#include /* to seed random */ #include "amatrix.h" #include "problem_utils.h" #include "scs.h" /* create data for problem: minimize c'*x subject to Ax <=_K b where K is a product of zero, linear, and second-order cones. A is a sparse matrix in CSC format. A is 3n by n with about sqrt(n) nonzeros per column. Construct data in such a way that the problem is primal and dual feasible and thus bounded. */ int main(int argc, char **argv) { scs_int n, m, col_nnz, nnz, i, q_total, q_num_rows, max_q; ScsCone *k; ScsData *d; ScsSolution *sol, *opt_sol; ScsInfo info = {0}; scs_float p_f, p_l; int seed = 0; /* default parameters */ p_f = 0.1; p_l = 0.3; seed = time(SCS_NULL); switch (argc) { case 5: seed = atoi(argv[4]); /* no break */ case 4: p_f = atof(argv[2]); p_l = atof(argv[3]); /* no break */ case 2: n = atoi(argv[1]); break; default: scs_printf( "usage:\t%s n p_f p_l s\n" "\tcreates an SOCP with n variables where p_f fraction of " "rows correspond\n" "\tto equality constraints, p_l fraction of rows correspond " "to LP constraints,\n" "\tand the remaining percentage of rows are involved in " "second-order\n" "\tcone constraints. the random number generator is seeded " "with s.\n" "\tnote that p_f + p_l should be less than or equal to 1, " "and that\n" "\tp_f should be less than .33, since that corresponds to " "as many equality\n" "\tconstraints as variables.\n", argv[0]); scs_printf( "\nusage:\t%s n p_f p_l\n" "\tdefaults the seed to the system time\n", argv[0]); scs_printf( "\nusage:\t%s n\n" "\tdefaults to using p_f = 0.1 and p_l = 0.3\n", argv[0]); return 0; } srand(seed); scs_printf("seed : %i\n", seed); k = (ScsCone *)scs_calloc(1, sizeof(ScsCone)); d = (ScsData *)scs_calloc(1, sizeof(ScsData)); d->stgs = (ScsSettings *)scs_calloc(1, sizeof(ScsSettings)); sol = (ScsSolution *)scs_calloc(1, sizeof(ScsSolution)); opt_sol = (ScsSolution *)scs_calloc(1, sizeof(ScsSolution)); m = 3 * n; col_nnz = (int)ceil(sqrt(n)); nnz = n * col_nnz; max_q = (scs_int)ceil(3 * n / log(3 * n)); if (p_f + p_l > 1.0) { printf("error: p_f + p_l > 1.0!\n"); return 1; } k->f = (scs_int)floor(3 * n * p_f); k->l = (scs_int)floor(3 * n * p_l); k->qsize = 0; q_num_rows = 3 * n - k->f - k->l; k->q = (scs_int *)scs_malloc(q_num_rows * sizeof(scs_int)); while (q_num_rows > max_q) { int size; size = (rand() % max_q) + 1; k->q[k->qsize] = size; k->qsize++; q_num_rows -= size; } if (q_num_rows > 0) { k->q[k->qsize] = q_num_rows; k->qsize++; } q_total = 0; for (i = 0; i < k->qsize; i++) { q_total += k->q[i]; } k->s = SCS_NULL; k->ssize = 0; k->ep = 0; k->ed = 0; scs_printf("\nA is %ld by %ld, with %ld nonzeros per column.\n", (long)m, (long)n, (long)col_nnz); scs_printf("A has %ld nonzeros (%f%% dense).\n", (long)nnz, 100 * (scs_float)col_nnz / m); scs_printf("Nonzeros of A take %f GB of storage.\n", ((scs_float)nnz * sizeof(scs_float)) / POWF(2, 30)); scs_printf("Row idxs of A take %f GB of storage.\n", ((scs_float)nnz * sizeof(scs_int)) / POWF(2, 30)); scs_printf("Col ptrs of A take %f GB of storage.\n\n", ((scs_float)n * sizeof(scs_int)) / POWF(2, 30)); printf("ScsCone information:\n"); printf("Zero cone rows: %ld\n", (long)k->f); printf("LP cone rows: %ld\n", (long)k->l); printf("Number of second-order cones: %ld, covering %ld rows, with sizes\n[", (long)k->qsize, (long)q_total); for (i = 0; i < k->qsize; i++) { printf("%ld, ", (long)k->q[i]); } printf("]\n"); printf("Number of rows covered is %ld out of %ld.\n\n", (long)(q_total + k->f + k->l), (long)m); /* set up SCS structures */ d->m = m; d->n = n; gen_random_prob_data(nnz, col_nnz, d, k, opt_sol); SCS(set_default_settings)(d); /* d->stgs->write_data_filename = "random_socp_prob"; */ scs_printf("true pri opt = %4f\n", SCS(dot)(d->c, opt_sol->x, d->n)); scs_printf("true dua opt = %4f\n", -SCS(dot)(d->b, opt_sol->y, d->m)); // instead of solving we break up the initialization ScsWork *w = scs_init(d, k, &info);// create workspace scs_printf("DONE WITH INIT"); for (i = 0; i < 10; i++){ scs_printf("i=%d", i); scs_solve(w, d, k, sol, &info); } scs_finish(w); /* solve! */ //scs(d, k, sol, &info); scs_printf("true pri opt = %4f\n", SCS(dot)(d->c, opt_sol->x, d->n)); scs_printf("true dua opt = %4f\n", -SCS(dot)(d->b, opt_sol->y, d->m)); if (sol->x) { scs_printf("scs pri obj= %4f\n", SCS(dot)(d->c, sol->x, d->n)); } if (sol->y) { scs_printf("scs dua obj = %4f\n", -SCS(dot)(d->b, sol->y, d->m)); } SCS(free_data)(d, k); SCS(free_sol)(sol); SCS(free_sol)(opt_sol); return 0; }