#!/usr/bin/env python3 # Copyright 2019 The Bitcoin Developers """Schnorr secp256k1 using OpenSSL WARNING: This module does not mlock() secrets; your private keys may end up on disk in swap! Also, operations are not constant time. Use with caution! Inspired by key.py from python-bitcoinlib. """ import ctypes import ctypes.util import hashlib import hmac import threading ssl = ctypes.cdll.LoadLibrary(ctypes.util.find_library('ssl') or 'libeay32') ssl.BN_new.restype = ctypes.c_void_p ssl.BN_new.argtypes = [] ssl.BN_free.restype = None ssl.BN_free.argtypes = [ctypes.c_void_p] ssl.BN_bin2bn.restype = ctypes.c_void_p ssl.BN_bin2bn.argtypes = [ctypes.c_char_p, ctypes.c_int, ctypes.c_void_p] ssl.BN_CTX_new.restype = ctypes.c_void_p ssl.BN_CTX_new.argtypes = [] ssl.BN_CTX_free.restype = None ssl.BN_CTX_free.argtypes = [ctypes.c_void_p] ssl.EC_GROUP_new_by_curve_name.restype = ctypes.c_void_p ssl.EC_GROUP_new_by_curve_name.argtypes = [ctypes.c_int] ssl.EC_POINT_new.restype = ctypes.c_void_p ssl.EC_POINT_new.argtypes = [ctypes.c_void_p] ssl.EC_POINT_free.restype = None ssl.EC_POINT_free.argtypes = [ctypes.c_void_p] ssl.EC_POINT_mul.restype = ctypes.c_int ssl.EC_POINT_mul.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p] ssl.EC_POINT_is_at_infinity.restype = ctypes.c_int ssl.EC_POINT_is_at_infinity.argtypes = [ctypes.c_void_p, ctypes.c_void_p] ssl.EC_POINT_point2oct.restype = ctypes.c_size_t ssl.EC_POINT_point2oct.argtypes = [ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_size_t, ctypes.c_void_p] # point encodings for EC_POINT_point2oct POINT_CONVERSION_COMPRESSED = 2 POINT_CONVERSION_UNCOMPRESSED = 4 SECP256K1_FIELDSIZE = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f SECP256K1_ORDER = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 SECP256K1_ORDER_HALF = SECP256K1_ORDER // 2 # this specifies the curve used NID_secp256k1 = 714 # from openssl/obj_mac.h group = ssl.EC_GROUP_new_by_curve_name(NID_secp256k1) if not group: raise RuntimeError("Cannot get secp256k1 group!") class CTX: """Wrapper for a bignum context""" def __init__(self): self.ptr = ssl.BN_CTX_new() assert(self.ptr) def __del__(self): ssl.BN_CTX_free(self.ptr) _threadlocal = threading.local() @classmethod def ptr_for_this_thread(cls): """grab a pointer to per-thread ctx""" try: self = cls._threadlocal.ctxwrapper except AttributeError: self = cls() cls._threadlocal.ctxwrapper = self return self.ptr def jacobi(a, n): """Jacobi symbol""" # Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149. # This function has been tested by comparison with a small # table printed in HAC, and by extensive use in calculating # modular square roots. # Borrowed from python ecdsa package (function originally from Peter Pearson) # ... modified to use bitwise arithmetic when possible, for speed. assert n >= 3 assert n & 1 == 1 a = a % n if a == 0: return 0 if a == 1: return 1 a1, e = a, 0 while a1 & 1 == 0: a1, e = a1 >> 1, e+1 if e & 1 == 0 or n & 7 == 1 or n & 7 == 7: s = 1 else: s = -1 if a1 == 1: return s if n & 3 == 3 and a1 & 3 == 3: s = -s return s * jacobi(n % a1, a1) def nonce_function_rfc6979(privkeybytes, msg32, algo16=b'', ndata=b''): # RFC6979 deterministic nonce generation, done in libsecp256k1 style. # see nonce_function_rfc6979() in secp256k1.c; and details in hash_impl.h assert len(privkeybytes) == 32 assert len(msg32) == 32 assert len(algo16) in (0, 16) assert len(ndata) in (0, 32) V = b'\x01'*32 K = b'\x00'*32 blob = bytes(privkeybytes) + msg32 + ndata + algo16 # initialize K = hmac.HMAC(K, V+b'\x00'+blob, 'sha256').digest() V = hmac.HMAC(K, V, 'sha256').digest() K = hmac.HMAC(K, V+b'\x01'+blob, 'sha256').digest() V = hmac.HMAC(K, V, 'sha256').digest() # loop forever until an in-range k is found k = 0 while True: # see RFC6979 3.2.h.2 : we take a shortcut and don't build T in # multiple steps since the first step is always the right size for # our purpose. V = hmac.HMAC(K, V, 'sha256').digest() T = V assert len(T) >= 32 k = int.from_bytes(T, 'big') if k > 0 and k < SECP256K1_ORDER: break K = hmac.HMAC(K, V+b'\x00', 'sha256').digest() V = hmac.HMAC(K, V, 'sha256').digest() return k def sign(privkeybytes, msg32): """Create Schnorr signature (BIP-Schnorr convention).""" assert len(privkeybytes) == 32 assert len(msg32) == 32 k = nonce_function_rfc6979( privkeybytes, msg32, algo16=b"Schnorr+SHA256 ") ctx = CTX.ptr_for_this_thread() # calculate R point and pubkey point, and get them in # uncompressed/compressed formats respectively. R = ssl.EC_POINT_new(group) assert R pubkey = ssl.EC_POINT_new(group) assert pubkey kbn = ssl.BN_bin2bn(k.to_bytes(32, 'big'), 32, None) assert kbn privbn = ssl.BN_bin2bn(privkeybytes, 32, None) assert privbn assert ssl.EC_POINT_mul(group, R, kbn, None, None, ctx) assert ssl.EC_POINT_mul(group, pubkey, privbn, None, None, ctx) # buffer for uncompressed R coord Rbuf = ctypes.create_string_buffer(65) assert 65 == ssl.EC_POINT_point2oct( group, R, POINT_CONVERSION_UNCOMPRESSED, Rbuf, 65, ctx) # buffer for compressed pubkey pubkeybuf = ctypes.create_string_buffer(33) assert 33 == ssl.EC_POINT_point2oct( group, pubkey, POINT_CONVERSION_COMPRESSED, pubkeybuf, 33, ctx) ssl.BN_free(kbn) ssl.BN_free(privbn) ssl.EC_POINT_free(R) ssl.EC_POINT_free(pubkey) Ry = int.from_bytes(Rbuf[33:65], 'big') # y coord if jacobi(Ry, SECP256K1_FIELDSIZE) == -1: k = SECP256K1_ORDER - k rbytes = Rbuf[1:33] # x coord big-endian e = int.from_bytes(hashlib.sha256( rbytes + pubkeybuf + msg32).digest(), 'big') privkey = int.from_bytes(privkeybytes, 'big') s = (k + e*privkey) % SECP256K1_ORDER return rbytes + s.to_bytes(32, 'big') def getpubkey(privkeybytes, compressed=True): assert len(privkeybytes) == 32 encoding = POINT_CONVERSION_COMPRESSED if compressed else POINT_CONVERSION_UNCOMPRESSED ctx = CTX.ptr_for_this_thread() pubkey = ssl.EC_POINT_new(group) assert pubkey privbn = ssl.BN_bin2bn(privkeybytes, 32, None) assert privbn assert ssl.EC_POINT_mul(group, pubkey, privbn, None, None, ctx) assert not ssl.EC_POINT_is_at_infinity(group, pubkey) # first call (with nullptr for buffer) gets us the size size = ssl.EC_POINT_point2oct(group, pubkey, encoding, None, 0, ctx) pubkeybuf = ctypes.create_string_buffer(size) ret = ssl.EC_POINT_point2oct(group, pubkey, encoding, pubkeybuf, size, ctx) assert ret == size ssl.BN_free(privbn) ssl.EC_POINT_free(pubkey) return bytes(pubkeybuf) if __name__ == '__main__': # Test Schnorr implementation. # duplicate the deterministic sig test from src/test/key_tests.cpp private_key = bytes.fromhex( "12b004fff7f4b69ef8650e767f18f11ede158148b425660723b9f9a66e61f747") pubkey = getpubkey(private_key, compressed=True) assert pubkey == bytes.fromhex( "030b4c866585dd868a9d62348a9cd008d6a312937048fff31670e7e920cfc7a744") def sha(b): return hashlib.sha256(b).digest() msg = b"Very deterministic message" msghash = sha(sha(msg)) assert msghash == bytes.fromhex( "5255683da567900bfd3e786ed8836a4e7763c221bf1ac20ece2a5171b9199e8a") sig = sign(private_key, msghash) assert sig == bytes.fromhex( "2c56731ac2f7a7e7f11518fc7722a166b02438924ca9d8b4d1113" "47b81d0717571846de67ad3d913a8fdf9d8f3f73161a4c48ae81c" "b183b214765feb86e255ce") print("ok")