/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /* */ /* This file is part of the program and library */ /* SCIP --- Solving Constraint Integer Programs */ /* */ /* Copyright 2002-2022 Zuse Institute Berlin */ /* */ /* Licensed under the Apache License, Version 2.0 (the "License"); */ /* you may not use this file except in compliance with the License. */ /* You may obtain a copy of the License at */ /* */ /* http://www.apache.org/licenses/LICENSE-2.0 */ /* */ /* Unless required by applicable law or agreed to in writing, software */ /* distributed under the License is distributed on an "AS IS" BASIS, */ /* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. */ /* See the License for the specific language governing permissions and */ /* limitations under the License. */ /* */ /* You should have received a copy of the Apache-2.0 license */ /* along with SCIP; see the file LICENSE. If not visit scipopt.org. */ /* */ /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */ /**@file heur_subnlp.h * @ingroup PRIMALHEURISTICS * @brief NLP local search primal heuristic using sub-SCIPs * @author Stefan Vigerske * * This heuristic applies a NLP local search to a nonlinear CIP after fixing all discrete variables. * That is, the CIP is copied, all discrete variables are fixed, presolving is applied, * and if the resulting CIP has a nonlinear relaxation, then it is tried to solve this relaxation * by an NLP solver. * The heuristic only runs if continuous nonlinearities are present (@ref SCIPhasNLPContinuousNonlinearity()). * * Fixing values for discrete values are either taken from a solution of the LP relaxation which * satisfies all integrality constraints, or are provided by SCIPupdateStartpointHeurSubNlp(). * * This heuristic is orthogonal to the undercover heuristic (@ref heur_undercover.h), which fixes * variables in a nonlinear CIP in a way that a (possibly mixed-integer) linear subproblem is obtained. */ /*---+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+----9----+----0----+----1----+----2*/ #ifndef HEUR_SUBNLP_H_ #define HEUR_SUBNLP_H_ #include "scip/def.h" #include "scip/type_heur.h" #include "scip/type_result.h" #include "scip/type_retcode.h" #include "scip/type_scip.h" #include "scip/type_sol.h" #include "scip/type_var.h" #ifdef __cplusplus extern "C" { #endif /** creates the NLP local search primal heuristic and includes it in SCIP * * @ingroup PrimalHeuristicIncludes */ SCIP_EXPORT SCIP_RETCODE SCIPincludeHeurSubNlp( SCIP* scip /**< SCIP data structure */ ); /**@addtogroup PRIMALHEURISTICS * * @{ */ /** main procedure of the subNLP heuristic */ SCIP_EXPORT SCIP_RETCODE SCIPapplyHeurSubNlp( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur, /**< heuristic data structure */ SCIP_RESULT* result, /**< pointer to store result of: solution found, no solution found, or fixing is infeasible (cutoff) */ SCIP_SOL* refpoint, /**< point to take fixation of discrete variables from, and startpoint for NLP solver; if NULL, then LP solution is used */ SCIP_SOL* resultsol /**< a solution where to store found solution values, if any, or NULL if to try adding to SCIP */ ); /** updates the starting point for the NLP heuristic * * Is called, for example, by a constraint handler that handles nonlinear constraints when a check on feasibility of a solution fails. */ SCIP_EXPORT SCIP_RETCODE SCIPupdateStartpointHeurSubNlp( SCIP* scip, /**< SCIP data structure */ SCIP_HEUR* heur, /**< subNLP heuristic */ SCIP_SOL* solcand, /**< solution candidate */ SCIP_Real violation /**< constraint violation of solution candidate */ ); /** gets startpoint candidate to be used in next call to NLP heuristic, or NULL if none */ SCIP_EXPORT SCIP_SOL* SCIPgetStartCandidateHeurSubNlp( SCIP* scip, /**< original SCIP data structure */ SCIP_HEUR* heur /**< heuristic data structure */ ); /** @} */ #ifdef __cplusplus } #endif #endif /*HEUR_SUBNLP_H_*/