// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // This header is logically internal, but is made public because it is used // from protocol-compiler-generated code, which may reside in other components. #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { class Arena; class Descriptor; // descriptor.h class FieldDescriptor; // descriptor.h class DescriptorPool; // descriptor.h class MessageLite; // message_lite.h class Message; // message.h class MessageFactory; // message.h class UnknownFieldSet; // unknown_field_set.h namespace internal { class FieldSkipper; // wire_format_lite.h } // namespace internal } // namespace protobuf } // namespace google namespace google { namespace protobuf { namespace internal { class InternalMetadata; // Used to store values of type WireFormatLite::FieldType without having to // #include wire_format_lite.h. Also, ensures that we use only one byte to // store these values, which is important to keep the layout of // ExtensionSet::Extension small. typedef uint8 FieldType; // A function which, given an integer value, returns true if the number // matches one of the defined values for the corresponding enum type. This // is used with RegisterEnumExtension, below. typedef bool EnumValidityFunc(int number); // Version of the above which takes an argument. This is needed to deal with // extensions that are not compiled in. typedef bool EnumValidityFuncWithArg(const void* arg, int number); // Information about a registered extension. struct ExtensionInfo { inline ExtensionInfo() {} inline ExtensionInfo(FieldType type_param, bool isrepeated, bool ispacked) : type(type_param), is_repeated(isrepeated), is_packed(ispacked), descriptor(NULL) {} FieldType type; bool is_repeated; bool is_packed; struct EnumValidityCheck { EnumValidityFuncWithArg* func; const void* arg; }; struct MessageInfo { const MessageLite* prototype; }; union { EnumValidityCheck enum_validity_check; MessageInfo message_info; }; // The descriptor for this extension, if one exists and is known. May be // NULL. Must not be NULL if the descriptor for the extension does not // live in the same pool as the descriptor for the containing type. const FieldDescriptor* descriptor; }; // Abstract interface for an object which looks up extension definitions. Used // when parsing. class PROTOBUF_EXPORT ExtensionFinder { public: virtual ~ExtensionFinder(); // Find the extension with the given containing type and number. virtual bool Find(int number, ExtensionInfo* output) = 0; }; // Implementation of ExtensionFinder which finds extensions defined in .proto // files which have been compiled into the binary. class PROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder { public: GeneratedExtensionFinder(const MessageLite* containing_type) : containing_type_(containing_type) {} ~GeneratedExtensionFinder() override {} // Returns true and fills in *output if found, otherwise returns false. bool Find(int number, ExtensionInfo* output) override; private: const MessageLite* containing_type_; }; // A FieldSkipper used for parsing MessageSet. class MessageSetFieldSkipper; // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for // finding extensions from a DescriptorPool. // This is an internal helper class intended for use within the protocol buffer // library and generated classes. Clients should not use it directly. Instead, // use the generated accessors such as GetExtension() of the class being // extended. // // This class manages extensions for a protocol message object. The // message's HasExtension(), GetExtension(), MutableExtension(), and // ClearExtension() methods are just thin wrappers around the embedded // ExtensionSet. When parsing, if a tag number is encountered which is // inside one of the message type's extension ranges, the tag is passed // off to the ExtensionSet for parsing. Etc. class PROTOBUF_EXPORT ExtensionSet { public: constexpr ExtensionSet(); explicit ExtensionSet(Arena* arena); ~ExtensionSet(); // These are called at startup by protocol-compiler-generated code to // register known extensions. The registrations are used by ParseField() // to look up extensions for parsed field numbers. Note that dynamic parsing // does not use ParseField(); only protocol-compiler-generated parsing // methods do. static void RegisterExtension(const MessageLite* containing_type, int number, FieldType type, bool is_repeated, bool is_packed); static void RegisterEnumExtension(const MessageLite* containing_type, int number, FieldType type, bool is_repeated, bool is_packed, EnumValidityFunc* is_valid); static void RegisterMessageExtension(const MessageLite* containing_type, int number, FieldType type, bool is_repeated, bool is_packed, const MessageLite* prototype); // ================================================================= // Add all fields which are currently present to the given vector. This // is useful to implement Reflection::ListFields(). void AppendToList(const Descriptor* containing_type, const DescriptorPool* pool, std::vector* output) const; // ================================================================= // Accessors // // Generated message classes include type-safe templated wrappers around // these methods. Generally you should use those rather than call these // directly, unless you are doing low-level memory management. // // When calling any of these accessors, the extension number requested // MUST exist in the DescriptorPool provided to the constructor. Otherwise, // the method will fail an assert. Normally, though, you would not call // these directly; you would either call the generated accessors of your // message class (e.g. GetExtension()) or you would call the accessors // of the reflection interface. In both cases, it is impossible to // trigger this assert failure: the generated accessors only accept // linked-in extension types as parameters, while the Reflection interface // requires you to provide the FieldDescriptor describing the extension. // // When calling any of these accessors, a protocol-compiler-generated // implementation of the extension corresponding to the number MUST // be linked in, and the FieldDescriptor used to refer to it MUST be // the one generated by that linked-in code. Otherwise, the method will // die on an assert failure. The message objects returned by the message // accessors are guaranteed to be of the correct linked-in type. // // These methods pretty much match Reflection except that: // - They're not virtual. // - They identify fields by number rather than FieldDescriptors. // - They identify enum values using integers rather than descriptors. // - Strings provide Mutable() in addition to Set() accessors. bool Has(int number) const; int ExtensionSize(int number) const; // Size of a repeated extension. int NumExtensions() const; // The number of extensions FieldType ExtensionType(int number) const; void ClearExtension(int number); // singular fields ------------------------------------------------- int32 GetInt32(int number, int32 default_value) const; int64 GetInt64(int number, int64 default_value) const; uint32 GetUInt32(int number, uint32 default_value) const; uint64 GetUInt64(int number, uint64 default_value) const; float GetFloat(int number, float default_value) const; double GetDouble(int number, double default_value) const; bool GetBool(int number, bool default_value) const; int GetEnum(int number, int default_value) const; const std::string& GetString(int number, const std::string& default_value) const; const MessageLite& GetMessage(int number, const MessageLite& default_value) const; const MessageLite& GetMessage(int number, const Descriptor* message_type, MessageFactory* factory) const; // |descriptor| may be NULL so long as it is known that the descriptor for // the extension lives in the same pool as the descriptor for the containing // type. #define desc const FieldDescriptor* descriptor // avoid line wrapping void SetInt32(int number, FieldType type, int32 value, desc); void SetInt64(int number, FieldType type, int64 value, desc); void SetUInt32(int number, FieldType type, uint32 value, desc); void SetUInt64(int number, FieldType type, uint64 value, desc); void SetFloat(int number, FieldType type, float value, desc); void SetDouble(int number, FieldType type, double value, desc); void SetBool(int number, FieldType type, bool value, desc); void SetEnum(int number, FieldType type, int value, desc); void SetString(int number, FieldType type, std::string value, desc); std::string* MutableString(int number, FieldType type, desc); MessageLite* MutableMessage(int number, FieldType type, const MessageLite& prototype, desc); MessageLite* MutableMessage(const FieldDescriptor* descriptor, MessageFactory* factory); // Adds the given message to the ExtensionSet, taking ownership of the // message object. Existing message with the same number will be deleted. // If "message" is NULL, this is equivalent to "ClearExtension(number)". void SetAllocatedMessage(int number, FieldType type, const FieldDescriptor* descriptor, MessageLite* message); void UnsafeArenaSetAllocatedMessage(int number, FieldType type, const FieldDescriptor* descriptor, MessageLite* message); MessageLite* ReleaseMessage(int number, const MessageLite& prototype); MessageLite* UnsafeArenaReleaseMessage(int number, const MessageLite& prototype); MessageLite* ReleaseMessage(const FieldDescriptor* descriptor, MessageFactory* factory); MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, MessageFactory* factory); #undef desc Arena* GetArena() const { return arena_; } // repeated fields ------------------------------------------------- // Fetches a RepeatedField extension by number; returns |default_value| // if no such extension exists. User should not touch this directly; it is // used by the GetRepeatedExtension() method. const void* GetRawRepeatedField(int number, const void* default_value) const; // Fetches a mutable version of a RepeatedField extension by number, // instantiating one if none exists. Similar to above, user should not use // this directly; it underlies MutableRepeatedExtension(). void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, const FieldDescriptor* desc); // This is an overload of MutableRawRepeatedField to maintain compatibility // with old code using a previous API. This version of // MutableRawRepeatedField() will GOOGLE_CHECK-fail on a missing extension. // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) void* MutableRawRepeatedField(int number); int32 GetRepeatedInt32(int number, int index) const; int64 GetRepeatedInt64(int number, int index) const; uint32 GetRepeatedUInt32(int number, int index) const; uint64 GetRepeatedUInt64(int number, int index) const; float GetRepeatedFloat(int number, int index) const; double GetRepeatedDouble(int number, int index) const; bool GetRepeatedBool(int number, int index) const; int GetRepeatedEnum(int number, int index) const; const std::string& GetRepeatedString(int number, int index) const; const MessageLite& GetRepeatedMessage(int number, int index) const; void SetRepeatedInt32(int number, int index, int32 value); void SetRepeatedInt64(int number, int index, int64 value); void SetRepeatedUInt32(int number, int index, uint32 value); void SetRepeatedUInt64(int number, int index, uint64 value); void SetRepeatedFloat(int number, int index, float value); void SetRepeatedDouble(int number, int index, double value); void SetRepeatedBool(int number, int index, bool value); void SetRepeatedEnum(int number, int index, int value); void SetRepeatedString(int number, int index, std::string value); std::string* MutableRepeatedString(int number, int index); MessageLite* MutableRepeatedMessage(int number, int index); #define desc const FieldDescriptor* descriptor // avoid line wrapping void AddInt32(int number, FieldType type, bool packed, int32 value, desc); void AddInt64(int number, FieldType type, bool packed, int64 value, desc); void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc); void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc); void AddFloat(int number, FieldType type, bool packed, float value, desc); void AddDouble(int number, FieldType type, bool packed, double value, desc); void AddBool(int number, FieldType type, bool packed, bool value, desc); void AddEnum(int number, FieldType type, bool packed, int value, desc); void AddString(int number, FieldType type, std::string value, desc); std::string* AddString(int number, FieldType type, desc); MessageLite* AddMessage(int number, FieldType type, const MessageLite& prototype, desc); MessageLite* AddMessage(const FieldDescriptor* descriptor, MessageFactory* factory); void AddAllocatedMessage(const FieldDescriptor* descriptor, MessageLite* new_entry); #undef desc void RemoveLast(int number); MessageLite* ReleaseLast(int number); void SwapElements(int number, int index1, int index2); // ----------------------------------------------------------------- // TODO(kenton): Hardcore memory management accessors // ================================================================= // convenience methods for implementing methods of Message // // These could all be implemented in terms of the other methods of this // class, but providing them here helps keep the generated code size down. void Clear(); void MergeFrom(const ExtensionSet& other); void Swap(ExtensionSet* other); void SwapExtension(ExtensionSet* other, int number); bool IsInitialized() const; // Parses a single extension from the input. The input should start out // positioned immediately after the tag. bool ParseField(uint32 tag, io::CodedInputStream* input, ExtensionFinder* extension_finder, FieldSkipper* field_skipper); // Specific versions for lite or full messages (constructs the appropriate // FieldSkipper automatically). |containing_type| is the default // instance for the containing message; it is used only to look up the // extension by number. See RegisterExtension(), above. Unlike the other // methods of ExtensionSet, this only works for generated message types -- // it looks up extensions registered using RegisterExtension(). bool ParseField(uint32 tag, io::CodedInputStream* input, const MessageLite* containing_type); bool ParseField(uint32 tag, io::CodedInputStream* input, const Message* containing_type, UnknownFieldSet* unknown_fields); bool ParseField(uint32 tag, io::CodedInputStream* input, const MessageLite* containing_type, io::CodedOutputStream* unknown_fields); // Lite parser const char* ParseField(uint64 tag, const char* ptr, const MessageLite* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx); // Full parser const char* ParseField(uint64 tag, const char* ptr, const Message* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx); template const char* ParseMessageSet(const char* ptr, const Msg* containing_type, InternalMetadata* metadata, internal::ParseContext* ctx) { struct MessageSetItem { const char* _InternalParse(const char* ptr, ParseContext* ctx) { return me->ParseMessageSetItem(ptr, containing_type, metadata, ctx); } ExtensionSet* me; const Msg* containing_type; InternalMetadata* metadata; } item{this, containing_type, metadata}; while (!ctx->Done(&ptr)) { uint32 tag; ptr = ReadTag(ptr, &tag); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); if (tag == WireFormatLite::kMessageSetItemStartTag) { ptr = ctx->ParseGroup(&item, ptr, tag); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); } else { if (tag == 0 || (tag & 7) == 4) { ctx->SetLastTag(tag); return ptr; } ptr = ParseField(tag, ptr, containing_type, metadata, ctx); GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); } } return ptr; } // Parse an entire message in MessageSet format. Such messages have no // fields, only extensions. bool ParseMessageSetLite(io::CodedInputStream* input, ExtensionFinder* extension_finder, FieldSkipper* field_skipper); bool ParseMessageSet(io::CodedInputStream* input, ExtensionFinder* extension_finder, MessageSetFieldSkipper* field_skipper); // Specific versions for lite or full messages (constructs the appropriate // FieldSkipper automatically). bool ParseMessageSet(io::CodedInputStream* input, const MessageLite* containing_type, std::string* unknown_fields); bool ParseMessageSet(io::CodedInputStream* input, const Message* containing_type, UnknownFieldSet* unknown_fields); // Write all extension fields with field numbers in the range // [start_field_number, end_field_number) // to the output stream, using the cached sizes computed when ByteSize() was // last called. Note that the range bounds are inclusive-exclusive. void SerializeWithCachedSizes(int start_field_number, int end_field_number, io::CodedOutputStream* output) const { output->SetCur(_InternalSerialize(start_field_number, end_field_number, output->Cur(), output->EpsCopy())); } // Same as SerializeWithCachedSizes, but without any bounds checking. // The caller must ensure that target has sufficient capacity for the // serialized extensions. // // Returns a pointer past the last written byte. uint8* _InternalSerialize(int start_field_number, int end_field_number, uint8* target, io::EpsCopyOutputStream* stream) const; // Like above but serializes in MessageSet format. void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const { output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( output->Cur(), output->EpsCopy())); } uint8* InternalSerializeMessageSetWithCachedSizesToArray( uint8* target, io::EpsCopyOutputStream* stream) const; // For backward-compatibility, versions of two of the above methods that // serialize deterministically iff SetDefaultSerializationDeterministic() // has been called. uint8* SerializeWithCachedSizesToArray(int start_field_number, int end_field_number, uint8* target) const; uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const; // Returns the total serialized size of all the extensions. size_t ByteSize() const; // Like ByteSize() but uses MessageSet format. size_t MessageSetByteSize() const; // Returns (an estimate of) the total number of bytes used for storing the // extensions in memory, excluding sizeof(*this). If the ExtensionSet is // for a lite message (and thus possibly contains lite messages), the results // are undefined (might work, might crash, might corrupt data, might not even // be linked in). It's up to the protocol compiler to avoid calling this on // such ExtensionSets (easy enough since lite messages don't implement // SpaceUsed()). size_t SpaceUsedExcludingSelfLong() const; // This method just calls SpaceUsedExcludingSelfLong() but it can not be // inlined because the definition of SpaceUsedExcludingSelfLong() is not // included in lite runtime and when an inline method refers to it MSVC // will complain about unresolved symbols when building the lite runtime // as .dll. int SpaceUsedExcludingSelf() const; private: // Interface of a lazily parsed singular message extension. class PROTOBUF_EXPORT LazyMessageExtension { public: LazyMessageExtension() {} virtual ~LazyMessageExtension() {} virtual LazyMessageExtension* New(Arena* arena) const = 0; virtual const MessageLite& GetMessage( const MessageLite& prototype) const = 0; virtual MessageLite* MutableMessage(const MessageLite& prototype) = 0; virtual void SetAllocatedMessage(MessageLite* message) = 0; virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message) = 0; virtual MessageLite* ReleaseMessage(const MessageLite& prototype) = 0; virtual MessageLite* UnsafeArenaReleaseMessage( const MessageLite& prototype) = 0; virtual bool IsInitialized() const = 0; PROTOBUF_DEPRECATED_MSG("Please use ByteSizeLong() instead") virtual int ByteSize() const { return internal::ToIntSize(ByteSizeLong()); } virtual size_t ByteSizeLong() const = 0; virtual size_t SpaceUsedLong() const = 0; virtual void MergeFrom(const LazyMessageExtension& other) = 0; virtual void Clear() = 0; virtual bool ReadMessage(const MessageLite& prototype, io::CodedInputStream* input) = 0; virtual const char* _InternalParse(const char* ptr, ParseContext* ctx) = 0; virtual uint8* WriteMessageToArray( int number, uint8* target, io::EpsCopyOutputStream* stream) const = 0; private: virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(LazyMessageExtension); }; struct Extension { // The order of these fields packs Extension into 24 bytes when using 8 // byte alignment. Consider this when adding or removing fields here. union { int32 int32_value; int64 int64_value; uint32 uint32_value; uint64 uint64_value; float float_value; double double_value; bool bool_value; int enum_value; std::string* string_value; MessageLite* message_value; LazyMessageExtension* lazymessage_value; RepeatedField* repeated_int32_value; RepeatedField* repeated_int64_value; RepeatedField* repeated_uint32_value; RepeatedField* repeated_uint64_value; RepeatedField* repeated_float_value; RepeatedField* repeated_double_value; RepeatedField* repeated_bool_value; RepeatedField* repeated_enum_value; RepeatedPtrField* repeated_string_value; RepeatedPtrField* repeated_message_value; }; FieldType type; bool is_repeated; // For singular types, indicates if the extension is "cleared". This // happens when an extension is set and then later cleared by the caller. // We want to keep the Extension object around for reuse, so instead of // removing it from the map, we just set is_cleared = true. This has no // meaning for repeated types; for those, the size of the RepeatedField // simply becomes zero when cleared. bool is_cleared : 4; // For singular message types, indicates whether lazy parsing is enabled // for this extension. This field is only valid when type == TYPE_MESSAGE // and !is_repeated because we only support lazy parsing for singular // message types currently. If is_lazy = true, the extension is stored in // lazymessage_value. Otherwise, the extension will be message_value. bool is_lazy : 4; // For repeated types, this indicates if the [packed=true] option is set. bool is_packed; // For packed fields, the size of the packed data is recorded here when // ByteSize() is called then used during serialization. // TODO(kenton): Use atomic when C++ supports it. mutable int cached_size; // The descriptor for this extension, if one exists and is known. May be // NULL. Must not be NULL if the descriptor for the extension does not // live in the same pool as the descriptor for the containing type. const FieldDescriptor* descriptor; // Some helper methods for operations on a single Extension. uint8* InternalSerializeFieldWithCachedSizesToArray( int number, uint8* target, io::EpsCopyOutputStream* stream) const; uint8* InternalSerializeMessageSetItemWithCachedSizesToArray( int number, uint8* target, io::EpsCopyOutputStream* stream) const; size_t ByteSize(int number) const; size_t MessageSetItemByteSize(int number) const; void Clear(); int GetSize() const; void Free(); size_t SpaceUsedExcludingSelfLong() const; bool IsInitialized() const; }; // The Extension struct is small enough to be passed by value, so we use it // directly as the value type in mappings rather than use pointers. We use // sorted maps rather than hash-maps because we expect most ExtensionSets will // only contain a small number of extension. Also, we want AppendToList and // deterministic serialization to order fields by field number. struct KeyValue { int first; Extension second; struct FirstComparator { bool operator()(const KeyValue& lhs, const KeyValue& rhs) const { return lhs.first < rhs.first; } bool operator()(const KeyValue& lhs, int key) const { return lhs.first < key; } bool operator()(int key, const KeyValue& rhs) const { return key < rhs.first; } }; }; typedef std::map LargeMap; // Wrapper API that switches between flat-map and LargeMap. // Finds a key (if present) in the ExtensionSet. const Extension* FindOrNull(int key) const; Extension* FindOrNull(int key); // Helper-functions that only inspect the LargeMap. const Extension* FindOrNullInLargeMap(int key) const; Extension* FindOrNullInLargeMap(int key); // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or // finds the already-existing Extension for that key (returns false). // The Extension* will point to the new-or-found Extension. std::pair Insert(int key); // Grows the flat_capacity_. // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. void GrowCapacity(size_t minimum_new_capacity); static constexpr uint16 kMaximumFlatCapacity = 256; bool is_large() const { return flat_capacity_ > kMaximumFlatCapacity; } // Removes a key from the ExtensionSet. void Erase(int key); size_t Size() const { return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; } // Similar to std::for_each. // Each Iterator is decomposed into ->first and ->second fields, so // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. template static KeyValueFunctor ForEach(Iterator begin, Iterator end, KeyValueFunctor func) { for (Iterator it = begin; it != end; ++it) func(it->first, it->second); return std::move(func); } // Applies a functor to the pairs in sorted order. template KeyValueFunctor ForEach(KeyValueFunctor func) { if (PROTOBUF_PREDICT_FALSE(is_large())) { return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); } return ForEach(flat_begin(), flat_end(), std::move(func)); } // Applies a functor to the pairs in sorted order. template KeyValueFunctor ForEach(KeyValueFunctor func) const { if (PROTOBUF_PREDICT_FALSE(is_large())) { return ForEach(map_.large->begin(), map_.large->end(), std::move(func)); } return ForEach(flat_begin(), flat_end(), std::move(func)); } // Merges existing Extension from other_extension void InternalExtensionMergeFrom(int number, const Extension& other_extension); // Returns true and fills field_number and extension if extension is found. // Note to support packed repeated field compatibility, it also fills whether // the tag on wire is packed, which can be different from // extension->is_packed (whether packed=true is specified). bool FindExtensionInfoFromTag(uint32 tag, ExtensionFinder* extension_finder, int* field_number, ExtensionInfo* extension, bool* was_packed_on_wire); // Returns true and fills extension if extension is found. // Note to support packed repeated field compatibility, it also fills whether // the tag on wire is packed, which can be different from // extension->is_packed (whether packed=true is specified). bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, ExtensionFinder* extension_finder, ExtensionInfo* extension, bool* was_packed_on_wire); // Parses a single extension from the input. The input should start out // positioned immediately after the wire tag. This method is called in // ParseField() after field number and was_packed_on_wire is extracted from // the wire tag and ExtensionInfo is found by the field number. bool ParseFieldWithExtensionInfo(int field_number, bool was_packed_on_wire, const ExtensionInfo& extension, io::CodedInputStream* input, FieldSkipper* field_skipper); // Like ParseField(), but this method may parse singular message extensions // lazily depending on the value of FLAGS_eagerly_parse_message_sets. bool ParseFieldMaybeLazily(int wire_type, int field_number, io::CodedInputStream* input, ExtensionFinder* extension_finder, MessageSetFieldSkipper* field_skipper); // Gets the extension with the given number, creating it if it does not // already exist. Returns true if the extension did not already exist. bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, Extension** result); // Gets the repeated extension for the given descriptor, creating it if // it does not exist. Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); // Parse a single MessageSet item -- called just after the item group start // tag has been read. bool ParseMessageSetItemLite(io::CodedInputStream* input, ExtensionFinder* extension_finder, FieldSkipper* field_skipper); // Parse a single MessageSet item -- called just after the item group start // tag has been read. bool ParseMessageSetItem(io::CodedInputStream* input, ExtensionFinder* extension_finder, MessageSetFieldSkipper* field_skipper); bool FindExtension(int wire_type, uint32 field, const MessageLite* containing_type, const internal::ParseContext* /*ctx*/, ExtensionInfo* extension, bool* was_packed_on_wire) { GeneratedExtensionFinder finder(containing_type); return FindExtensionInfoFromFieldNumber(wire_type, field, &finder, extension, was_packed_on_wire); } inline bool FindExtension(int wire_type, uint32 field, const Message* containing_type, const internal::ParseContext* ctx, ExtensionInfo* extension, bool* was_packed_on_wire); // Used for MessageSet only const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr, const MessageLite* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx) { // Lite MessageSet doesn't implement lazy. return ParseField(tag, ptr, containing_type, metadata, ctx); } const char* ParseFieldMaybeLazily(uint64 tag, const char* ptr, const Message* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx); const char* ParseMessageSetItem(const char* ptr, const MessageLite* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx); const char* ParseMessageSetItem(const char* ptr, const Message* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx); // Implemented in extension_set_inl.h to keep code out of the header file. template const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, const ExtensionInfo& info, internal::InternalMetadata* metadata, const char* ptr, internal::ParseContext* ctx); template const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* containing_type, internal::InternalMetadata* metadata, internal::ParseContext* ctx); // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This // friendship should automatically extend to ExtensionSet::Extension, but // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this // correctly. So, we must provide helpers for calling methods of that // class. // Defined in extension_set_heavy.cc. static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( RepeatedPtrFieldBase* field); KeyValue* flat_begin() { assert(!is_large()); return map_.flat; } const KeyValue* flat_begin() const { assert(!is_large()); return map_.flat; } KeyValue* flat_end() { assert(!is_large()); return map_.flat + flat_size_; } const KeyValue* flat_end() const { assert(!is_large()); return map_.flat + flat_size_; } Arena* arena_; // Manual memory-management: // map_.flat is an allocated array of flat_capacity_ elements. // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. uint16 flat_capacity_; uint16 flat_size_; union AllocatedData { KeyValue* flat; // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, // which guarantees O(n lg n) CPU but larger constant factors. LargeMap* large; } map_; static void DeleteFlatMap(const KeyValue* flat, uint16 flat_capacity); GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet); }; constexpr ExtensionSet::ExtensionSet() : arena_(nullptr), flat_capacity_(0), flat_size_(0), map_{nullptr} {} // These are just for convenience... inline void ExtensionSet::SetString(int number, FieldType type, std::string value, const FieldDescriptor* descriptor) { MutableString(number, type, descriptor)->assign(std::move(value)); } inline void ExtensionSet::SetRepeatedString(int number, int index, std::string value) { MutableRepeatedString(number, index)->assign(std::move(value)); } inline void ExtensionSet::AddString(int number, FieldType type, std::string value, const FieldDescriptor* descriptor) { AddString(number, type, descriptor)->assign(std::move(value)); } // =================================================================== // Glue for generated extension accessors // ------------------------------------------------------------------- // Template magic // First we have a set of classes representing "type traits" for different // field types. A type traits class knows how to implement basic accessors // for extensions of a particular type given an ExtensionSet. The signature // for a type traits class looks like this: // // class TypeTraits { // public: // typedef ? ConstType; // typedef ? MutableType; // // TypeTraits for singular fields and repeated fields will define the // // symbol "Singular" or "Repeated" respectively. These two symbols will // // be used in extension accessors to distinguish between singular // // extensions and repeated extensions. If the TypeTraits for the passed // // in extension doesn't have the expected symbol defined, it means the // // user is passing a repeated extension to a singular accessor, or the // // opposite. In that case the C++ compiler will generate an error // // message "no matching member function" to inform the user. // typedef ? Singular // typedef ? Repeated // // static inline ConstType Get(int number, const ExtensionSet& set); // static inline void Set(int number, ConstType value, ExtensionSet* set); // static inline MutableType Mutable(int number, ExtensionSet* set); // // // Variants for repeated fields. // static inline ConstType Get(int number, const ExtensionSet& set, // int index); // static inline void Set(int number, int index, // ConstType value, ExtensionSet* set); // static inline MutableType Mutable(int number, int index, // ExtensionSet* set); // static inline void Add(int number, ConstType value, ExtensionSet* set); // static inline MutableType Add(int number, ExtensionSet* set); // This is used by the ExtensionIdentifier constructor to register // the extension at dynamic initialization. // template // static void Register(int number, FieldType type, bool is_packed); // }; // // Not all of these methods make sense for all field types. For example, the // "Mutable" methods only make sense for strings and messages, and the // repeated methods only make sense for repeated types. So, each type // traits class implements only the set of methods from this signature that it // actually supports. This will cause a compiler error if the user tries to // access an extension using a method that doesn't make sense for its type. // For example, if "foo" is an extension of type "optional int32", then if you // try to write code like: // my_message.MutableExtension(foo) // you will get a compile error because PrimitiveTypeTraits does not // have a "Mutable()" method. // ------------------------------------------------------------------- // PrimitiveTypeTraits // Since the ExtensionSet has different methods for each primitive type, // we must explicitly define the methods of the type traits class for each // known type. template class PrimitiveTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef PrimitiveTypeTraits Singular; static inline ConstType Get(int number, const ExtensionSet& set, ConstType default_value); static inline void Set(int number, FieldType field_type, ConstType value, ExtensionSet* set); template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, false, is_packed); } }; template class RepeatedPrimitiveTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef RepeatedPrimitiveTypeTraits Repeated; typedef RepeatedField RepeatedFieldType; static inline Type Get(int number, const ExtensionSet& set, int index); static inline void Set(int number, int index, Type value, ExtensionSet* set); static inline void Add(int number, FieldType field_type, bool is_packed, Type value, ExtensionSet* set); static inline const RepeatedField& GetRepeated( int number, const ExtensionSet& set); static inline RepeatedField* MutableRepeated(int number, FieldType field_type, bool is_packed, ExtensionSet* set); static const RepeatedFieldType* GetDefaultRepeatedField(); template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, true, is_packed); } }; class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { private: template friend class RepeatedPrimitiveTypeTraits; static const RepeatedPrimitiveDefaults* default_instance(); RepeatedField default_repeated_field_int32_; RepeatedField default_repeated_field_int64_; RepeatedField default_repeated_field_uint32_; RepeatedField default_repeated_field_uint64_; RepeatedField default_repeated_field_double_; RepeatedField default_repeated_field_float_; RepeatedField default_repeated_field_bool_; }; #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ template <> \ inline TYPE PrimitiveTypeTraits::Get( \ int number, const ExtensionSet& set, TYPE default_value) { \ return set.Get##METHOD(number, default_value); \ } \ template <> \ inline void PrimitiveTypeTraits::Set(int number, FieldType field_type, \ TYPE value, ExtensionSet* set) { \ set->Set##METHOD(number, field_type, value, NULL); \ } \ \ template <> \ inline TYPE RepeatedPrimitiveTypeTraits::Get( \ int number, const ExtensionSet& set, int index) { \ return set.GetRepeated##METHOD(number, index); \ } \ template <> \ inline void RepeatedPrimitiveTypeTraits::Set( \ int number, int index, TYPE value, ExtensionSet* set) { \ set->SetRepeated##METHOD(number, index, value); \ } \ template <> \ inline void RepeatedPrimitiveTypeTraits::Add( \ int number, FieldType field_type, bool is_packed, TYPE value, \ ExtensionSet* set) { \ set->Add##METHOD(number, field_type, is_packed, value, NULL); \ } \ template <> \ inline const RepeatedField* \ RepeatedPrimitiveTypeTraits::GetDefaultRepeatedField() { \ return &RepeatedPrimitiveDefaults::default_instance() \ ->default_repeated_field_##TYPE##_; \ } \ template <> \ inline const RepeatedField& \ RepeatedPrimitiveTypeTraits::GetRepeated(int number, \ const ExtensionSet& set) { \ return *reinterpret_cast*>( \ set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ } \ template <> \ inline RepeatedField* \ RepeatedPrimitiveTypeTraits::MutableRepeated( \ int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ return reinterpret_cast*>( \ set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); \ } PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32, Int32) PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64, Int64) PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32) PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64) PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE // ------------------------------------------------------------------- // StringTypeTraits // Strings support both Set() and Mutable(). class PROTOBUF_EXPORT StringTypeTraits { public: typedef const std::string& ConstType; typedef std::string* MutableType; typedef StringTypeTraits Singular; static inline const std::string& Get(int number, const ExtensionSet& set, ConstType default_value) { return set.GetString(number, default_value); } static inline void Set(int number, FieldType field_type, const std::string& value, ExtensionSet* set) { set->SetString(number, field_type, value, NULL); } static inline std::string* Mutable(int number, FieldType field_type, ExtensionSet* set) { return set->MutableString(number, field_type, NULL); } template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, false, is_packed); } }; class PROTOBUF_EXPORT RepeatedStringTypeTraits { public: typedef const std::string& ConstType; typedef std::string* MutableType; typedef RepeatedStringTypeTraits Repeated; typedef RepeatedPtrField RepeatedFieldType; static inline const std::string& Get(int number, const ExtensionSet& set, int index) { return set.GetRepeatedString(number, index); } static inline void Set(int number, int index, const std::string& value, ExtensionSet* set) { set->SetRepeatedString(number, index, value); } static inline std::string* Mutable(int number, int index, ExtensionSet* set) { return set->MutableRepeatedString(number, index); } static inline void Add(int number, FieldType field_type, bool /*is_packed*/, const std::string& value, ExtensionSet* set) { set->AddString(number, field_type, value, NULL); } static inline std::string* Add(int number, FieldType field_type, ExtensionSet* set) { return set->AddString(number, field_type, NULL); } static inline const RepeatedPtrField& GetRepeated( int number, const ExtensionSet& set) { return *reinterpret_cast*>( set.GetRawRepeatedField(number, GetDefaultRepeatedField())); } static inline RepeatedPtrField* MutableRepeated( int number, FieldType field_type, bool is_packed, ExtensionSet* set) { return reinterpret_cast*>( set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); } static const RepeatedFieldType* GetDefaultRepeatedField(); template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterExtension(&ExtendeeT::default_instance(), number, type, true, is_packed); } private: static void InitializeDefaultRepeatedFields(); static void DestroyDefaultRepeatedFields(); }; // ------------------------------------------------------------------- // EnumTypeTraits // ExtensionSet represents enums using integers internally, so we have to // static_cast around. template class EnumTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef EnumTypeTraits Singular; static inline ConstType Get(int number, const ExtensionSet& set, ConstType default_value) { return static_cast(set.GetEnum(number, default_value)); } static inline void Set(int number, FieldType field_type, ConstType value, ExtensionSet* set) { GOOGLE_DCHECK(IsValid(value)); set->SetEnum(number, field_type, value, NULL); } template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, type, false, is_packed, IsValid); } }; template class RepeatedEnumTypeTraits { public: typedef Type ConstType; typedef Type MutableType; typedef RepeatedEnumTypeTraits Repeated; typedef RepeatedField RepeatedFieldType; static inline ConstType Get(int number, const ExtensionSet& set, int index) { return static_cast(set.GetRepeatedEnum(number, index)); } static inline void Set(int number, int index, ConstType value, ExtensionSet* set) { GOOGLE_DCHECK(IsValid(value)); set->SetRepeatedEnum(number, index, value); } static inline void Add(int number, FieldType field_type, bool is_packed, ConstType value, ExtensionSet* set) { GOOGLE_DCHECK(IsValid(value)); set->AddEnum(number, field_type, is_packed, value, NULL); } static inline const RepeatedField& GetRepeated( int number, const ExtensionSet& set) { // Hack: the `Extension` struct stores a RepeatedField for enums. // RepeatedField cannot implicitly convert to RepeatedField // so we need to do some casting magic. See message.h for similar // contortions for non-extension fields. return *reinterpret_cast*>( set.GetRawRepeatedField(number, GetDefaultRepeatedField())); } static inline RepeatedField* MutableRepeated(int number, FieldType field_type, bool is_packed, ExtensionSet* set) { return reinterpret_cast*>( set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); } static const RepeatedFieldType* GetDefaultRepeatedField() { // Hack: as noted above, repeated enum fields are internally stored as a // RepeatedField. We need to be able to instantiate global static // objects to return as default (empty) repeated fields on non-existent // extensions. We would not be able to know a-priori all of the enum types // (values of |Type|) to instantiate all of these, so we just re-use int32's // default repeated field object. return reinterpret_cast*>( RepeatedPrimitiveTypeTraits::GetDefaultRepeatedField()); } template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterEnumExtension(&ExtendeeT::default_instance(), number, type, true, is_packed, IsValid); } }; // ------------------------------------------------------------------- // MessageTypeTraits // ExtensionSet guarantees that when manipulating extensions with message // types, the implementation used will be the compiled-in class representing // that type. So, we can static_cast down to the exact type we expect. template class MessageTypeTraits { public: typedef const Type& ConstType; typedef Type* MutableType; typedef MessageTypeTraits Singular; static inline ConstType Get(int number, const ExtensionSet& set, ConstType default_value) { return static_cast(set.GetMessage(number, default_value)); } static inline MutableType Mutable(int number, FieldType field_type, ExtensionSet* set) { return static_cast(set->MutableMessage( number, field_type, Type::default_instance(), NULL)); } static inline void SetAllocated(int number, FieldType field_type, MutableType message, ExtensionSet* set) { set->SetAllocatedMessage(number, field_type, NULL, message); } static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, MutableType message, ExtensionSet* set) { set->UnsafeArenaSetAllocatedMessage(number, field_type, NULL, message); } static inline MutableType Release(int number, FieldType /* field_type */, ExtensionSet* set) { return static_cast( set->ReleaseMessage(number, Type::default_instance())); } static inline MutableType UnsafeArenaRelease(int number, FieldType /* field_type */, ExtensionSet* set) { return static_cast( set->UnsafeArenaReleaseMessage(number, Type::default_instance())); } template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), number, type, false, is_packed, &Type::default_instance()); } }; // forward declaration class RepeatedMessageGenericTypeTraits; template class RepeatedMessageTypeTraits { public: typedef const Type& ConstType; typedef Type* MutableType; typedef RepeatedMessageTypeTraits Repeated; typedef RepeatedPtrField RepeatedFieldType; static inline ConstType Get(int number, const ExtensionSet& set, int index) { return static_cast(set.GetRepeatedMessage(number, index)); } static inline MutableType Mutable(int number, int index, ExtensionSet* set) { return static_cast(set->MutableRepeatedMessage(number, index)); } static inline MutableType Add(int number, FieldType field_type, ExtensionSet* set) { return static_cast( set->AddMessage(number, field_type, Type::default_instance(), NULL)); } static inline const RepeatedPtrField& GetRepeated( int number, const ExtensionSet& set) { // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same // casting hack applies here, because a RepeatedPtrField // cannot naturally become a RepeatedPtrType even though Type is // presumably a message. google::protobuf::Message goes through similar contortions // with a reinterpret_cast<>. return *reinterpret_cast*>( set.GetRawRepeatedField(number, GetDefaultRepeatedField())); } static inline RepeatedPtrField* MutableRepeated(int number, FieldType field_type, bool is_packed, ExtensionSet* set) { return reinterpret_cast*>( set->MutableRawRepeatedField(number, field_type, is_packed, NULL)); } static const RepeatedFieldType* GetDefaultRepeatedField(); template static void Register(int number, FieldType type, bool is_packed) { ExtensionSet::RegisterMessageExtension(&ExtendeeT::default_instance(), number, type, true, is_packed, &Type::default_instance()); } }; template inline const typename RepeatedMessageTypeTraits::RepeatedFieldType* RepeatedMessageTypeTraits::GetDefaultRepeatedField() { static auto instance = OnShutdownDelete(new RepeatedFieldType); return instance; } // ------------------------------------------------------------------- // ExtensionIdentifier // This is the type of actual extension objects. E.g. if you have: // extends Foo with optional int32 bar = 1234; // then "bar" will be defined in C++ as: // ExtensionIdentifier, 5, false> bar(1234); // // Note that we could, in theory, supply the field number as a template // parameter, and thus make an instance of ExtensionIdentifier have no // actual contents. However, if we did that, then using an extension // identifier would not necessarily cause the compiler to output any sort // of reference to any symbol defined in the extension's .pb.o file. Some // linkers will actually drop object files that are not explicitly referenced, // but that would be bad because it would cause this extension to not be // registered at static initialization, and therefore using it would crash. template class ExtensionIdentifier { public: typedef TypeTraitsType TypeTraits; typedef ExtendeeType Extendee; ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value) : number_(number), default_value_(default_value) { Register(number); } inline int number() const { return number_; } typename TypeTraits::ConstType default_value() const { return default_value_; } static void Register(int number) { TypeTraits::template Register(number, field_type, is_packed); } private: const int number_; typename TypeTraits::ConstType default_value_; }; // ------------------------------------------------------------------- // Generated accessors // This macro should be expanded in the context of a generated type which // has extensions. // // We use "_proto_TypeTraits" as a type name below because "TypeTraits" // causes problems if the class has a nested message or enum type with that // name and "_TypeTraits" is technically reserved for the C++ library since // it starts with an underscore followed by a capital letter. // // For similar reason, we use "_field_type" and "_is_packed" as parameter names // below, so that "field_type" and "is_packed" can be used as field names. #define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME) \ /* Has, Size, Clear */ \ template \ inline bool HasExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ return _extensions_.Has(id.number()); \ } \ \ template \ inline void ClearExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ _extensions_.ClearExtension(id.number()); \ } \ \ template \ inline int ExtensionSize( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ return _extensions_.ExtensionSize(id.number()); \ } \ \ /* Singular accessors */ \ template \ inline typename _proto_TypeTraits::Singular::ConstType GetExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ return _proto_TypeTraits::Get(id.number(), _extensions_, \ id.default_value()); \ } \ \ template \ inline typename _proto_TypeTraits::Singular::MutableType MutableExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ return _proto_TypeTraits::Mutable(id.number(), _field_type, \ &_extensions_); \ } \ \ template \ inline void SetExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ typename _proto_TypeTraits::Singular::ConstType value) { \ _proto_TypeTraits::Set(id.number(), _field_type, value, &_extensions_); \ } \ \ template \ inline void SetAllocatedExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ typename _proto_TypeTraits::Singular::MutableType value) { \ _proto_TypeTraits::SetAllocated(id.number(), _field_type, value, \ &_extensions_); \ } \ template \ inline void UnsafeArenaSetAllocatedExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ typename _proto_TypeTraits::Singular::MutableType value) { \ _proto_TypeTraits::UnsafeArenaSetAllocated(id.number(), _field_type, \ value, &_extensions_); \ } \ template \ inline typename _proto_TypeTraits::Singular::MutableType ReleaseExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ return _proto_TypeTraits::Release(id.number(), _field_type, \ &_extensions_); \ } \ template \ inline typename _proto_TypeTraits::Singular::MutableType \ UnsafeArenaReleaseExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ return _proto_TypeTraits::UnsafeArenaRelease(id.number(), _field_type, \ &_extensions_); \ } \ \ /* Repeated accessors */ \ template \ inline typename _proto_TypeTraits::Repeated::ConstType GetExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ int index) const { \ return _proto_TypeTraits::Get(id.number(), _extensions_, index); \ } \ \ template \ inline typename _proto_TypeTraits::Repeated::MutableType MutableExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ int index) { \ return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_); \ } \ \ template \ inline void SetExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ int index, typename _proto_TypeTraits::Repeated::ConstType value) { \ _proto_TypeTraits::Set(id.number(), index, value, &_extensions_); \ } \ \ template \ inline typename _proto_TypeTraits::Repeated::MutableType AddExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ return _proto_TypeTraits::Add(id.number(), _field_type, &_extensions_); \ } \ \ template \ inline void AddExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id, \ typename _proto_TypeTraits::Repeated::ConstType value) { \ _proto_TypeTraits::Add(id.number(), _field_type, _is_packed, value, \ &_extensions_); \ } \ \ template \ inline const typename _proto_TypeTraits::Repeated::RepeatedFieldType& \ GetRepeatedExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) const { \ return _proto_TypeTraits::GetRepeated(id.number(), _extensions_); \ } \ \ template \ inline typename _proto_TypeTraits::Repeated::RepeatedFieldType* \ MutableRepeatedExtension( \ const ::PROTOBUF_NAMESPACE_ID::internal::ExtensionIdentifier< \ CLASSNAME, _proto_TypeTraits, _field_type, _is_packed>& id) { \ return _proto_TypeTraits::MutableRepeated(id.number(), _field_type, \ _is_packed, &_extensions_); \ } } // namespace internal // Call this function to ensure that this extensions's reflection is linked into // the binary: // // google::protobuf::LinkExtensionReflection(Foo::my_extension); // // This will ensure that the following lookup will succeed: // // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); // // This is often relevant for parsing extensions in text mode. // // As a side-effect, it will also guarantee that anything else from the same // .proto file will also be available for lookup in the generated pool. // // This function does not actually register the extension, so it does not need // to be called before the lookup. However it does need to occur in a function // that cannot be stripped from the binary (ie. it must be reachable from main). // // Best practice is to call this function as close as possible to where the // reflection is actually needed. This function is very cheap to call, so you // should not need to worry about its runtime overhead except in tight loops (on // x86-64 it compiles into two "mov" instructions). template void LinkExtensionReflection( const google::protobuf::internal::ExtensionIdentifier< ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { internal::StrongReference(extension); } } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__