//===-- fuchsia.cpp ---------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "platform.h" #if SCUDO_FUCHSIA #include "common.h" #include "mutex.h" #include "string_utils.h" #include // for sync_mutex_t #include // for getenv() #include #include #include namespace scudo { uptr getPageSize() { return _zx_system_get_page_size(); } void NORETURN die() { __builtin_trap(); } // We zero-initialize the Extra parameter of map(), make sure this is consistent // with ZX_HANDLE_INVALID. static_assert(ZX_HANDLE_INVALID == 0, ""); static void *allocateVmar(uptr Size, MapPlatformData *Data, bool AllowNoMem) { // Only scenario so far. DCHECK(Data); DCHECK_EQ(Data->Vmar, ZX_HANDLE_INVALID); const zx_status_t Status = _zx_vmar_allocate( _zx_vmar_root_self(), ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, Size, &Data->Vmar, &Data->VmarBase); if (UNLIKELY(Status != ZX_OK)) { if (Status != ZX_ERR_NO_MEMORY || !AllowNoMem) dieOnMapUnmapError(Status == ZX_ERR_NO_MEMORY ? Size : 0); return nullptr; } return reinterpret_cast(Data->VmarBase); } void *map(void *Addr, uptr Size, const char *Name, uptr Flags, MapPlatformData *Data) { DCHECK_EQ(Size % getPageSizeCached(), 0); const bool AllowNoMem = !!(Flags & MAP_ALLOWNOMEM); // For MAP_NOACCESS, just allocate a Vmar and return. if (Flags & MAP_NOACCESS) return allocateVmar(Size, Data, AllowNoMem); const zx_handle_t Vmar = Data ? Data->Vmar : _zx_vmar_root_self(); CHECK_NE(Vmar, ZX_HANDLE_INVALID); zx_status_t Status; zx_handle_t Vmo; uint64_t VmoSize = 0; if (Data && Data->Vmo != ZX_HANDLE_INVALID) { // If a Vmo was specified, it's a resize operation. CHECK(Addr); DCHECK(Flags & MAP_RESIZABLE); Vmo = Data->Vmo; VmoSize = Data->VmoSize; Status = _zx_vmo_set_size(Vmo, VmoSize + Size); if (Status != ZX_OK) { if (Status != ZX_ERR_NO_MEMORY || !AllowNoMem) dieOnMapUnmapError(Status == ZX_ERR_NO_MEMORY ? Size : 0); return nullptr; } } else { // Otherwise, create a Vmo and set its name. Status = _zx_vmo_create(Size, ZX_VMO_RESIZABLE, &Vmo); if (UNLIKELY(Status != ZX_OK)) { if (Status != ZX_ERR_NO_MEMORY || !AllowNoMem) dieOnMapUnmapError(Status == ZX_ERR_NO_MEMORY ? Size : 0); return nullptr; } _zx_object_set_property(Vmo, ZX_PROP_NAME, Name, strlen(Name)); } uintptr_t P; zx_vm_option_t MapFlags = ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_ALLOW_FAULTS; const uint64_t Offset = Addr ? reinterpret_cast(Addr) - Data->VmarBase : 0; if (Offset) MapFlags |= ZX_VM_SPECIFIC; Status = _zx_vmar_map(Vmar, MapFlags, Offset, Vmo, VmoSize, Size, &P); // No need to track the Vmo if we don't intend on resizing it. Close it. if (Flags & MAP_RESIZABLE) { DCHECK(Data); if (Data->Vmo == ZX_HANDLE_INVALID) Data->Vmo = Vmo; else DCHECK_EQ(Data->Vmo, Vmo); } else { CHECK_EQ(_zx_handle_close(Vmo), ZX_OK); } if (UNLIKELY(Status != ZX_OK)) { if (Status != ZX_ERR_NO_MEMORY || !AllowNoMem) dieOnMapUnmapError(Status == ZX_ERR_NO_MEMORY ? Size : 0); return nullptr; } if (Data) Data->VmoSize += Size; return reinterpret_cast(P); } void unmap(void *Addr, uptr Size, uptr Flags, MapPlatformData *Data) { if (Flags & UNMAP_ALL) { DCHECK_NE(Data, nullptr); const zx_handle_t Vmar = Data->Vmar; DCHECK_NE(Vmar, _zx_vmar_root_self()); // Destroying the vmar effectively unmaps the whole mapping. CHECK_EQ(_zx_vmar_destroy(Vmar), ZX_OK); CHECK_EQ(_zx_handle_close(Vmar), ZX_OK); } else { const zx_handle_t Vmar = Data ? Data->Vmar : _zx_vmar_root_self(); const zx_status_t Status = _zx_vmar_unmap(Vmar, reinterpret_cast(Addr), Size); if (UNLIKELY(Status != ZX_OK)) dieOnMapUnmapError(); } if (Data) { if (Data->Vmo != ZX_HANDLE_INVALID) CHECK_EQ(_zx_handle_close(Data->Vmo), ZX_OK); memset(Data, 0, sizeof(*Data)); } } void setMemoryPermission(UNUSED uptr Addr, UNUSED uptr Size, UNUSED uptr Flags, UNUSED MapPlatformData *Data) { const zx_vm_option_t Prot = (Flags & MAP_NOACCESS) ? 0 : (ZX_VM_PERM_READ | ZX_VM_PERM_WRITE); DCHECK(Data); DCHECK_NE(Data->Vmar, ZX_HANDLE_INVALID); if (_zx_vmar_protect(Data->Vmar, Prot, Addr, Size) != ZX_OK) dieOnMapUnmapError(); } void releasePagesToOS(UNUSED uptr BaseAddress, uptr Offset, uptr Size, MapPlatformData *Data) { DCHECK(Data); DCHECK_NE(Data->Vmar, ZX_HANDLE_INVALID); DCHECK_NE(Data->Vmo, ZX_HANDLE_INVALID); const zx_status_t Status = _zx_vmo_op_range(Data->Vmo, ZX_VMO_OP_DECOMMIT, Offset, Size, NULL, 0); CHECK_EQ(Status, ZX_OK); } const char *getEnv(const char *Name) { return getenv(Name); } // Note: we need to flag these methods with __TA_NO_THREAD_SAFETY_ANALYSIS // because the Fuchsia implementation of sync_mutex_t has clang thread safety // annotations. Were we to apply proper capability annotations to the top level // HybridMutex class itself, they would not be needed. As it stands, the // thread analysis thinks that we are locking the mutex and accidentally leaving // it locked on the way out. bool HybridMutex::tryLock() __TA_NO_THREAD_SAFETY_ANALYSIS { // Size and alignment must be compatible between both types. return sync_mutex_trylock(&M) == ZX_OK; } void HybridMutex::lockSlow() __TA_NO_THREAD_SAFETY_ANALYSIS { sync_mutex_lock(&M); } void HybridMutex::unlock() __TA_NO_THREAD_SAFETY_ANALYSIS { sync_mutex_unlock(&M); } u64 getMonotonicTime() { return _zx_clock_get_monotonic(); } u32 getNumberOfCPUs() { return _zx_system_get_num_cpus(); } u32 getThreadID() { return 0; } bool getRandom(void *Buffer, uptr Length, UNUSED bool Blocking) { static_assert(MaxRandomLength <= ZX_CPRNG_DRAW_MAX_LEN, ""); if (UNLIKELY(!Buffer || !Length || Length > MaxRandomLength)) return false; _zx_cprng_draw(Buffer, Length); return true; } void outputRaw(const char *Buffer) { __sanitizer_log_write(Buffer, strlen(Buffer)); } void setAbortMessage(const char *Message) {} } // namespace scudo #endif // SCUDO_FUCHSIA