// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef GOOGLE_PROTOBUF_METADATA_LITE_H__ #define GOOGLE_PROTOBUF_METADATA_LITE_H__ #include #include #include #include #include #ifdef SWIG #error "You cannot SWIG proto headers" #endif namespace google { namespace protobuf { namespace internal { // This is the representation for messages that support arena allocation. It // uses a tagged pointer to either store the Arena pointer, if there are no // unknown fields, or a pointer to a block of memory with both the Arena pointer // and the UnknownFieldSet, if there are unknown fields. This optimization // allows for "zero-overhead" storage of the Arena pointer, relative to the // above baseline implementation. // // The tagged pointer uses the LSB to disambiguate cases, and uses bit 0 == 0 to // indicate an arena pointer and bit 0 == 1 to indicate a UFS+Arena-container // pointer. class InternalMetadata { public: constexpr InternalMetadata() : ptr_(nullptr) {} explicit InternalMetadata(Arena* arena) : ptr_(arena) {} template void Delete() { // Note that Delete<> should be called not more than once. if (have_unknown_fields() && arena() == NULL) { delete PtrValue>(); } } PROTOBUF_ALWAYS_INLINE Arena* arena() const { if (PROTOBUF_PREDICT_FALSE(have_unknown_fields())) { return PtrValue()->arena; } else { return PtrValue(); } } PROTOBUF_ALWAYS_INLINE bool have_unknown_fields() const { return PtrTag() == kTagContainer; } PROTOBUF_ALWAYS_INLINE void* raw_arena_ptr() const { return ptr_; } template PROTOBUF_ALWAYS_INLINE const T& unknown_fields( const T& (*default_instance)()) const { if (PROTOBUF_PREDICT_FALSE(have_unknown_fields())) { return PtrValue>()->unknown_fields; } else { return default_instance(); } } template PROTOBUF_ALWAYS_INLINE T* mutable_unknown_fields() { if (PROTOBUF_PREDICT_TRUE(have_unknown_fields())) { return &PtrValue>()->unknown_fields; } else { return mutable_unknown_fields_slow(); } } template PROTOBUF_ALWAYS_INLINE void Swap(InternalMetadata* other) { // Semantics here are that we swap only the unknown fields, not the arena // pointer. We cannot simply swap ptr_ with other->ptr_ because we need to // maintain our own arena ptr. Also, our ptr_ and other's ptr_ may be in // different states (direct arena pointer vs. container with UFS) so we // cannot simply swap ptr_ and then restore the arena pointers. We reuse // UFS's swap implementation instead. if (have_unknown_fields() || other->have_unknown_fields()) { DoSwap(other->mutable_unknown_fields()); } } template PROTOBUF_ALWAYS_INLINE void MergeFrom(const InternalMetadata& other) { if (other.have_unknown_fields()) { DoMergeFrom(other.unknown_fields(nullptr)); } } template PROTOBUF_ALWAYS_INLINE void Clear() { if (have_unknown_fields()) { DoClear(); } } private: void* ptr_; // Tagged pointer implementation. enum { // ptr_ is an Arena*. kTagArena = 0, // ptr_ is a Container*. kTagContainer = 1, }; static constexpr intptr_t kPtrTagMask = 1; static constexpr intptr_t kPtrValueMask = ~kPtrTagMask; // Accessors for pointer tag and pointer value. PROTOBUF_ALWAYS_INLINE int PtrTag() const { return reinterpret_cast(ptr_) & kPtrTagMask; } template U* PtrValue() const { return reinterpret_cast(reinterpret_cast(ptr_) & kPtrValueMask); } // If ptr_'s tag is kTagContainer, it points to an instance of this struct. struct ContainerBase { Arena* arena; }; template struct Container : public ContainerBase { T unknown_fields; }; template PROTOBUF_NOINLINE T* mutable_unknown_fields_slow() { Arena* my_arena = arena(); Container* container = Arena::Create>(my_arena); // Two-step assignment works around a bug in clang's static analyzer: // https://bugs.llvm.org/show_bug.cgi?id=34198. ptr_ = container; ptr_ = reinterpret_cast(reinterpret_cast(ptr_) | kTagContainer); container->arena = my_arena; return &(container->unknown_fields); } // Templated functions. template void DoClear() { mutable_unknown_fields()->Clear(); } template void DoMergeFrom(const T& other) { mutable_unknown_fields()->MergeFrom(other); } template void DoSwap(T* other) { mutable_unknown_fields()->Swap(other); } }; // String Template specializations. template <> inline void InternalMetadata::DoClear() { mutable_unknown_fields()->clear(); } template <> inline void InternalMetadata::DoMergeFrom( const std::string& other) { mutable_unknown_fields()->append(other); } template <> inline void InternalMetadata::DoSwap(std::string* other) { mutable_unknown_fields()->swap(*other); } // This helper RAII class is needed to efficiently parse unknown fields. We // should only call mutable_unknown_fields if there are actual unknown fields. // The obvious thing to just use a stack string and swap it at the end of // the parse won't work, because the destructor of StringOutputStream needs to // be called before we can modify the string (it check-fails). Using // LiteUnknownFieldSetter setter(&_internal_metadata_); // StringOutputStream stream(setter.buffer()); // guarantees that the string is only swapped after stream is destroyed. class PROTOBUF_EXPORT LiteUnknownFieldSetter { public: explicit LiteUnknownFieldSetter(InternalMetadata* metadata) : metadata_(metadata) { if (metadata->have_unknown_fields()) { buffer_.swap(*metadata->mutable_unknown_fields()); } } ~LiteUnknownFieldSetter() { if (!buffer_.empty()) metadata_->mutable_unknown_fields()->swap(buffer_); } std::string* buffer() { return &buffer_; } private: InternalMetadata* metadata_; std::string buffer_; }; } // namespace internal } // namespace protobuf } // namespace google #include #endif // GOOGLE_PROTOBUF_METADATA_LITE_H__