() { return specs_; } format_specs* specs() { return specs_; } iterator out() { return writer_.out(); } void write(bool value) { string_view sv(value ? "true" : "false"); specs_ ? writer_.write(sv, *specs_) : writer_.write(sv); } void write(const char_type* value) { if (!value) { FMT_THROW(format_error("string pointer is null")); } else { auto length = std::char_traits::length(value); basic_string_view sv(value, length); specs_ ? writer_.write(sv, *specs_) : writer_.write(sv); } } public: arg_formatter_base(Range r, format_specs* s, locale_ref loc) : writer_(r, loc), specs_(s) {} iterator operator()(monostate) { FMT_ASSERT(false, "invalid argument type"); return out(); } template ::value)> iterator operator()(T value) { if (specs_) writer_.write_int(value, *specs_); else writer_.write(value); return out(); } iterator operator()(char_type value) { internal::handle_char_specs( specs_, char_spec_handler(*this, static_cast(value))); return out(); } iterator operator()(bool value) { if (specs_ && specs_->type) return (*this)(value ? 1 : 0); write(value != 0); return out(); } template ::value)> iterator operator()(T value) { writer_.write(value, specs_ ? *specs_ : format_specs()); return out(); } struct char_spec_handler : ErrorHandler { arg_formatter_base& formatter; char_type value; char_spec_handler(arg_formatter_base& f, char_type val) : formatter(f), value(val) {} void on_int() { if (formatter.specs_) formatter.writer_.write_int(value, *formatter.specs_); else formatter.writer_.write(value); } void on_char() { formatter.write_char(value); } }; struct cstring_spec_handler : internal::error_handler { arg_formatter_base& formatter; const char_type* value; cstring_spec_handler(arg_formatter_base& f, const char_type* val) : formatter(f), value(val) {} void on_string() { formatter.write(value); } void on_pointer() { formatter.write_pointer(value); } }; iterator operator()(const char_type* value) { if (!specs_) return write(value), out(); internal::handle_cstring_type_spec(specs_->type, cstring_spec_handler(*this, value)); return out(); } iterator operator()(basic_string_view value) { if (specs_) { internal::check_string_type_spec(specs_->type, internal::error_handler()); writer_.write(value, *specs_); } else { writer_.write(value); } return out(); } iterator operator()(const void* value) { if (specs_) check_pointer_type_spec(specs_->type, internal::error_handler()); write_pointer(value); return out(); } }; template FMT_CONSTEXPR bool is_name_start(Char c) { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || '_' == c; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template FMT_CONSTEXPR int parse_nonnegative_int(const Char*& begin, const Char* end, ErrorHandler&& eh) { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); if (*begin == '0') { ++begin; return 0; } unsigned value = 0; // Convert to unsigned to prevent a warning. constexpr unsigned max_int = max_value(); unsigned big = max_int / 10; do { // Check for overflow. if (value > big) { value = max_int + 1; break; } value = value * 10 + unsigned(*begin - '0'); ++begin; } while (begin != end && '0' <= *begin && *begin <= '9'); if (value > max_int) eh.on_error("number is too big"); return static_cast(value); } template class custom_formatter { private: using char_type = typename Context::char_type; basic_format_parse_context& parse_ctx_; Context& ctx_; public: explicit custom_formatter(basic_format_parse_context& parse_ctx, Context& ctx) : parse_ctx_(parse_ctx), ctx_(ctx) {} bool operator()(typename basic_format_arg::handle h) const { h.format(parse_ctx_, ctx_); return true; } template bool operator()(T) const { return false; } }; template using is_integer = bool_constant::value && !std::is_same::value && !std::is_same::value && !std::is_same::value>; template class width_checker { public: explicit FMT_CONSTEXPR width_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative width"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("width is not integer"); return 0; } private: ErrorHandler& handler_; }; template class precision_checker { public: explicit FMT_CONSTEXPR precision_checker(ErrorHandler& eh) : handler_(eh) {} template ::value)> FMT_CONSTEXPR unsigned long long operator()(T value) { if (is_negative(value)) handler_.on_error("negative precision"); return static_cast(value); } template ::value)> FMT_CONSTEXPR unsigned long long operator()(T) { handler_.on_error("precision is not integer"); return 0; } private: ErrorHandler& handler_; }; // A format specifier handler that sets fields in basic_format_specs. template class specs_setter { public: explicit FMT_CONSTEXPR specs_setter(basic_format_specs& specs) : specs_(specs) {} FMT_CONSTEXPR specs_setter(const specs_setter& other) : specs_(other.specs_) {} FMT_CONSTEXPR void on_align(align_t align) { specs_.align = align; } FMT_CONSTEXPR void on_fill(Char fill) { specs_.fill[0] = fill; } FMT_CONSTEXPR void on_plus() { specs_.sign = sign::plus; } FMT_CONSTEXPR void on_minus() { specs_.sign = sign::minus; } FMT_CONSTEXPR void on_space() { specs_.sign = sign::space; } FMT_CONSTEXPR void on_hash() { specs_.alt = true; } FMT_CONSTEXPR void on_zero() { specs_.align = align::numeric; specs_.fill[0] = Char('0'); } FMT_CONSTEXPR void on_width(int width) { specs_.width = width; } FMT_CONSTEXPR void on_precision(int precision) { specs_.precision = precision; } FMT_CONSTEXPR void end_precision() {} FMT_CONSTEXPR void on_type(Char type) { specs_.type = static_cast(type); } protected: basic_format_specs& specs_; }; template class numeric_specs_checker { public: FMT_CONSTEXPR numeric_specs_checker(ErrorHandler& eh, internal::type arg_type) : error_handler_(eh), arg_type_(arg_type) {} FMT_CONSTEXPR void require_numeric_argument() { if (!is_arithmetic_type(arg_type_)) error_handler_.on_error("format specifier requires numeric argument"); } FMT_CONSTEXPR void check_sign() { require_numeric_argument(); if (is_integral_type(arg_type_) && arg_type_ != int_type && arg_type_ != long_long_type && arg_type_ != internal::char_type) { error_handler_.on_error("format specifier requires signed argument"); } } FMT_CONSTEXPR void check_precision() { if (is_integral_type(arg_type_) || arg_type_ == internal::pointer_type) error_handler_.on_error("precision not allowed for this argument type"); } private: ErrorHandler& error_handler_; internal::type arg_type_; }; // A format specifier handler that checks if specifiers are consistent with the // argument type. template class specs_checker : public Handler { public: FMT_CONSTEXPR specs_checker(const Handler& handler, internal::type arg_type) : Handler(handler), checker_(*this, arg_type) {} FMT_CONSTEXPR specs_checker(const specs_checker& other) : Handler(other), checker_(*this, other.arg_type_) {} FMT_CONSTEXPR void on_align(align_t align) { if (align == align::numeric) checker_.require_numeric_argument(); Handler::on_align(align); } FMT_CONSTEXPR void on_plus() { checker_.check_sign(); Handler::on_plus(); } FMT_CONSTEXPR void on_minus() { checker_.check_sign(); Handler::on_minus(); } FMT_CONSTEXPR void on_space() { checker_.check_sign(); Handler::on_space(); } FMT_CONSTEXPR void on_hash() { checker_.require_numeric_argument(); Handler::on_hash(); } FMT_CONSTEXPR void on_zero() { checker_.require_numeric_argument(); Handler::on_zero(); } FMT_CONSTEXPR void end_precision() { checker_.check_precision(); } private: numeric_specs_checker checker_; }; template