// Copyright 2023 Ant Group Co., Ltd. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // syntax = "proto3"; package secretflowapis.v1.sdc.teeapps.params; option java_package = "com.alipay.secretflow.secretflowapis.v1.sdc.teeapps.params"; option java_outer_classname = "LrProto"; message LrHyperParams { // 线性回归迭代次数 // 范围: [1, 10000] // 默认: 10 int32 max_iter = 1; // 训练目标: // "linear": // 线性回归目标 // "logistic" (默认): // 二分类目标 string regression_type = 2; // 权重L2正则项,该参数越大算法越保守。 // 范围: [0, 1e4) // 默认: 0 double l2_norm = 3; // 最小收敛误差, 支持输入(0,1)的数值 // 默认值:0.0001 double tol = 4; // 是否report特征权重 // [True, False] // 默认: False // // WARN: 这个参数存在安全隐患,以后决定是否删除 bool should_report_weights = 5; } message LrReport { message Weight { string feature_name = 1; double value = 2; double pvalue = 3; } // weight for each feature. repeated Weight weights = 1; }