# Portable Storage Format ## Background Monero makes use of a set of helper classes from a small library named [epee](https://github.com/monero-project/monero/tree/master/contrib/epee). Part of this library implements a networking protocol called [Levin](https://github.com/monero-project/monero/blob/master/contrib/epee/include/net/levin_base.h), which internally uses a storage format called [Portable Storage](https://github.com/monero-project/monero/tree/master/contrib/epee/include/storages). This format (amongst the rest of the [epee](https://github.com/monero-project/monero/tree/master/contrib/epee) library), is undocumented - or rather relies on the code itself to serve as the documentation. Unfortunately, whilst the rest of the library is fairly straightforward to decipher, the Portable Storage is less-so. Hence this document. ## String and Integer Encoding ### Integers With few exceptions, integers serialized in epee portable storage format are serialized as little-endian. ### Varints Varints are used to pack integers in an portable and space optimized way. Varints are stored as little-endian integers, with the lowest 2 bits storing the amount of bytes required, which means the largest value integer that can be packed into 1 byte is 63 (6 bits). #### Byte Sizes | Lowest 2 bits | Size value | Value range | |---------------|---------------|-----------------------------------| | b00 | 1 byte | 0 to 63 | | b01 | 2 bytes | 64 to 16383 | | b10 | 4 bytes | 16384 to 1073741823 | | b11 | 8 bytes | 1073741824 to 4611686018427387903 | #### Represenations of Example Values | Value | Byte Representation (hex) | |----------------------|---------------------------| | 0 | 00 | | 7 | 1c | | 101 | 95 01 | | 17,000 | A2 09 01 00 | | 7,942,319,744 | 03 BA 98 65 07 00 00 00 | ### Strings These are simply length (varint) prefixed char strings without a null terminator (though one can always add one if desired). There is no specific encoding enforced, and in fact, many times binary blobs are stored as these strings. This type should not be confused with the keys in sections, as those are restricted to a maximum length of 255 and do not use varints to encode the length. "Howdy" => 14 48 6F 77 64 79 ### Section Keys These are similar to strings except that they are length limited to 255 bytes, and use a single byte at the front of the string to describe the length (as opposed to a varint). "Howdy" => 05 48 6F 77 64 79 ## Binary Format Specification ### Header The format must always start with the following header: | Field | Type | Value | |------------------|----------|------------| | Signature Part A | UInt32 | 0x01011101 | | Signature Part B | UInt32 | 0x01020101 | | Version | UInt8 | 0x01 | In total, the 9 byte header will look like this (in hex): `01 11 01 01 01 01 02 01 01` ### Section Next we have a root object (or section as the library calls it). This is a map of name-value pairs called [entries](#Entry). It starts with a count: | Section | Type | |---------------|-----------| | Entry count | varint | Which is followed by the section's name-value [entries](#Entry) sequentially: ### Entry | Entry | Type | |-------------------|-----------------------| | Name | section key | | Type | byte | | Count1 | varint | | Value(s) | (type dependant data) | 1 Note, this is only present if the entry type has the array flag (see below). #### Entry types The types defined are: ```cpp #define SERIALIZE_TYPE_INT64 1 #define SERIALIZE_TYPE_INT32 2 #define SERIALIZE_TYPE_INT16 3 #define SERIALIZE_TYPE_INT8 4 #define SERIALIZE_TYPE_UINT64 5 #define SERIALIZE_TYPE_UINT32 6 #define SERIALIZE_TYPE_UINT16 7 #define SERIALIZE_TYPE_UINT8 8 #define SERIALIZE_TYPE_DOUBLE 9 #define SERIALIZE_TYPE_STRING 10 #define SERIALIZE_TYPE_BOOL 11 #define SERIALIZE_TYPE_OBJECT 12 #define SERIALIZE_TYPE_ARRAY 13 ``` The entry type can be bitwise OR'ed with a flag: ```cpp #define SERIALIZE_FLAG_ARRAY 0x80 ``` This signals there are multiple *values* for the entry. Since only one bit is reserved for specifying an array, we can not directly represent nested arrays. However, you can place each of the inner arrays inside of a section, and make the outer array type `SERIALIZE_TYPE_OBJECT | SERIALIZE_FLAG_ARRAY`. Immediately following the type code byte is a varint specifying the length of the array. Finally, the all the elements are serialized in sequence with no padding and without any type information. For example:
type, count, value1, value2,..., valuen
#### Entry values It's important to understand that entry *values* can be encoded any way in which an implementation chooses. For example, the integers can be in either big or little endian byte order. Entry values which are objects (i.e. `SERIALIZE_TYPE_OBJECT`), are stored as [sections](#Section). Note, I have not yet seen the type `SERIALIZE_TYPE_ARRAY` in use. My assumption is this would be used for *untyped* arrays and so subsequent entries could be of any type. ### Overall example Let's put it all together and see what an entire object would look like serialized. To represent our data, let's create a JSON object (since it's a format that most will be familiar with): ```json { "short_quote": "Give me liberty or give me death", "long_quote": "Monero is more than just a technology. It's also what the technology stands for.", "signed_32bit_int": 20140418, "array_of_bools": [true, false, true, true], "nested_section": { "double": -6.9, "unsigned_64bit_int": 11111111111111111111 } } ``` This object would translate into the following bytes when serialized into epee portable storage format. The bytes are represented in hex, with comments and whitespace added for readability. ``` 01 11 01 01 01 01 02 01 // Signature 01 // Version 14 // Varint size of section (5) 0b // Length of next section key (11) 73 68 6f 72 74 5f 71 75 6f 74 65 // Key: "short_quote" 0a // Type code (STRING) 80 // Varint length of string (32) 47 69 76 65 20 6d 65 20 6c 69 62 65 72 74 79 20 // STRING value ("Give me liberty ") 6f 72 20 67 69 76 65 20 6d 65 20 64 65 61 74 68 // STRING value cont. ("or give me death") 0a // Length of next section key (10) 6c 6f 6e 67 5f 71 75 6f 74 65 // Key: "long_quote" 0a // Type code (STRING) 41 01 // Varint length of string (80). Note it's 2 bytes 4d 6f 6e 65 72 6f 20 69 73 20 6d 6f 72 65 20 74 // STRING value ("Monero is more t") 68 61 6e 20 6a 75 73 74 20 61 20 74 65 63 68 6e // STRING value cont. ("han just a techn") 6f 6c 6f 67 79 2e 20 49 74 27 73 20 61 6c 73 6f // STRING value cont. ("ology. It's also") 20 77 68 61 74 20 74 68 65 20 74 65 63 68 6e 6f // STRING value cont. (" what the techno") 6c 6f 67 79 20 73 74 61 6e 64 73 20 66 6f 72 2e // STRING value cont. ("logy stands for.") 10 // Length of next section key (16) 73 69 67 6e 65 64 5f 33 32 62 69 74 5f 69 6e 74 // Key: "signed_32bit_int" 02 // type code (INT32) 82 51 33 01 // INT32 value (20140418) 0e // Length of next section key (14) 61 72 72 61 79 5f 6f 66 5f 62 6f 6f 6c 73 // Key: "array_of_bools" 8b // Type code (BOOL | FLAG_ARRAY) 10 // Varint length of array (4) 01 00 01 01 // Array BOOL values [true, false, true, true] 0e // Length of next section key (14) 6e 65 73 74 65 64 5f 73 65 63 74 69 6f 6e // Key: "nested_section" 0c // Type code (OBJECT) 08 // Varint size of inner section (2) 06 // Length of first inner section key (6) 64 6f 75 62 6c 65 // Key: "double" 09 // Type code (DOUBLE) 9a 99 99 99 99 99 1b c0 // DOUBLE value (-6.9) 12 // Length of second inner section key (18) 75 6e 73 69 67 6e 65 64 5f 36 34 62 69 74 5f 69 // Key: "unsigned_64bit_i" 6e 74 // Key (cont.): "nt" 05 // Type code (UINT64) c7 71 ac b5 af 98 32 9a // UINT64 value (11111111111111111111) ``` ## Monero specifics ### Entry values #### Hashes, Keys, Blobs These are stored as strings, `SERIALIZE_TYPE_STRING`. #### STL containers (vector, list) These can be arrays of standard integer types, strings or `SERIALIZE_TYPE_OBJECT`'s for structs. #### Links to some Monero struct definitions - [Core RPC definitions](https://github.com/monero-project/monero/blob/master/src/rpc/core_rpc_server_commands_defs.h) - [CryptoNote protocol definitions](https://github.com/monero-project/monero/blob/master/src/cryptonote_protocol/cryptonote_protocol_defs.h) [//]: # ( vim: set tw=80: )