/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at https://mozilla.org/MPL/2.0/. */ use crate::attr::{ AttrSelectorOperation, AttrSelectorWithOptionalNamespace, CaseSensitivity, NamespaceConstraint, ParsedAttrSelectorOperation, ParsedCaseSensitivity, }; use crate::bloom::{BloomFilter, BLOOM_HASH_MASK}; use crate::kleene_value::KleeneValue; use crate::parser::{ AncestorHashes, Combinator, Component, FeaturelessHostMatches, LocalName, NthSelectorData, RelativeSelectorMatchHint, }; use crate::parser::{ NonTSPseudoClass, RelativeSelector, Selector, SelectorImpl, SelectorIter, SelectorList, }; use crate::relative_selector::cache::RelativeSelectorCachedMatch; use crate::tree::Element; use log::debug; use smallvec::SmallVec; use std::borrow::Borrow; use bitflags::bitflags; use debug_unreachable::debug_unreachable; pub use crate::context::*; // The bloom filter for descendant CSS selectors will have a <1% false // positive rate until it has this many selectors in it, then it will // rapidly increase. pub static RECOMMENDED_SELECTOR_BLOOM_FILTER_SIZE: usize = 4096; bitflags! { /// Set of flags that are set on either the element or its parent (depending /// on the flag) if the element could potentially match a selector. #[derive(Clone, Copy)] pub struct ElementSelectorFlags: usize { /// When a child is added or removed from the parent, all the children /// must be restyled, because they may match :nth-last-child, /// :last-of-type, :nth-last-of-type, or :only-of-type. const HAS_SLOW_SELECTOR = 1 << 0; /// When a child is added or removed from the parent, any later /// children must be restyled, because they may match :nth-child, /// :first-of-type, or :nth-of-type. const HAS_SLOW_SELECTOR_LATER_SIBLINGS = 1 << 1; /// HAS_SLOW_SELECTOR* was set by the presence of :nth (But not of). const HAS_SLOW_SELECTOR_NTH = 1 << 2; /// When a DOM mutation occurs on a child that might be matched by /// :nth-last-child(.. of ), earlier children must be /// restyled, and HAS_SLOW_SELECTOR will be set (which normally /// indicates that all children will be restyled). /// /// Similarly, when a DOM mutation occurs on a child that might be /// matched by :nth-child(.. of ), later children must be /// restyled, and HAS_SLOW_SELECTOR_LATER_SIBLINGS will be set. const HAS_SLOW_SELECTOR_NTH_OF = 1 << 3; /// When a child is added or removed from the parent, the first and /// last children must be restyled, because they may match :first-child, /// :last-child, or :only-child. const HAS_EDGE_CHILD_SELECTOR = 1 << 4; /// The element has an empty selector, so when a child is appended we /// might need to restyle the parent completely. const HAS_EMPTY_SELECTOR = 1 << 5; /// The element may anchor a relative selector. const ANCHORS_RELATIVE_SELECTOR = 1 << 6; /// The element may anchor a relative selector that is not the subject /// of the whole selector. const ANCHORS_RELATIVE_SELECTOR_NON_SUBJECT = 1 << 7; /// The element is reached by a relative selector search in the sibling direction. const RELATIVE_SELECTOR_SEARCH_DIRECTION_SIBLING = 1 << 8; /// The element is reached by a relative selector search in the ancestor direction. const RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR = 1 << 9; // The element is reached by a relative selector search in both sibling and ancestor directions. const RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR_SIBLING = Self::RELATIVE_SELECTOR_SEARCH_DIRECTION_SIBLING.bits() | Self::RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR.bits(); } } impl ElementSelectorFlags { /// Returns the subset of flags that apply to the element. pub fn for_self(self) -> ElementSelectorFlags { self & (ElementSelectorFlags::HAS_EMPTY_SELECTOR | ElementSelectorFlags::ANCHORS_RELATIVE_SELECTOR | ElementSelectorFlags::ANCHORS_RELATIVE_SELECTOR_NON_SUBJECT | ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_SIBLING | ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR) } /// Returns the subset of flags that apply to the parent. pub fn for_parent(self) -> ElementSelectorFlags { self & (ElementSelectorFlags::HAS_SLOW_SELECTOR | ElementSelectorFlags::HAS_SLOW_SELECTOR_LATER_SIBLINGS | ElementSelectorFlags::HAS_SLOW_SELECTOR_NTH | ElementSelectorFlags::HAS_SLOW_SELECTOR_NTH_OF | ElementSelectorFlags::HAS_EDGE_CHILD_SELECTOR) } } /// Holds per-compound-selector data. struct LocalMatchingContext<'a, 'b: 'a, Impl: SelectorImpl> { shared: &'a mut MatchingContext<'b, Impl>, rightmost: SubjectOrPseudoElement, quirks_data: Option>, } #[inline(always)] pub fn matches_selector_list( selector_list: &SelectorList, element: &E, context: &mut MatchingContext, ) -> bool where E: Element, { // This is pretty much any(..) but manually inlined because the compiler // refuses to do so from querySelector / querySelectorAll. for selector in selector_list.slice() { let matches = matches_selector(selector, 0, None, element, context); if matches { return true; } } false } /// Given the ancestor hashes from a selector, see if the current element, /// represented by the bloom filter, has a chance of matching at all. #[inline(always)] pub fn selector_may_match(hashes: &AncestorHashes, bf: &BloomFilter) -> bool { // Check the first three hashes. Note that we can check for zero before // masking off the high bits, since if any of the first three hashes is // zero the fourth will be as well. We also take care to avoid the // special-case complexity of the fourth hash until we actually reach it, // because we usually don't. // // To be clear: this is all extremely hot. for i in 0..3 { let packed = hashes.packed_hashes[i]; if packed == 0 { // No more hashes left - unable to fast-reject. return true; } if !bf.might_contain_hash(packed & BLOOM_HASH_MASK) { // Hooray! We fast-rejected on this hash. return false; } } // Now do the slighty-more-complex work of synthesizing the fourth hash, // and check it against the filter if it exists. let fourth = hashes.fourth_hash(); fourth == 0 || bf.might_contain_hash(fourth) } /// A result of selector matching, includes 3 failure types, /// /// NotMatchedAndRestartFromClosestLaterSibling /// NotMatchedAndRestartFromClosestDescendant /// NotMatchedGlobally /// /// When NotMatchedGlobally appears, stop selector matching completely since /// the succeeding selectors never matches. /// It is raised when /// Child combinator cannot find the candidate element. /// Descendant combinator cannot find the candidate element. /// /// When NotMatchedAndRestartFromClosestDescendant appears, the selector /// matching does backtracking and restarts from the closest Descendant /// combinator. /// It is raised when /// NextSibling combinator cannot find the candidate element. /// LaterSibling combinator cannot find the candidate element. /// Child combinator doesn't match on the found element. /// /// When NotMatchedAndRestartFromClosestLaterSibling appears, the selector /// matching does backtracking and restarts from the closest LaterSibling /// combinator. /// It is raised when /// NextSibling combinator doesn't match on the found element. /// /// For example, when the selector "d1 d2 a" is provided and we cannot *find* /// an appropriate ancestor element for "d1", this selector matching raises /// NotMatchedGlobally since even if "d2" is moved to more upper element, the /// candidates for "d1" becomes less than before and d1 . /// /// The next example is siblings. When the selector "b1 + b2 ~ d1 a" is /// provided and we cannot *find* an appropriate brother element for b1, /// the selector matching raises NotMatchedAndRestartFromClosestDescendant. /// The selectors ("b1 + b2 ~") doesn't match and matching restart from "d1". /// /// The additional example is child and sibling. When the selector /// "b1 + c1 > b2 ~ d1 a" is provided and the selector "b1" doesn't match on /// the element, this "b1" raises NotMatchedAndRestartFromClosestLaterSibling. /// However since the selector "c1" raises /// NotMatchedAndRestartFromClosestDescendant. So the selector /// "b1 + c1 > b2 ~ " doesn't match and restart matching from "d1". /// /// There is also the unknown result, which is used during invalidation when /// specific selector is being tested for before/after comparison. More specifically, /// selectors that are too expensive to correctly compute during invalidation may /// return unknown, as the computation will be thrown away and only to be recomputed /// during styling. For most cases, the unknown result can be treated as matching. /// This is because a compound of selectors acts like &&, and unknown && matched /// == matched and unknown && not-matched == not-matched. However, some selectors, /// like `:is()`, behave like || i.e. `:is(.a, .b)` == a || b. Treating unknown /// == matching then causes these selectors to always return matching, which undesired /// for before/after comparison. Coercing to not-matched doesn't work since each /// inner selector may have compounds: e.g. Toggling `.foo` in `:is(.foo:has(..))` /// with coersion to not-matched would result in an invalid before/after comparison /// of not-matched/not-matched. #[derive(Clone, Copy, Eq, PartialEq)] enum SelectorMatchingResult { Matched, NotMatchedAndRestartFromClosestLaterSibling, NotMatchedAndRestartFromClosestDescendant, NotMatchedGlobally, Unknown, } impl From for KleeneValue { fn from(value: SelectorMatchingResult) -> Self { match value { SelectorMatchingResult::Matched => KleeneValue::True, SelectorMatchingResult::Unknown => KleeneValue::Unknown, SelectorMatchingResult::NotMatchedAndRestartFromClosestLaterSibling | SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant | SelectorMatchingResult::NotMatchedGlobally => KleeneValue::False, } } } /// Matches a selector, fast-rejecting against a bloom filter. /// /// We accept an offset to allow consumers to represent and match against /// partial selectors (indexed from the right). We use this API design, rather /// than having the callers pass a SelectorIter, because creating a SelectorIter /// requires dereferencing the selector to get the length, which adds an /// unncessary cache miss for cases when we can fast-reject with AncestorHashes /// (which the caller can store inline with the selector pointer). #[inline(always)] pub fn matches_selector( selector: &Selector, offset: usize, hashes: Option<&AncestorHashes>, element: &E, context: &mut MatchingContext, ) -> bool where E: Element, { let result = matches_selector_kleene(selector, offset, hashes, element, context); if cfg!(debug_assertions) && result == KleeneValue::Unknown { debug_assert!( context.matching_for_invalidation_comparison().unwrap_or(false), "How did we return unknown?" ); } result.to_bool(true) } /// Same as matches_selector, but returns the Kleene value as-is. #[inline(always)] pub fn matches_selector_kleene( selector: &Selector, offset: usize, hashes: Option<&AncestorHashes>, element: &E, context: &mut MatchingContext, ) -> KleeneValue where E: Element, { // Use the bloom filter to fast-reject. if let Some(hashes) = hashes { if let Some(filter) = context.bloom_filter { if !selector_may_match(hashes, filter) { return KleeneValue::False; } } } matches_complex_selector( selector.iter_from(offset), element, context, if selector.is_rightmost(offset) { SubjectOrPseudoElement::Yes } else { SubjectOrPseudoElement::No }, ) } /// Whether a compound selector matched, and whether it was the rightmost /// selector inside the complex selector. pub enum CompoundSelectorMatchingResult { /// The selector was fully matched. FullyMatched, /// The compound selector matched, and the next combinator offset is /// `next_combinator_offset`. Matched { next_combinator_offset: usize }, /// The selector didn't match. NotMatched, } /// Matches a compound selector belonging to `selector`, starting at offset /// `from_offset`, matching left to right. /// /// Requires that `from_offset` points to a `Combinator`. /// /// NOTE(emilio): This doesn't allow to match in the leftmost sequence of the /// complex selector, but it happens to be the case we don't need it. pub fn matches_compound_selector_from( selector: &Selector, mut from_offset: usize, context: &mut MatchingContext, element: &E, ) -> CompoundSelectorMatchingResult where E: Element, { debug_assert!( !context .matching_for_invalidation_comparison() .unwrap_or(false), "CompoundSelectorMatchingResult doesn't support unknown" ); if cfg!(debug_assertions) && from_offset != 0 { selector.combinator_at_parse_order(from_offset - 1); // This asserts. } let mut local_context = LocalMatchingContext { shared: context, // We have no info if this is an outer selector. This function is called in // an invalidation context, which only calls this for non-subject (i.e. // Non-rightmost) positions. rightmost: SubjectOrPseudoElement::No, quirks_data: None, }; // Find the end of the selector or the next combinator, then match // backwards, so that we match in the same order as // matches_complex_selector, which is usually faster. let start_offset = from_offset; for component in selector.iter_raw_parse_order_from(from_offset) { if matches!(*component, Component::Combinator(..)) { debug_assert_ne!(from_offset, 0, "Selector started with a combinator?"); break; } from_offset += 1; } debug_assert!(from_offset >= 1); debug_assert!(from_offset <= selector.len()); let iter = selector.iter_from(selector.len() - from_offset); debug_assert!( iter.clone().next().is_some() || from_offset != selector.len(), "Got the math wrong: {:?} | {:?} | {} {}", selector, selector.iter_raw_match_order().as_slice(), from_offset, start_offset ); for component in iter { let result = matches_simple_selector(component, element, &mut local_context); debug_assert!(result != KleeneValue::Unknown, "Returned unknown in non invalidation context?"); if !result.to_bool(true) { return CompoundSelectorMatchingResult::NotMatched; } } if from_offset != selector.len() { return CompoundSelectorMatchingResult::Matched { next_combinator_offset: from_offset, }; } CompoundSelectorMatchingResult::FullyMatched } /// Matches a complex selector. #[inline(always)] fn matches_complex_selector( mut iter: SelectorIter, element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> KleeneValue where E: Element, { // If this is the special pseudo-element mode, consume the ::pseudo-element // before proceeding, since the caller has already handled that part. if context.matching_mode() == MatchingMode::ForStatelessPseudoElement && !context.is_nested() { // Consume the pseudo. match *iter.next().unwrap() { Component::PseudoElement(ref pseudo) => { if let Some(ref f) = context.pseudo_element_matching_fn { if !f(pseudo) { return KleeneValue::False; } } }, ref other => { debug_assert!( false, "Used MatchingMode::ForStatelessPseudoElement \ in a non-pseudo selector {:?}", other ); return KleeneValue::False; }, } if !iter.matches_for_stateless_pseudo_element() { return KleeneValue::False; } // Advance to the non-pseudo-element part of the selector. let next_sequence = iter.next_sequence().unwrap(); debug_assert_eq!(next_sequence, Combinator::PseudoElement); } matches_complex_selector_internal( iter, element, context, rightmost, SubjectOrPseudoElement::Yes, ) .into() } /// Matches each selector of a list as a complex selector fn matches_complex_selector_list( list: &[Selector], element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> KleeneValue { KleeneValue::any( list.iter(), |selector| matches_complex_selector( selector.iter(), element, context, rightmost ) ) } fn matches_relative_selector( relative_selector: &RelativeSelector, element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> bool { // Overall, we want to mark the path that we've traversed so that when an element // is invalidated, we early-reject unnecessary relative selector invalidations. if relative_selector.match_hint.is_descendant_direction() { if context.needs_selector_flags() { element.apply_selector_flags( ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR, ); } let mut next_element = element.first_element_child(); while let Some(el) = next_element { if context.needs_selector_flags() { el.apply_selector_flags( ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR, ); } let mut matched = matches_complex_selector( relative_selector.selector.iter(), &el, context, rightmost, ) .to_bool(true); if !matched && relative_selector.match_hint.is_subtree() { matched = matches_relative_selector_subtree( &relative_selector.selector, &el, context, rightmost, ); } if matched { return true; } next_element = el.next_sibling_element(); } } else { debug_assert!( matches!( relative_selector.match_hint, RelativeSelectorMatchHint::InNextSibling | RelativeSelectorMatchHint::InNextSiblingSubtree | RelativeSelectorMatchHint::InSibling | RelativeSelectorMatchHint::InSiblingSubtree ), "Not descendant direction, but also not sibling direction?" ); if context.needs_selector_flags() { element.apply_selector_flags( ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_SIBLING, ); } let sibling_flag = if relative_selector.match_hint.is_subtree() { ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR_SIBLING } else { ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_SIBLING }; let mut next_element = element.next_sibling_element(); while let Some(el) = next_element { if context.needs_selector_flags() { el.apply_selector_flags(sibling_flag); } let matched = if relative_selector.match_hint.is_subtree() { matches_relative_selector_subtree( &relative_selector.selector, &el, context, rightmost, ) } else { matches_complex_selector(relative_selector.selector.iter(), &el, context, rightmost) .to_bool(true) }; if matched { return true; } if relative_selector.match_hint.is_next_sibling() { break; } next_element = el.next_sibling_element(); } } return false; } fn relative_selector_match_early( selector: &RelativeSelector, element: &E, context: &mut MatchingContext, ) -> Option { // See if we can return a cached result. if let Some(cached) = context .selector_caches .relative_selector .lookup(element.opaque(), selector) { return Some(cached.matched()); } // See if we can fast-reject. if context .selector_caches .relative_selector_filter_map .fast_reject(element, selector, context.quirks_mode()) { // Alright, add as unmatched to cache. context.selector_caches.relative_selector.add( element.opaque(), selector, RelativeSelectorCachedMatch::NotMatched, ); return Some(false); } None } fn match_relative_selectors( selectors: &[RelativeSelector], element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> KleeneValue { if context.relative_selector_anchor().is_some() { // FIXME(emilio): This currently can happen with nesting, and it's not fully // correct, arguably. But the ideal solution isn't super-clear either. For now, // cope with it and explicitly reject it at match time. See [1] for discussion. // // [1]: https://github.com/w3c/csswg-drafts/issues/9600 return KleeneValue::False; } if let Some(may_return_unknown) = context.matching_for_invalidation_comparison() { // In the context of invalidation, :has is expensive, especially because we // can't use caching/filtering due to now/then matches. DOM structure also // may have changed. return if may_return_unknown { KleeneValue::Unknown } else { KleeneValue::from(!context.in_negation()) }; } context.nest_for_relative_selector(element.opaque(), |context| { do_match_relative_selectors(selectors, element, context, rightmost) }).into() } /// Matches a relative selector in a list of relative selectors. fn do_match_relative_selectors( selectors: &[RelativeSelector], element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> bool { // Due to style sharing implications (See style sharing code), we mark the current styling context // to mark elements considered for :has matching. Additionally, we want to mark the elements themselves, // since we don't want to indiscriminately invalidate every element as a potential anchor. if rightmost == SubjectOrPseudoElement::Yes { if context.needs_selector_flags() { element.apply_selector_flags(ElementSelectorFlags::ANCHORS_RELATIVE_SELECTOR); } } else { if context.needs_selector_flags() { element .apply_selector_flags(ElementSelectorFlags::ANCHORS_RELATIVE_SELECTOR_NON_SUBJECT); } } for relative_selector in selectors.iter() { if let Some(result) = relative_selector_match_early(relative_selector, element, context) { if result { return true; } // Early return indicates no match, continue to next selector. continue; } let matched = matches_relative_selector(relative_selector, element, context, rightmost); context.selector_caches.relative_selector.add( element.opaque(), relative_selector, if matched { RelativeSelectorCachedMatch::Matched } else { RelativeSelectorCachedMatch::NotMatched }, ); if matched { return true; } } false } fn matches_relative_selector_subtree( selector: &Selector, element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> bool { let mut current = element.first_element_child(); while let Some(el) = current { if context.needs_selector_flags() { el.apply_selector_flags( ElementSelectorFlags::RELATIVE_SELECTOR_SEARCH_DIRECTION_ANCESTOR, ); } if matches_complex_selector(selector.iter(), &el, context, rightmost).to_bool(true) { return true; } if matches_relative_selector_subtree(selector, &el, context, rightmost) { return true; } current = el.next_sibling_element(); } false } /// Whether the :hover and :active quirk applies. /// /// https://quirks.spec.whatwg.org/#the-active-and-hover-quirk fn hover_and_active_quirk_applies( selector_iter: &SelectorIter, context: &MatchingContext, rightmost: SubjectOrPseudoElement, ) -> bool { if context.quirks_mode() != QuirksMode::Quirks { return false; } if context.is_nested() { return false; } // This compound selector had a pseudo-element to the right that we // intentionally skipped. if rightmost == SubjectOrPseudoElement::Yes && context.matching_mode() == MatchingMode::ForStatelessPseudoElement { return false; } selector_iter.clone().all(|simple| match *simple { Component::NonTSPseudoClass(ref pseudo_class) => pseudo_class.is_active_or_hover(), _ => false, }) } #[derive(Clone, Copy, PartialEq)] enum SubjectOrPseudoElement { Yes, No, } fn host_for_part(element: &E, context: &MatchingContext) -> Option where E: Element, { let scope = context.current_host; let mut curr = element.containing_shadow_host()?; if scope == Some(curr.opaque()) { return Some(curr); } loop { let parent = curr.containing_shadow_host(); if parent.as_ref().map(|h| h.opaque()) == scope { return Some(curr); } curr = parent?; } } fn assigned_slot(element: &E, context: &MatchingContext) -> Option where E: Element, { debug_assert!(element .assigned_slot() .map_or(true, |s| s.is_html_slot_element())); let scope = context.current_host?; let mut current_slot = element.assigned_slot()?; while current_slot.containing_shadow_host().unwrap().opaque() != scope { current_slot = current_slot.assigned_slot()?; } Some(current_slot) } #[inline(always)] fn next_element_for_combinator( element: &E, combinator: Combinator, selector: &SelectorIter, context: &MatchingContext, ) -> Option where E: Element, { match combinator { Combinator::NextSibling | Combinator::LaterSibling => element.prev_sibling_element(), Combinator::Child | Combinator::Descendant => { match element.parent_element() { Some(e) => return Some(e), None => {}, } if !element.parent_node_is_shadow_root() { return None; } // https://drafts.csswg.org/css-scoping/#host-element-in-tree: // // For the purpose of Selectors, a shadow host also appears in // its shadow tree, with the contents of the shadow tree treated // as its children. (In other words, the shadow host is treated as // replacing the shadow root node.) // // and also: // // When considered within its own shadow trees, the shadow host is // featureless. Only the :host, :host(), and :host-context() // pseudo-classes are allowed to match it. // // Since we know that the parent is a shadow root, we necessarily // are in a shadow tree of the host, and the next selector will only // match if the selector is a featureless :host selector. let matches_featureless_host = selector.clone().is_featureless_host_selector(); if matches_featureless_host.intersects(FeaturelessHostMatches::FOR_HOST) { // May not match the inner selector, but we can't really call that here. return element.containing_shadow_host() } else if matches_featureless_host.intersects(FeaturelessHostMatches::FOR_SCOPE) { let host = element.containing_shadow_host(); // If this element's shadow host matches the `:scope` element, we should // treat the `:scope` selector as featureless. // See https://github.com/w3c/csswg-drafts/issues/9025. if context.scope_element.is_some() && context.scope_element.clone() == host.clone().map(|e| e.opaque()) { return host; } return None; } else { return None; } }, Combinator::Part => host_for_part(element, context), Combinator::SlotAssignment => assigned_slot(element, context), Combinator::PseudoElement => element.pseudo_element_originating_element(), } } fn matches_complex_selector_internal( mut selector_iter: SelectorIter, element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, first_subject_compound: SubjectOrPseudoElement, ) -> SelectorMatchingResult where E: Element, { debug!( "Matching complex selector {:?} for {:?}", selector_iter, element ); let matches_compound_selector = { let result = matches_compound_selector(&mut selector_iter, element, context, rightmost); // We only care for unknown match in the first subject in compound - in the context of comparison // invalidation, ancestors/previous sibling being an unknown match doesn't matter - we must // invalidate to guarantee correctness. if result == KleeneValue::Unknown && first_subject_compound == SubjectOrPseudoElement::No { debug_assert!( context .matching_for_invalidation_comparison() .unwrap_or(false), "How did we return unknown?" ); // Coerce the result to matched. KleeneValue::True } else { result } }; let combinator = selector_iter.next_sequence(); if combinator.map_or(false, |c| c.is_sibling()) { if context.needs_selector_flags() { element.apply_selector_flags(ElementSelectorFlags::HAS_SLOW_SELECTOR_LATER_SIBLINGS); } } // We don't short circuit unknown here, since the rest of the selector // to the left of this compound may return false. if matches_compound_selector == KleeneValue::False { return SelectorMatchingResult::NotMatchedAndRestartFromClosestLaterSibling; } let combinator = match combinator { None => { return match matches_compound_selector { KleeneValue::True => SelectorMatchingResult::Matched, KleeneValue::Unknown => SelectorMatchingResult::Unknown, KleeneValue::False => unreachable!(), } }, Some(c) => c, }; let (candidate_not_found, rightmost, first_subject_compound) = match combinator { Combinator::NextSibling | Combinator::LaterSibling => ( SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, SubjectOrPseudoElement::No, SubjectOrPseudoElement::No, ), Combinator::Child | Combinator::Descendant | Combinator::SlotAssignment | Combinator::Part => ( SelectorMatchingResult::NotMatchedGlobally, SubjectOrPseudoElement::No, SubjectOrPseudoElement::No, ), Combinator::PseudoElement => ( SelectorMatchingResult::NotMatchedGlobally, rightmost, first_subject_compound, ), }; // Stop matching :visited as soon as we find a link, or a combinator for // something that isn't an ancestor. let mut visited_handling = if combinator.is_sibling() { VisitedHandlingMode::AllLinksUnvisited } else { context.visited_handling() }; let mut element = element.clone(); loop { if element.is_link() { visited_handling = VisitedHandlingMode::AllLinksUnvisited; } element = match next_element_for_combinator(&element, combinator, &selector_iter, &context) { None => return candidate_not_found, Some(next_element) => next_element, }; let result = context.with_visited_handling_mode(visited_handling, |context| { matches_complex_selector_internal( selector_iter.clone(), &element, context, rightmost, first_subject_compound, ) }); match (result, combinator) { // Return the status immediately. (SelectorMatchingResult::Matched | SelectorMatchingResult::Unknown, _) => { debug_assert!( matches_compound_selector.to_bool(true), "Compound didn't match?" ); if result == SelectorMatchingResult::Matched && matches_compound_selector.to_bool(false) { // Matches without question return result; } // Something returned unknown, so return unknown. return SelectorMatchingResult::Unknown; }, (SelectorMatchingResult::NotMatchedGlobally, _) | (_, Combinator::NextSibling) => { return result; }, // Upgrade the failure status to // NotMatchedAndRestartFromClosestDescendant. (_, Combinator::PseudoElement) | (_, Combinator::Child) => { return SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant; }, // If the failure status is // NotMatchedAndRestartFromClosestDescendant and combinator is // Combinator::LaterSibling, give up this Combinator::LaterSibling // matching and restart from the closest descendant combinator. ( SelectorMatchingResult::NotMatchedAndRestartFromClosestDescendant, Combinator::LaterSibling, ) => { return result; }, // The Combinator::Descendant combinator and the status is // NotMatchedAndRestartFromClosestLaterSibling or // NotMatchedAndRestartFromClosestDescendant, or the // Combinator::LaterSibling combinator and the status is // NotMatchedAndRestartFromClosestDescendant, we can continue to // matching on the next candidate element. _ => {}, } } } #[inline] fn matches_local_name(element: &E, local_name: &LocalName) -> bool where E: Element, { let name = select_name(element, &local_name.name, &local_name.lower_name).borrow(); element.has_local_name(name) } fn matches_part( element: &E, parts: &[::Identifier], context: &mut MatchingContext, ) -> bool where E: Element, { let mut hosts = SmallVec::<[E; 4]>::new(); let mut host = match element.containing_shadow_host() { Some(h) => h, None => return false, }; let current_host = context.current_host; if current_host != Some(host.opaque()) { loop { let outer_host = host.containing_shadow_host(); if outer_host.as_ref().map(|h| h.opaque()) == current_host { break; } let outer_host = match outer_host { Some(h) => h, None => return false, }; // TODO(emilio): if worth it, we could early return if // host doesn't have the exportparts attribute. hosts.push(host); host = outer_host; } } // Translate the part into the right scope. parts.iter().all(|part| { let mut part = part.clone(); for host in hosts.iter().rev() { part = match host.imported_part(&part) { Some(p) => p, None => return false, }; } element.is_part(&part) }) } fn matches_host( element: &E, selector: Option<&Selector>, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> KleeneValue where E: Element, { let host = match context.shadow_host() { Some(h) => h, None => return KleeneValue::False, }; if host != element.opaque() { return KleeneValue::False; } selector.map_or(KleeneValue::True, |selector| { context .nest(|context| matches_complex_selector(selector.iter(), element, context, rightmost)) }) } fn matches_slotted( element: &E, selector: &Selector, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> KleeneValue where E: Element, { // are never flattened tree slottables. if element.is_html_slot_element() { return KleeneValue::False; } context.nest(|context| matches_complex_selector(selector.iter(), element, context, rightmost)) } fn matches_rare_attribute_selector( element: &E, attr_sel: &AttrSelectorWithOptionalNamespace, ) -> bool where E: Element, { let empty_string; let namespace = match attr_sel.namespace() { Some(ns) => ns, None => { empty_string = crate::parser::namespace_empty_string::(); NamespaceConstraint::Specific(&empty_string) }, }; element.attr_matches( &namespace, select_name(element, &attr_sel.local_name, &attr_sel.local_name_lower), &match attr_sel.operation { ParsedAttrSelectorOperation::Exists => AttrSelectorOperation::Exists, ParsedAttrSelectorOperation::WithValue { operator, case_sensitivity, ref value, } => AttrSelectorOperation::WithValue { operator, case_sensitivity: to_unconditional_case_sensitivity(case_sensitivity, element), value, }, }, ) } /// Determines whether the given element matches the given compound selector. #[inline] fn matches_compound_selector( selector_iter: &mut SelectorIter, element: &E, context: &mut MatchingContext, rightmost: SubjectOrPseudoElement, ) -> KleeneValue where E: Element, { let quirks_data = if context.quirks_mode() == QuirksMode::Quirks { Some(selector_iter.clone()) } else { None }; let mut local_context = LocalMatchingContext { shared: context, rightmost, quirks_data, }; KleeneValue::any_false( selector_iter, |simple| matches_simple_selector( simple, element, &mut local_context ) ) } /// Determines whether the given element matches the given single selector. fn matches_simple_selector( selector: &Component, element: &E, context: &mut LocalMatchingContext, ) -> KleeneValue where E: Element, { debug_assert!(context.shared.is_nested() || !context.shared.in_negation()); let rightmost = context.rightmost; KleeneValue::from(match *selector { Component::ID(ref id) => { element.has_id(id, context.shared.classes_and_ids_case_sensitivity()) }, Component::Class(ref class) => { element.has_class(class, context.shared.classes_and_ids_case_sensitivity()) }, Component::LocalName(ref local_name) => matches_local_name(element, local_name), Component::AttributeInNoNamespaceExists { ref local_name, ref local_name_lower, } => element.has_attr_in_no_namespace(select_name(element, local_name, local_name_lower)), Component::AttributeInNoNamespace { ref local_name, ref value, operator, case_sensitivity, } => element.attr_matches( &NamespaceConstraint::Specific(&crate::parser::namespace_empty_string::()), local_name, &AttrSelectorOperation::WithValue { operator, case_sensitivity: to_unconditional_case_sensitivity(case_sensitivity, element), value, }, ), Component::AttributeOther(ref attr_sel) => { matches_rare_attribute_selector(element, attr_sel) }, Component::Part(ref parts) => matches_part(element, parts, &mut context.shared), Component::Slotted(ref selector) => { return matches_slotted(element, selector, &mut context.shared, rightmost); }, Component::PseudoElement(ref pseudo) => { element.match_pseudo_element(pseudo, context.shared) }, Component::ExplicitUniversalType | Component::ExplicitAnyNamespace => true, Component::Namespace(_, ref url) | Component::DefaultNamespace(ref url) => { element.has_namespace(&url.borrow()) }, Component::ExplicitNoNamespace => { let ns = crate::parser::namespace_empty_string::(); element.has_namespace(&ns.borrow()) }, Component::NonTSPseudoClass(ref pc) => { if let Some(ref iter) = context.quirks_data { if pc.is_active_or_hover() && !element.is_link() && hover_and_active_quirk_applies(iter, context.shared, context.rightmost) { return KleeneValue::False; } } element.match_non_ts_pseudo_class(pc, &mut context.shared) }, Component::Root => element.is_root(), Component::Empty => { if context.shared.needs_selector_flags() { element.apply_selector_flags(ElementSelectorFlags::HAS_EMPTY_SELECTOR); } element.is_empty() }, Component::Host(ref selector) => { return matches_host(element, selector.as_ref(), &mut context.shared, rightmost); }, Component::ParentSelector | Component::Scope | Component::ImplicitScope => match context.shared.scope_element { Some(ref scope_element) => element.opaque() == *scope_element, None => element.is_root(), }, Component::Nth(ref nth_data) => { return matches_generic_nth_child(element, context.shared, nth_data, &[], rightmost); }, Component::NthOf(ref nth_of_data) => { return context.shared.nest(|context| { matches_generic_nth_child( element, context, nth_of_data.nth_data(), nth_of_data.selectors(), rightmost, ) }) }, Component::Is(ref list) | Component::Where(ref list) => { return context.shared.nest(|context| { matches_complex_selector_list(list.slice(), element, context, rightmost) }) }, Component::Negation(ref list) => { return context.shared.nest_for_negation(|context| { !matches_complex_selector_list(list.slice(), element, context, rightmost) }) }, Component::Has(ref relative_selectors) => { return match_relative_selectors( relative_selectors, element, context.shared, rightmost, ); }, Component::Combinator(_) => unsafe { debug_unreachable!("Shouldn't try to selector-match combinators") }, Component::RelativeSelectorAnchor => { let anchor = context.shared.relative_selector_anchor(); // We may match inner relative selectors, in which case we want to always match. anchor.map_or(true, |a| a == element.opaque()) }, Component::Invalid(..) => false, }) } #[inline(always)] pub fn select_name<'a, E: Element, T: PartialEq>( element: &E, local_name: &'a T, local_name_lower: &'a T, ) -> &'a T { if local_name == local_name_lower || element.is_html_element_in_html_document() { local_name_lower } else { local_name } } #[inline(always)] pub fn to_unconditional_case_sensitivity<'a, E: Element>( parsed: ParsedCaseSensitivity, element: &E, ) -> CaseSensitivity { match parsed { ParsedCaseSensitivity::CaseSensitive | ParsedCaseSensitivity::ExplicitCaseSensitive => { CaseSensitivity::CaseSensitive }, ParsedCaseSensitivity::AsciiCaseInsensitive => CaseSensitivity::AsciiCaseInsensitive, ParsedCaseSensitivity::AsciiCaseInsensitiveIfInHtmlElementInHtmlDocument => { if element.is_html_element_in_html_document() { CaseSensitivity::AsciiCaseInsensitive } else { CaseSensitivity::CaseSensitive } }, } } fn matches_generic_nth_child( element: &E, context: &mut MatchingContext, nth_data: &NthSelectorData, selectors: &[Selector], rightmost: SubjectOrPseudoElement, ) -> KleeneValue where E: Element, { if element.ignores_nth_child_selectors() { return KleeneValue::False; } let has_selectors = !selectors.is_empty(); let selectors_match = !has_selectors || matches_complex_selector_list(selectors, element, context, rightmost).to_bool(true); if let Some(may_return_unknown) = context.matching_for_invalidation_comparison() { // Skip expensive indexing math in invalidation. return if selectors_match && may_return_unknown { KleeneValue::Unknown } else { KleeneValue::from(selectors_match && !context.in_negation()) }; } let NthSelectorData { ty, a, b, .. } = *nth_data; let is_of_type = ty.is_of_type(); if ty.is_only() { debug_assert!( !has_selectors, ":only-child and :only-of-type cannot have a selector list!" ); return KleeneValue::from( matches_generic_nth_child( element, context, &NthSelectorData::first(is_of_type), selectors, rightmost, ) .to_bool(true) && matches_generic_nth_child( element, context, &NthSelectorData::last(is_of_type), selectors, rightmost, ) .to_bool(true), ); } let is_from_end = ty.is_from_end(); // It's useful to know whether this can only select the first/last element // child for optimization purposes, see the `HAS_EDGE_CHILD_SELECTOR` flag. let is_edge_child_selector = nth_data.is_simple_edge() && !has_selectors; if context.needs_selector_flags() { let mut flags = if is_edge_child_selector { ElementSelectorFlags::HAS_EDGE_CHILD_SELECTOR } else if is_from_end { ElementSelectorFlags::HAS_SLOW_SELECTOR } else { ElementSelectorFlags::HAS_SLOW_SELECTOR_LATER_SIBLINGS }; flags |= if has_selectors { ElementSelectorFlags::HAS_SLOW_SELECTOR_NTH_OF } else { ElementSelectorFlags::HAS_SLOW_SELECTOR_NTH }; element.apply_selector_flags(flags); } if !selectors_match { return KleeneValue::False; } // :first/last-child are rather trivial to match, don't bother with the // cache. if is_edge_child_selector { return if is_from_end { element.next_sibling_element() } else { element.prev_sibling_element() } .is_none() .into(); } // Lookup or compute the index. let index = if let Some(i) = context .nth_index_cache(is_of_type, is_from_end, selectors) .lookup(element.opaque()) { i } else { let i = nth_child_index( element, context, selectors, is_of_type, is_from_end, /* check_cache = */ true, rightmost, ); context .nth_index_cache(is_of_type, is_from_end, selectors) .insert(element.opaque(), i); i }; debug_assert_eq!( index, nth_child_index( element, context, selectors, is_of_type, is_from_end, /* check_cache = */ false, rightmost, ), "invalid cache" ); // Is there a non-negative integer n such that An+B=index? match index.checked_sub(b) { None => false, Some(an) => match an.checked_div(a) { Some(n) => n >= 0 && a * n == an, None /* a == 0 */ => an == 0, }, } .into() } #[inline] fn nth_child_index( element: &E, context: &mut MatchingContext, selectors: &[Selector], is_of_type: bool, is_from_end: bool, check_cache: bool, rightmost: SubjectOrPseudoElement, ) -> i32 where E: Element, { // The traversal mostly processes siblings left to right. So when we walk // siblings to the right when computing NthLast/NthLastOfType we're unlikely // to get cache hits along the way. As such, we take the hit of walking the // siblings to the left checking the cache in the is_from_end case (this // matches what Gecko does). The indices-from-the-left is handled during the // regular look further below. if check_cache && is_from_end && !context .nth_index_cache(is_of_type, is_from_end, selectors) .is_empty() { let mut index: i32 = 1; let mut curr = element.clone(); while let Some(e) = curr.prev_sibling_element() { curr = e; let matches = if is_of_type { element.is_same_type(&curr) } else if !selectors.is_empty() { matches_complex_selector_list(selectors, &curr, context, rightmost).to_bool(true) } else { true }; if !matches { continue; } if let Some(i) = context .nth_index_cache(is_of_type, is_from_end, selectors) .lookup(curr.opaque()) { return i - index; } index += 1; } } let mut index: i32 = 1; let mut curr = element.clone(); let next = |e: E| { if is_from_end { e.next_sibling_element() } else { e.prev_sibling_element() } }; while let Some(e) = next(curr) { curr = e; let matches = if is_of_type { element.is_same_type(&curr) } else if !selectors.is_empty() { matches_complex_selector_list(selectors, &curr, context, rightmost).to_bool(true) } else { true }; if !matches { continue; } // If we're computing indices from the left, check each element in the // cache. We handle the indices-from-the-right case at the top of this // function. if !is_from_end && check_cache { if let Some(i) = context .nth_index_cache(is_of_type, is_from_end, selectors) .lookup(curr.opaque()) { return i + index; } } index += 1; } index }