#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Utilities for manipulating blocks and transactions.""" from .script import ( CScript, OP_CHECKSIG, OP_DUP, OP_EQUALVERIFY, OP_HASH160, OP_PUSHDATA2, OP_RETURN, OP_TRUE, ) from .messages import ( CBlock, COIN, COutPoint, CTransaction, CTxIn, CTxOut, FromHex, ToHex, ser_string, ) from .txtools import pad_tx from .util import satoshi_round # Create a block (with regtest difficulty) def create_block(hashprev, coinbase, nTime=None): block = CBlock() if nTime is None: import time block.nTime = int(time.time() + 600) else: block.nTime = nTime block.hashPrevBlock = hashprev block.nBits = 0x207fffff # Will break after a difficulty adjustment... block.vtx.append(coinbase) block.hashMerkleRoot = block.calc_merkle_root() block.calc_sha256() return block def make_conform_to_ctor(block): for tx in block.vtx: tx.rehash() block.vtx = [block.vtx[0]] + \ sorted(block.vtx[1:], key=lambda tx: tx.get_id()) def serialize_script_num(value): r = bytearray(0) if value == 0: return r neg = value < 0 absvalue = -value if neg else value while (absvalue): r.append(int(absvalue & 0xff)) absvalue >>= 8 if r[-1] & 0x80: r.append(0x80 if neg else 0) elif neg: r[-1] |= 0x80 return r # Create a coinbase transaction, assuming no miner fees. # If pubkey is passed in, the coinbase output will be a P2PK output; # otherwise an anyone-can-spend output. def create_coinbase(height, pubkey=None): coinbase = CTransaction() coinbase.vin.append(CTxIn(COutPoint(0, 0xffffffff), ser_string(serialize_script_num(height)), 0xffffffff)) coinbaseoutput = CTxOut() coinbaseoutput.nValue = 50 * COIN halvings = int(height / 150) # regtest coinbaseoutput.nValue >>= halvings if (pubkey != None): coinbaseoutput.scriptPubKey = CScript([pubkey, OP_CHECKSIG]) else: coinbaseoutput.scriptPubKey = CScript([OP_TRUE]) coinbase.vout = [coinbaseoutput] # Make sure the coinbase is at least 100 bytes pad_tx(coinbase) coinbase.calc_sha256() return coinbase # Create a transaction. # If the scriptPubKey is not specified, make it anyone-can-spend. def create_transaction(prevtx, n, sig, value, scriptPubKey=CScript()): tx = CTransaction() assert(n < len(prevtx.vout)) tx.vin.append(CTxIn(COutPoint(prevtx.sha256, n), sig, 0xffffffff)) tx.vout.append(CTxOut(value, scriptPubKey)) pad_tx(tx) tx.calc_sha256() return tx def get_legacy_sigopcount_block(block, fAccurate=True): count = 0 for tx in block.vtx: count += get_legacy_sigopcount_tx(tx, fAccurate) return count def get_legacy_sigopcount_tx(tx, fAccurate=True): count = 0 for i in tx.vout: count += i.scriptPubKey.GetSigOpCount(fAccurate) for j in tx.vin: # scriptSig might be of type bytes, so convert to CScript for the moment count += CScript(j.scriptSig).GetSigOpCount(fAccurate) return count def create_confirmed_utxos(node, count, age=101): """ Helper to create at least "count" utxos """ to_generate = int(0.5 * count) + age while to_generate > 0: node.generate(min(25, to_generate)) to_generate -= 25 utxos = node.listunspent() iterations = count - len(utxos) addr1 = node.getnewaddress() addr2 = node.getnewaddress() if iterations <= 0: return utxos for i in range(iterations): t = utxos.pop() inputs = [] inputs.append({"txid": t["txid"], "vout": t["vout"]}) outputs = {} outputs[addr1] = satoshi_round(t['amount'] / 2) outputs[addr2] = satoshi_round(t['amount'] / 2) raw_tx = node.createrawtransaction(inputs, outputs) ctx = FromHex(CTransaction(), raw_tx) fee = node.calculate_fee(ctx) // 2 ctx.vout[0].nValue -= fee # Due to possible truncation, we go ahead and take another satoshi in # fees to ensure the transaction gets through ctx.vout[1].nValue -= fee + 1 signed_tx = node.signrawtransactionwithwallet(ToHex(ctx))["hex"] node.sendrawtransaction(signed_tx) while (node.getmempoolinfo()['size'] > 0): node.generate(1) utxos = node.listunspent() assert(len(utxos) >= count) return utxos def mine_big_block(node, utxos=None): # generate a 66k transaction, # and 14 of them is close to the 1MB block limit num = 14 utxos = utxos if utxos is not None else [] if len(utxos) < num: utxos.clear() utxos.extend(node.listunspent()) send_big_transactions(node, utxos, num, 100) node.generate(1) def send_big_transactions(node, utxos, num, fee_multiplier): from .cashaddr import decode txids = [] padding = "1"*(512*127) addrHash = decode(node.getnewaddress())[2] for _ in range(num): ctx = CTransaction() utxo = utxos.pop() txid = int(utxo['txid'], 16) ctx.vin.append(CTxIn(COutPoint(txid, int(utxo["vout"])), b"")) ctx.vout.append(CTxOut(0, CScript( [OP_RETURN, OP_PUSHDATA2, len(padding), bytes(padding, 'utf-8')]))) ctx.vout.append( CTxOut(int(satoshi_round(utxo['amount']*COIN)), CScript([OP_DUP, OP_HASH160, addrHash, OP_EQUALVERIFY, OP_CHECKSIG]))) # Create a proper fee for the transaction to be mined ctx.vout[1].nValue -= int(fee_multiplier * node.calculate_fee(ctx)) signresult = node.signrawtransactionwithwallet( ToHex(ctx), None, "NONE|FORKID") txid = node.sendrawtransaction(signresult["hex"], True) txids.append(txid) return txids