#![cfg(not(feature = "preserve_order"))] #![allow( clippy::assertions_on_result_states, clippy::cast_precision_loss, clippy::derive_partial_eq_without_eq, clippy::excessive_precision, clippy::float_cmp, clippy::items_after_statements, clippy::let_underscore_untyped, clippy::shadow_unrelated, clippy::too_many_lines, clippy::unreadable_literal, clippy::unseparated_literal_suffix, clippy::vec_init_then_push, clippy::zero_sized_map_values )] #![cfg_attr(feature = "trace-macros", feature(trace_macros))] #[cfg(feature = "trace-macros")] trace_macros!(true); #[macro_use] mod macros; #[cfg(feature = "raw_value")] use ref_cast::RefCast; use serde::de::{self, IgnoredAny, IntoDeserializer}; use serde::ser::{self, SerializeMap, SerializeSeq, Serializer}; use serde::{Deserialize, Serialize}; use serde_bytes::{ByteBuf, Bytes}; #[cfg(feature = "raw_value")] use serde_jsonc::value::RawValue; use serde_jsonc::{ from_reader, from_slice, from_str, from_value, json, to_string, to_string_pretty, to_value, to_vec, Deserializer, Number, Value, }; use std::collections::hash_map::DefaultHasher; use std::collections::BTreeMap; #[cfg(feature = "raw_value")] use std::collections::HashMap; use std::fmt::{self, Debug}; use std::hash::{Hash, Hasher}; use std::io; use std::iter; use std::marker::PhantomData; use std::mem; use std::str::FromStr; use std::string::ToString; use std::{f32, f64}; use std::{i16, i32, i64, i8}; use std::{u16, u32, u64, u8}; macro_rules! treemap { () => { BTreeMap::new() }; ($($k:expr => $v:expr),+ $(,)?) => { { let mut m = BTreeMap::new(); $( m.insert($k, $v); )+ m } }; } #[derive(Clone, Debug, PartialEq, Serialize, Deserialize)] #[serde(deny_unknown_fields)] enum Animal { Dog, Frog(String, Vec), Cat { age: usize, name: String }, AntHive(Vec), } #[derive(Clone, Debug, PartialEq, Serialize, Deserialize)] struct Inner { a: (), b: usize, c: Vec, } #[derive(Clone, Debug, PartialEq, Serialize, Deserialize)] struct Outer { inner: Vec, } fn test_encode_ok(errors: &[(T, &str)]) where T: PartialEq + Debug + ser::Serialize, { for &(ref value, out) in errors { let out = out.to_string(); let s = to_string(value).unwrap(); assert_eq!(s, out); let v = to_value(value).unwrap(); let s = to_string(&v).unwrap(); assert_eq!(s, out); } } fn test_pretty_encode_ok(errors: &[(T, &str)]) where T: PartialEq + Debug + ser::Serialize, { for &(ref value, out) in errors { let out = out.to_string(); let s = to_string_pretty(value).unwrap(); assert_eq!(s, out); let v = to_value(value).unwrap(); let s = to_string_pretty(&v).unwrap(); assert_eq!(s, out); } } #[test] fn test_write_null() { let tests = &[((), "null")]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_write_u64() { let tests = &[(3u64, "3"), (u64::MAX, &u64::MAX.to_string())]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_write_i64() { let tests = &[ (3i64, "3"), (-2i64, "-2"), (-1234i64, "-1234"), (i64::MIN, &i64::MIN.to_string()), ]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_write_f64() { let tests = &[ (3.0, "3.0"), (3.1, "3.1"), (-1.5, "-1.5"), (0.5, "0.5"), (f64::MIN, "-1.7976931348623157e308"), (f64::MAX, "1.7976931348623157e308"), (f64::EPSILON, "2.220446049250313e-16"), ]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_encode_nonfinite_float_yields_null() { let v = to_value(::std::f64::NAN.copysign(1.0)).unwrap(); assert!(v.is_null()); let v = to_value(::std::f64::NAN.copysign(-1.0)).unwrap(); assert!(v.is_null()); let v = to_value(::std::f64::INFINITY).unwrap(); assert!(v.is_null()); let v = to_value(-::std::f64::INFINITY).unwrap(); assert!(v.is_null()); let v = to_value(::std::f32::NAN.copysign(1.0)).unwrap(); assert!(v.is_null()); let v = to_value(::std::f32::NAN.copysign(-1.0)).unwrap(); assert!(v.is_null()); let v = to_value(::std::f32::INFINITY).unwrap(); assert!(v.is_null()); let v = to_value(-::std::f32::INFINITY).unwrap(); assert!(v.is_null()); } #[test] fn test_write_str() { let tests = &[("", "\"\""), ("foo", "\"foo\"")]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_write_bool() { let tests = &[(true, "true"), (false, "false")]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_write_char() { let tests = &[ ('n', "\"n\""), ('"', "\"\\\"\""), ('\\', "\"\\\\\""), ('/', "\"/\""), ('\x08', "\"\\b\""), ('\x0C', "\"\\f\""), ('\n', "\"\\n\""), ('\r', "\"\\r\""), ('\t', "\"\\t\""), ('\x0B', "\"\\u000b\""), ('\u{3A3}', "\"\u{3A3}\""), ]; test_encode_ok(tests); test_pretty_encode_ok(tests); } #[test] fn test_write_list() { test_encode_ok(&[ (vec![], "[]"), (vec![true], "[true]"), (vec![true, false], "[true,false]"), ]); test_encode_ok(&[ (vec![vec![], vec![], vec![]], "[[],[],[]]"), (vec![vec![1, 2, 3], vec![], vec![]], "[[1,2,3],[],[]]"), (vec![vec![], vec![1, 2, 3], vec![]], "[[],[1,2,3],[]]"), (vec![vec![], vec![], vec![1, 2, 3]], "[[],[],[1,2,3]]"), ]); test_pretty_encode_ok(&[ (vec![vec![], vec![], vec![]], pretty_str!([[], [], []])), ( vec![vec![1, 2, 3], vec![], vec![]], pretty_str!([[1, 2, 3], [], []]), ), ( vec![vec![], vec![1, 2, 3], vec![]], pretty_str!([[], [1, 2, 3], []]), ), ( vec![vec![], vec![], vec![1, 2, 3]], pretty_str!([[], [], [1, 2, 3]]), ), ]); test_pretty_encode_ok(&[ (vec![], "[]"), (vec![true], pretty_str!([true])), (vec![true, false], pretty_str!([true, false])), ]); let long_test_list = json!([false, null, ["foo\nbar", 3.5]]); test_encode_ok(&[( long_test_list.clone(), json_str!([false, null, ["foo\nbar", 3.5]]), )]); test_pretty_encode_ok(&[( long_test_list, pretty_str!([false, null, ["foo\nbar", 3.5]]), )]); } #[test] fn test_write_object() { test_encode_ok(&[ (treemap!(), "{}"), (treemap!("a".to_string() => true), "{\"a\":true}"), ( treemap!( "a".to_string() => true, "b".to_string() => false, ), "{\"a\":true,\"b\":false}", ), ]); test_encode_ok(&[ ( treemap![ "a".to_string() => treemap![], "b".to_string() => treemap![], "c".to_string() => treemap![], ], "{\"a\":{},\"b\":{},\"c\":{}}", ), ( treemap![ "a".to_string() => treemap![ "a".to_string() => treemap!["a" => vec![1,2,3]], "b".to_string() => treemap![], "c".to_string() => treemap![], ], "b".to_string() => treemap![], "c".to_string() => treemap![], ], "{\"a\":{\"a\":{\"a\":[1,2,3]},\"b\":{},\"c\":{}},\"b\":{},\"c\":{}}", ), ( treemap![ "a".to_string() => treemap![], "b".to_string() => treemap![ "a".to_string() => treemap!["a" => vec![1,2,3]], "b".to_string() => treemap![], "c".to_string() => treemap![], ], "c".to_string() => treemap![], ], "{\"a\":{},\"b\":{\"a\":{\"a\":[1,2,3]},\"b\":{},\"c\":{}},\"c\":{}}", ), ( treemap![ "a".to_string() => treemap![], "b".to_string() => treemap![], "c".to_string() => treemap![ "a".to_string() => treemap!["a" => vec![1,2,3]], "b".to_string() => treemap![], "c".to_string() => treemap![], ], ], "{\"a\":{},\"b\":{},\"c\":{\"a\":{\"a\":[1,2,3]},\"b\":{},\"c\":{}}}", ), ]); test_encode_ok(&[(treemap!['c' => ()], "{\"c\":null}")]); test_pretty_encode_ok(&[ ( treemap![ "a".to_string() => treemap![], "b".to_string() => treemap![], "c".to_string() => treemap![], ], pretty_str!({ "a": {}, "b": {}, "c": {} }), ), ( treemap![ "a".to_string() => treemap![ "a".to_string() => treemap!["a" => vec![1,2,3]], "b".to_string() => treemap![], "c".to_string() => treemap![], ], "b".to_string() => treemap![], "c".to_string() => treemap![], ], pretty_str!({ "a": { "a": { "a": [ 1, 2, 3 ] }, "b": {}, "c": {} }, "b": {}, "c": {} }), ), ( treemap![ "a".to_string() => treemap![], "b".to_string() => treemap![ "a".to_string() => treemap!["a" => vec![1,2,3]], "b".to_string() => treemap![], "c".to_string() => treemap![], ], "c".to_string() => treemap![], ], pretty_str!({ "a": {}, "b": { "a": { "a": [ 1, 2, 3 ] }, "b": {}, "c": {} }, "c": {} }), ), ( treemap![ "a".to_string() => treemap![], "b".to_string() => treemap![], "c".to_string() => treemap![ "a".to_string() => treemap!["a" => vec![1,2,3]], "b".to_string() => treemap![], "c".to_string() => treemap![], ], ], pretty_str!({ "a": {}, "b": {}, "c": { "a": { "a": [ 1, 2, 3 ] }, "b": {}, "c": {} } }), ), ]); test_pretty_encode_ok(&[ (treemap!(), "{}"), ( treemap!("a".to_string() => true), pretty_str!({ "a": true }), ), ( treemap!( "a".to_string() => true, "b".to_string() => false, ), pretty_str!( { "a": true, "b": false }), ), ]); let complex_obj = json!({ "b": [ {"c": "\x0c\x1f\r"}, {"d": ""} ] }); test_encode_ok(&[( complex_obj.clone(), json_str!({ "b": [ { "c": (r#""\f\u001f\r""#) }, { "d": "" } ] }), )]); test_pretty_encode_ok(&[( complex_obj, pretty_str!({ "b": [ { "c": (r#""\f\u001f\r""#) }, { "d": "" } ] }), )]); } #[test] fn test_write_tuple() { test_encode_ok(&[((5,), "[5]")]); test_pretty_encode_ok(&[((5,), pretty_str!([5]))]); test_encode_ok(&[((5, (6, "abc")), "[5,[6,\"abc\"]]")]); test_pretty_encode_ok(&[((5, (6, "abc")), pretty_str!([5, [6, "abc"]]))]); } #[test] fn test_write_enum() { test_encode_ok(&[ (Animal::Dog, "\"Dog\""), ( Animal::Frog("Henry".to_string(), vec![]), "{\"Frog\":[\"Henry\",[]]}", ), ( Animal::Frog("Henry".to_string(), vec![349]), "{\"Frog\":[\"Henry\",[349]]}", ), ( Animal::Frog("Henry".to_string(), vec![349, 102]), "{\"Frog\":[\"Henry\",[349,102]]}", ), ( Animal::Cat { age: 5, name: "Kate".to_string(), }, "{\"Cat\":{\"age\":5,\"name\":\"Kate\"}}", ), ( Animal::AntHive(vec!["Bob".to_string(), "Stuart".to_string()]), "{\"AntHive\":[\"Bob\",\"Stuart\"]}", ), ]); test_pretty_encode_ok(&[ (Animal::Dog, "\"Dog\""), ( Animal::Frog("Henry".to_string(), vec![]), pretty_str!({ "Frog": [ "Henry", [] ] }), ), ( Animal::Frog("Henry".to_string(), vec![349]), pretty_str!({ "Frog": [ "Henry", [ 349 ] ] }), ), ( Animal::Frog("Henry".to_string(), vec![349, 102]), pretty_str!({ "Frog": [ "Henry", [ 349, 102 ] ] }), ), ]); } #[test] fn test_write_option() { test_encode_ok(&[(None, "null"), (Some("jodhpurs"), "\"jodhpurs\"")]); test_encode_ok(&[ (None, "null"), (Some(vec!["foo", "bar"]), "[\"foo\",\"bar\"]"), ]); test_pretty_encode_ok(&[(None, "null"), (Some("jodhpurs"), "\"jodhpurs\"")]); test_pretty_encode_ok(&[ (None, "null"), (Some(vec!["foo", "bar"]), pretty_str!(["foo", "bar"])), ]); } #[test] fn test_write_newtype_struct() { #[derive(Serialize, PartialEq, Debug)] struct Newtype(BTreeMap); let inner = Newtype(treemap!(String::from("inner") => 123)); let outer = treemap!(String::from("outer") => to_value(&inner).unwrap()); test_encode_ok(&[(inner, r#"{"inner":123}"#)]); test_encode_ok(&[(outer, r#"{"outer":{"inner":123}}"#)]); } #[test] fn test_deserialize_number_to_untagged_enum() { #[derive(Eq, PartialEq, Deserialize, Debug)] #[serde(untagged)] enum E { N(i64), } assert_eq!(E::N(0), E::deserialize(Number::from(0)).unwrap()); } fn test_parse_ok(tests: Vec<(&str, T)>) where T: Clone + Debug + PartialEq + ser::Serialize + de::DeserializeOwned, { for (s, value) in tests { let v: T = from_str(s).unwrap(); assert_eq!(v, value.clone()); let v: T = from_slice(s.as_bytes()).unwrap(); assert_eq!(v, value.clone()); // Make sure we can deserialize into a `Value`. let json_value: Value = from_str(s).unwrap(); assert_eq!(json_value, to_value(&value).unwrap()); // Make sure we can deserialize from a `&Value`. let v = T::deserialize(&json_value).unwrap(); assert_eq!(v, value); // Make sure we can deserialize from a `Value`. let v: T = from_value(json_value.clone()).unwrap(); assert_eq!(v, value); // Make sure we can round trip back to `Value`. let json_value2: Value = from_value(json_value.clone()).unwrap(); assert_eq!(json_value2, json_value); // Make sure we can fully ignore. let twoline = s.to_owned() + "\n3735928559"; let mut de = Deserializer::from_str(&twoline); IgnoredAny::deserialize(&mut de).unwrap(); assert_eq!(0xDEAD_BEEF, u64::deserialize(&mut de).unwrap()); // Make sure every prefix is an EOF error, except that a prefix of a // number may be a valid number. if !json_value.is_number() { for (i, _) in s.trim_end().char_indices() { assert!(from_str::(&s[..i]).unwrap_err().is_eof()); assert!(from_str::(&s[..i]).unwrap_err().is_eof()); } } } } // For testing representations that the deserializer accepts but the serializer // never generates. These do not survive a round-trip through Value. fn test_parse_unusual_ok(tests: Vec<(&str, T)>) where T: Clone + Debug + PartialEq + ser::Serialize + de::DeserializeOwned, { for (s, value) in tests { let v: T = from_str(s).unwrap(); assert_eq!(v, value.clone()); let v: T = from_slice(s.as_bytes()).unwrap(); assert_eq!(v, value.clone()); } } macro_rules! test_parse_err { ($name:ident::<$($ty:ty),*>($arg:expr) => $expected:expr) => { let actual = $name::<$($ty),*>($arg).unwrap_err().to_string(); assert_eq!(actual, $expected, "unexpected {} error", stringify!($name)); }; } fn test_parse_err(errors: &[(&str, &'static str)]) where T: Debug + PartialEq + de::DeserializeOwned, { for &(s, err) in errors { test_parse_err!(from_str::(s) => err); test_parse_err!(from_slice::(s.as_bytes()) => err); } } fn test_parse_slice_err(errors: &[(&[u8], &'static str)]) where T: Debug + PartialEq + de::DeserializeOwned, { for &(s, err) in errors { test_parse_err!(from_slice::(s) => err); } } fn test_fromstr_parse_err(errors: &[(&str, &'static str)]) where T: Debug + PartialEq + FromStr, ::Err: ToString, { for &(s, err) in errors { let actual = s.parse::().unwrap_err().to_string(); assert_eq!(actual, err, "unexpected parsing error"); } } #[test] fn test_parse_null() { test_parse_err::<()>(&[ ("n", "EOF while parsing a value at line 1 column 1"), ("nul", "EOF while parsing a value at line 1 column 3"), ("nulla", "trailing characters at line 1 column 5"), ]); test_parse_ok(vec![("null", ())]); } #[test] fn test_parse_bool() { test_parse_err::(&[ ("t", "EOF while parsing a value at line 1 column 1"), ("truz", "expected ident at line 1 column 4"), ("f", "EOF while parsing a value at line 1 column 1"), ("faz", "expected ident at line 1 column 3"), ("truea", "trailing characters at line 1 column 5"), ("falsea", "trailing characters at line 1 column 6"), ]); test_parse_ok(vec![ ("true", true), (" true ", true), ("false", false), (" false ", false), ]); } #[test] fn test_parse_char() { test_parse_err::(&[ ( "\"ab\"", "invalid value: string \"ab\", expected a character at line 1 column 4", ), ( "10", "invalid type: integer `10`, expected a character at line 1 column 2", ), ]); test_parse_ok(vec![ ("\"n\"", 'n'), ("\"\\\"\"", '"'), ("\"\\\\\"", '\\'), ("\"/\"", '/'), ("\"\\b\"", '\x08'), ("\"\\f\"", '\x0C'), ("\"\\n\"", '\n'), ("\"\\r\"", '\r'), ("\"\\t\"", '\t'), ("\"\\u000b\"", '\x0B'), ("\"\\u000B\"", '\x0B'), ("\"\u{3A3}\"", '\u{3A3}'), ]); } #[test] fn test_parse_number_errors() { test_parse_err::(&[ ("+", "expected value at line 1 column 1"), (".", "expected value at line 1 column 1"), ("-", "EOF while parsing a value at line 1 column 1"), ("00", "invalid number at line 1 column 2"), ("0x80", "trailing characters at line 1 column 2"), ("\\0", "expected value at line 1 column 1"), (".0", "expected value at line 1 column 1"), ("0.", "EOF while parsing a value at line 1 column 2"), ("1.", "EOF while parsing a value at line 1 column 2"), ("1.a", "invalid number at line 1 column 3"), ("1.e1", "invalid number at line 1 column 3"), ("1e", "EOF while parsing a value at line 1 column 2"), ("1e+", "EOF while parsing a value at line 1 column 3"), ("1a", "trailing characters at line 1 column 2"), ( "100e777777777777777777777777777", "number out of range at line 1 column 14", ), ( "-100e777777777777777777777777777", "number out of range at line 1 column 15", ), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000", // 1e309 "number out of range at line 1 column 310", ), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ .0e9", // 1e309 "number out of range at line 1 column 305", ), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ e9", // 1e309 "number out of range at line 1 column 303", ), ]); } #[test] fn test_parse_i64() { test_parse_ok(vec![ ("-2", -2), ("-1234", -1234), (" -1234 ", -1234), (&i64::MIN.to_string(), i64::MIN), (&i64::MAX.to_string(), i64::MAX), ]); } #[test] fn test_parse_u64() { test_parse_ok(vec![ ("0", 0u64), ("3", 3u64), ("1234", 1234), (&u64::MAX.to_string(), u64::MAX), ]); } #[test] fn test_parse_negative_zero() { for negative_zero in &[ "-0", "-0.0", "-0e2", "-0.0e2", "-1e-400", "-1e-4000000000000000000000000000000000000000000000000", ] { assert!( from_str::(negative_zero).unwrap().is_sign_negative(), "should have been negative: {:?}", negative_zero, ); assert!( from_str::(negative_zero).unwrap().is_sign_negative(), "should have been negative: {:?}", negative_zero, ); } } #[test] fn test_parse_f64() { test_parse_ok(vec![ ("0.0", 0.0f64), ("3.0", 3.0f64), ("3.1", 3.1), ("-1.2", -1.2), ("0.4", 0.4), // Edge case from: // https://github.com/serde-rs/json/issues/536#issuecomment-583714900 ("2.638344616030823e-256", 2.638344616030823e-256), ]); #[cfg(not(feature = "arbitrary_precision"))] test_parse_ok(vec![ // With arbitrary-precision enabled, this parses as Number{"3.00"} // but the float is Number{"3.0"} ("3.00", 3.0f64), ("0.4e5", 0.4e5), ("0.4e+5", 0.4e5), ("0.4e15", 0.4e15), ("0.4e+15", 0.4e15), ("0.4e-01", 0.4e-1), (" 0.4e-01 ", 0.4e-1), ("0.4e-001", 0.4e-1), ("0.4e-0", 0.4e0), ("0.00e00", 0.0), ("0.00e+00", 0.0), ("0.00e-00", 0.0), ("3.5E-2147483647", 0.0), ("0.0100000000000000000001", 0.01), ( &format!("{}", (i64::MIN as f64) - 1.0), (i64::MIN as f64) - 1.0, ), ( &format!("{}", (u64::MAX as f64) + 1.0), (u64::MAX as f64) + 1.0, ), (&format!("{}", f64::EPSILON), f64::EPSILON), ( "0.0000000000000000000000000000000000000000000000000123e50", 1.23, ), ("100e-777777777777777777777777777", 0.0), ( "1010101010101010101010101010101010101010", 10101010101010101010e20, ), ( "0.1010101010101010101010101010101010101010", 0.1010101010101010101, ), ("0e1000000000000000000000000000000000000000000000", 0.0), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 00000000", 1e308, ), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ .0e8", 1e308, ), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ e8", 1e308, ), ( "1000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000000000000000000000000000000000000000000000\ 000000000000000000e-10", 1e308, ), ]); } #[test] fn test_value_as_f64() { let v = serde_jsonc::from_str::("1e1000"); #[cfg(not(feature = "arbitrary_precision"))] assert!(v.is_err()); #[cfg(feature = "arbitrary_precision")] assert_eq!(v.unwrap().as_f64(), None); } // Test roundtrip with some values that were not perfectly roundtripped by the // old f64 deserializer. #[cfg(feature = "float_roundtrip")] #[test] fn test_roundtrip_f64() { for &float in &[ // Samples from quickcheck-ing roundtrip with `input: f64`. Comments // indicate the value returned by the old deserializer. 51.24817837550540_4, // 51.2481783755054_1 -93.3113703768803_3, // -93.3113703768803_2 -36.5739948427534_36, // -36.5739948427534_4 52.31400820410624_4, // 52.31400820410624_ 97.4536532003468_5, // 97.4536532003468_4 // Samples from `rng.next_u64` + `f64::from_bits` + `is_finite` filter. 2.0030397744267762e-253, 7.101215824554616e260, 1.769268377902049e74, -1.6727517818542075e58, 3.9287532173373315e299, ] { let json = serde_jsonc::to_string(&float).unwrap(); let output: f64 = serde_jsonc::from_str(&json).unwrap(); assert_eq!(float, output); } } #[test] fn test_roundtrip_f32() { // This number has 1 ULP error if parsed via f64 and converted to f32. // https://github.com/serde-rs/json/pull/671#issuecomment-628534468 let float = 7.038531e-26; let json = serde_jsonc::to_string(&float).unwrap(); let output: f32 = serde_jsonc::from_str(&json).unwrap(); assert_eq!(float, output); } #[test] fn test_serialize_char() { let value = json!( ({ let mut map = BTreeMap::new(); map.insert('c', ()); map }) ); assert_eq!(&Value::Null, value.get("c").unwrap()); } #[cfg(feature = "arbitrary_precision")] #[test] fn test_malicious_number() { #[derive(Serialize)] #[serde(rename = "$serde_jsonc::private::Number")] struct S { #[serde(rename = "$serde_jsonc::private::Number")] f: &'static str, } let actual = serde_jsonc::to_value(&S { f: "not a number" }) .unwrap_err() .to_string(); assert_eq!(actual, "invalid number at line 1 column 1"); } #[test] fn test_parse_number() { test_parse_ok(vec![ ("0.0", Number::from_f64(0.0f64).unwrap()), ("3.0", Number::from_f64(3.0f64).unwrap()), ("3.1", Number::from_f64(3.1).unwrap()), ("-1.2", Number::from_f64(-1.2).unwrap()), ("0.4", Number::from_f64(0.4).unwrap()), ]); test_fromstr_parse_err::(&[ (" 1.0", "invalid number at line 1 column 1"), ("1.0 ", "invalid number at line 1 column 4"), ("\t1.0", "invalid number at line 1 column 1"), ("1.0\t", "invalid number at line 1 column 4"), ]); #[cfg(feature = "arbitrary_precision")] test_parse_ok(vec![ ("1e999", Number::from_string_unchecked("1e999".to_owned())), ("1e+999", Number::from_string_unchecked("1e+999".to_owned())), ("-1e999", Number::from_string_unchecked("-1e999".to_owned())), ("1e-999", Number::from_string_unchecked("1e-999".to_owned())), ("1E999", Number::from_string_unchecked("1E999".to_owned())), ("1E+999", Number::from_string_unchecked("1E+999".to_owned())), ("-1E999", Number::from_string_unchecked("-1E999".to_owned())), ("1E-999", Number::from_string_unchecked("1E-999".to_owned())), ("1E+000", Number::from_string_unchecked("1E+000".to_owned())), ( "2.3e999", Number::from_string_unchecked("2.3e999".to_owned()), ), ( "-2.3e999", Number::from_string_unchecked("-2.3e999".to_owned()), ), ]); } #[test] fn test_parse_string() { test_parse_err::(&[ ("\"", "EOF while parsing a string at line 1 column 1"), ("\"lol", "EOF while parsing a string at line 1 column 4"), ("\"lol\"a", "trailing characters at line 1 column 6"), ( "\"\\uD83C\\uFFFF\"", "lone leading surrogate in hex escape at line 1 column 13", ), ( "\"\n\"", "control character (\\u0000-\\u001F) found while parsing a string at line 2 column 0", ), ( "\"\x1F\"", "control character (\\u0000-\\u001F) found while parsing a string at line 1 column 2", ), ]); test_parse_slice_err::(&[ ( &[b'"', 159, 146, 150, b'"'], "invalid unicode code point at line 1 column 5", ), ( &[b'"', b'\\', b'n', 159, 146, 150, b'"'], "invalid unicode code point at line 1 column 7", ), ( &[b'"', b'\\', b'u', 48, 48, 51], "EOF while parsing a string at line 1 column 6", ), ( &[b'"', b'\\', b'u', 250, 48, 51, 48, b'"'], "invalid escape at line 1 column 4", ), ( &[b'"', b'\\', b'u', 48, 250, 51, 48, b'"'], "invalid escape at line 1 column 5", ), ( &[b'"', b'\\', b'u', 48, 48, 250, 48, b'"'], "invalid escape at line 1 column 6", ), ( &[b'"', b'\\', b'u', 48, 48, 51, 250, b'"'], "invalid escape at line 1 column 7", ), ( &[b'"', b'\n', b'"'], "control character (\\u0000-\\u001F) found while parsing a string at line 2 column 0", ), ( &[b'"', b'\x1F', b'"'], "control character (\\u0000-\\u001F) found while parsing a string at line 1 column 2", ), ]); test_parse_ok(vec![ ("\"\"", String::new()), ("\"foo\"", "foo".to_string()), (" \"foo\" ", "foo".to_string()), ("\"\\\"\"", "\"".to_string()), ("\"\\b\"", "\x08".to_string()), ("\"\\n\"", "\n".to_string()), ("\"\\r\"", "\r".to_string()), ("\"\\t\"", "\t".to_string()), ("\"\\u12ab\"", "\u{12ab}".to_string()), ("\"\\uAB12\"", "\u{AB12}".to_string()), ("\"\\uD83C\\uDF95\"", "\u{1F395}".to_string()), ]); } #[test] fn test_parse_list() { test_parse_err::>(&[ ("[", "EOF while parsing a list at line 1 column 1"), ("[ ", "EOF while parsing a list at line 1 column 2"), ("[1", "EOF while parsing a list at line 1 column 2"), ("[1,", "EOF while parsing a value at line 1 column 3"), ("[1,]", "trailing comma at line 1 column 4"), ("[1 2]", "expected `,` or `]` at line 1 column 4"), ("[]a", "trailing characters at line 1 column 3"), ]); test_parse_ok(vec![ ("[]", vec![]), ("[ ]", vec![]), ("[null]", vec![()]), (" [ null ] ", vec![()]), ]); test_parse_ok(vec![("[true]", vec![true])]); test_parse_ok(vec![("[3,1]", vec![3u64, 1]), (" [ 3 , 1 ] ", vec![3, 1])]); test_parse_ok(vec![("[[3], [1, 2]]", vec![vec![3u64], vec![1, 2]])]); test_parse_ok(vec![("[1]", (1u64,))]); test_parse_ok(vec![("[1, 2]", (1u64, 2u64))]); test_parse_ok(vec![("[1, 2, 3]", (1u64, 2u64, 3u64))]); test_parse_ok(vec![("[1, [2, 3]]", (1u64, (2u64, 3u64)))]); } #[test] fn test_parse_object() { test_parse_err::>(&[ ("{", "EOF while parsing an object at line 1 column 1"), ("{ ", "EOF while parsing an object at line 1 column 2"), ("{1", "key must be a string at line 1 column 2"), ("{ \"a\"", "EOF while parsing an object at line 1 column 5"), ("{\"a\"", "EOF while parsing an object at line 1 column 4"), ("{\"a\" ", "EOF while parsing an object at line 1 column 5"), ("{\"a\" 1", "expected `:` at line 1 column 6"), ("{\"a\":", "EOF while parsing a value at line 1 column 5"), ("{\"a\":1", "EOF while parsing an object at line 1 column 6"), ("{\"a\":1 1", "expected `,` or `}` at line 1 column 8"), ("{\"a\":1,", "EOF while parsing a value at line 1 column 7"), ("{}a", "trailing characters at line 1 column 3"), ]); test_parse_ok(vec![ ("{}", treemap!()), ("{ }", treemap!()), ("{\"a\":3}", treemap!("a".to_string() => 3u64)), ("{ \"a\" : 3 }", treemap!("a".to_string() => 3)), ( "{\"a\":3,\"b\":4}", treemap!("a".to_string() => 3, "b".to_string() => 4), ), ( " { \"a\" : 3 , \"b\" : 4 } ", treemap!("a".to_string() => 3, "b".to_string() => 4), ), ]); test_parse_ok(vec![( "{\"a\": {\"b\": 3, \"c\": 4}}", treemap!( "a".to_string() => treemap!( "b".to_string() => 3u64, "c".to_string() => 4, ), ), )]); test_parse_ok(vec![("{\"c\":null}", treemap!('c' => ()))]); } #[test] fn test_parse_struct() { test_parse_err::(&[ ( "5", "invalid type: integer `5`, expected struct Outer at line 1 column 1", ), ( "\"hello\"", "invalid type: string \"hello\", expected struct Outer at line 1 column 7", ), ( "{\"inner\": true}", "invalid type: boolean `true`, expected a sequence at line 1 column 14", ), ("{}", "missing field `inner` at line 1 column 2"), ( r#"{"inner": [{"b": 42, "c": []}]}"#, "missing field `a` at line 1 column 29", ), ]); test_parse_ok(vec![ ( "{ \"inner\": [] }", Outer { inner: vec![] }, ), ( "{ \"inner\": [ { \"a\": null, \"b\": 2, \"c\": [\"abc\", \"xyz\"] } ] }", Outer { inner: vec![Inner { a: (), b: 2, c: vec!["abc".to_string(), "xyz".to_string()], }], }, ), ]); let v: Outer = from_str( "[ [ [ null, 2, [\"abc\", \"xyz\"] ] ] ]", ) .unwrap(); assert_eq!( v, Outer { inner: vec![Inner { a: (), b: 2, c: vec!["abc".to_string(), "xyz".to_string()], }], } ); let j = json!([null, 2, []]); Inner::deserialize(&j).unwrap(); Inner::deserialize(j).unwrap(); } #[test] fn test_parse_option() { test_parse_ok(vec![ ("null", None::), ("\"jodhpurs\"", Some("jodhpurs".to_string())), ]); #[derive(Clone, Debug, PartialEq, Serialize, Deserialize)] struct Foo { x: Option, } let value: Foo = from_str("{}").unwrap(); assert_eq!(value, Foo { x: None }); test_parse_ok(vec![ ("{\"x\": null}", Foo { x: None }), ("{\"x\": 5}", Foo { x: Some(5) }), ]); } #[test] fn test_parse_enum_errors() { test_parse_err::( &[ ("{}", "expected value at line 1 column 2"), ("[]", "expected value at line 1 column 1"), ("\"unknown\"", "unknown variant `unknown`, expected one of `Dog`, `Frog`, `Cat`, `AntHive` at line 1 column 9"), ("{\"unknown\":null}", "unknown variant `unknown`, expected one of `Dog`, `Frog`, `Cat`, `AntHive` at line 1 column 10"), ("{\"Dog\":", "EOF while parsing a value at line 1 column 7"), ("{\"Dog\":}", "expected value at line 1 column 8"), ("{\"Dog\":{}}", "invalid type: map, expected unit at line 1 column 7"), ("\"Frog\"", "invalid type: unit variant, expected tuple variant"), ("\"Frog\" 0 ", "invalid type: unit variant, expected tuple variant"), ("{\"Frog\":{}}", "invalid type: map, expected tuple variant Animal::Frog at line 1 column 8"), ("{\"Cat\":[]}", "invalid length 0, expected struct variant Animal::Cat with 2 elements at line 1 column 9"), ("{\"Cat\":[0]}", "invalid length 1, expected struct variant Animal::Cat with 2 elements at line 1 column 10"), ("{\"Cat\":[0, \"\", 2]}", "trailing characters at line 1 column 16"), ("{\"Cat\":{\"age\": 5, \"name\": \"Kate\", \"foo\":\"bar\"}", "unknown field `foo`, expected `age` or `name` at line 1 column 39"), // JSON does not allow trailing commas in data structures ("{\"Cat\":[0, \"Kate\",]}", "trailing comma at line 1 column 19"), ("{\"Cat\":{\"age\": 2, \"name\": \"Kate\",}}", "trailing comma at line 1 column 34"), ], ); } #[test] fn test_parse_enum() { test_parse_ok(vec![ ("\"Dog\"", Animal::Dog), (" \"Dog\" ", Animal::Dog), ( "{\"Frog\":[\"Henry\",[]]}", Animal::Frog("Henry".to_string(), vec![]), ), ( " { \"Frog\": [ \"Henry\" , [ 349, 102 ] ] } ", Animal::Frog("Henry".to_string(), vec![349, 102]), ), ( "{\"Cat\": {\"age\": 5, \"name\": \"Kate\"}}", Animal::Cat { age: 5, name: "Kate".to_string(), }, ), ( " { \"Cat\" : { \"age\" : 5 , \"name\" : \"Kate\" } } ", Animal::Cat { age: 5, name: "Kate".to_string(), }, ), ( " { \"AntHive\" : [\"Bob\", \"Stuart\"] } ", Animal::AntHive(vec!["Bob".to_string(), "Stuart".to_string()]), ), ]); test_parse_unusual_ok(vec![ ("{\"Dog\":null}", Animal::Dog), (" { \"Dog\" : null } ", Animal::Dog), ]); test_parse_ok(vec![( concat!( "{", " \"a\": \"Dog\",", " \"b\": {\"Frog\":[\"Henry\", []]}", "}" ), treemap!( "a".to_string() => Animal::Dog, "b".to_string() => Animal::Frog("Henry".to_string(), vec![]), ), )]); } #[test] fn test_parse_trailing_whitespace() { test_parse_ok(vec![ ("[1, 2] ", vec![1u64, 2]), ("[1, 2]\n", vec![1, 2]), ("[1, 2]\t", vec![1, 2]), ("[1, 2]\t \n", vec![1, 2]), ]); } #[test] fn test_multiline_errors() { test_parse_err::>(&[( "{\n \"foo\":\n \"bar\"", "EOF while parsing an object at line 3 column 6", )]); } #[test] fn test_missing_option_field() { #[derive(Debug, PartialEq, Deserialize)] struct Foo { x: Option, } let value: Foo = from_str("{}").unwrap(); assert_eq!(value, Foo { x: None }); let value: Foo = from_str("{\"x\": 5}").unwrap(); assert_eq!(value, Foo { x: Some(5) }); let value: Foo = from_value(json!({})).unwrap(); assert_eq!(value, Foo { x: None }); let value: Foo = from_value(json!({"x": 5})).unwrap(); assert_eq!(value, Foo { x: Some(5) }); } #[test] fn test_missing_nonoption_field() { #[derive(Debug, PartialEq, Deserialize)] struct Foo { x: u32, } test_parse_err::(&[("{}", "missing field `x` at line 1 column 2")]); } #[test] fn test_missing_renamed_field() { #[derive(Debug, PartialEq, Deserialize)] struct Foo { #[serde(rename = "y")] x: Option, } let value: Foo = from_str("{}").unwrap(); assert_eq!(value, Foo { x: None }); let value: Foo = from_str("{\"y\": 5}").unwrap(); assert_eq!(value, Foo { x: Some(5) }); let value: Foo = from_value(json!({})).unwrap(); assert_eq!(value, Foo { x: None }); let value: Foo = from_value(json!({"y": 5})).unwrap(); assert_eq!(value, Foo { x: Some(5) }); } #[test] fn test_serialize_seq_with_no_len() { #[derive(Clone, Debug, PartialEq)] struct MyVec(Vec); impl ser::Serialize for MyVec where T: ser::Serialize, { fn serialize(&self, serializer: S) -> Result where S: ser::Serializer, { let mut seq = serializer.serialize_seq(None)?; for elem in &self.0 { seq.serialize_element(elem)?; } seq.end() } } struct Visitor { marker: PhantomData>, } impl<'de, T> de::Visitor<'de> for Visitor where T: de::Deserialize<'de>, { type Value = MyVec; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("array") } fn visit_unit(self) -> Result, E> where E: de::Error, { Ok(MyVec(Vec::new())) } fn visit_seq(self, mut visitor: V) -> Result, V::Error> where V: de::SeqAccess<'de>, { let mut values = Vec::new(); while let Some(value) = visitor.next_element()? { values.push(value); } Ok(MyVec(values)) } } impl<'de, T> de::Deserialize<'de> for MyVec where T: de::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result, D::Error> where D: de::Deserializer<'de>, { deserializer.deserialize_map(Visitor { marker: PhantomData, }) } } let mut vec = Vec::new(); vec.push(MyVec(Vec::new())); vec.push(MyVec(Vec::new())); let vec: MyVec> = MyVec(vec); test_encode_ok(&[(vec.clone(), "[[],[]]")]); let s = to_string_pretty(&vec).unwrap(); let expected = pretty_str!([[], []]); assert_eq!(s, expected); } #[test] fn test_serialize_map_with_no_len() { #[derive(Clone, Debug, PartialEq)] struct MyMap(BTreeMap); impl ser::Serialize for MyMap where K: ser::Serialize + Ord, V: ser::Serialize, { fn serialize(&self, serializer: S) -> Result where S: ser::Serializer, { let mut map = serializer.serialize_map(None)?; for (k, v) in &self.0 { map.serialize_entry(k, v)?; } map.end() } } struct Visitor { marker: PhantomData>, } impl<'de, K, V> de::Visitor<'de> for Visitor where K: de::Deserialize<'de> + Eq + Ord, V: de::Deserialize<'de>, { type Value = MyMap; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("map") } fn visit_unit(self) -> Result, E> where E: de::Error, { Ok(MyMap(BTreeMap::new())) } fn visit_map(self, mut visitor: Visitor) -> Result, Visitor::Error> where Visitor: de::MapAccess<'de>, { let mut values = BTreeMap::new(); while let Some((key, value)) = visitor.next_entry()? { values.insert(key, value); } Ok(MyMap(values)) } } impl<'de, K, V> de::Deserialize<'de> for MyMap where K: de::Deserialize<'de> + Eq + Ord, V: de::Deserialize<'de>, { fn deserialize(deserializer: D) -> Result, D::Error> where D: de::Deserializer<'de>, { deserializer.deserialize_map(Visitor { marker: PhantomData, }) } } let mut map = BTreeMap::new(); map.insert("a", MyMap(BTreeMap::new())); map.insert("b", MyMap(BTreeMap::new())); let map: MyMap<_, MyMap> = MyMap(map); test_encode_ok(&[(map.clone(), "{\"a\":{},\"b\":{}}")]); let s = to_string_pretty(&map).unwrap(); let expected = pretty_str!({ "a": {}, "b": {} }); assert_eq!(s, expected); } #[cfg(not(miri))] #[test] fn test_deserialize_from_stream() { use serde_jsonc::to_writer; use std::net::{TcpListener, TcpStream}; use std::thread; #[derive(Debug, PartialEq, Serialize, Deserialize)] struct Message { message: String, } let l = TcpListener::bind("localhost:20000").unwrap(); thread::spawn(|| { let l = l; for stream in l.incoming() { let mut stream = stream.unwrap(); let read_stream = stream.try_clone().unwrap(); let mut de = Deserializer::from_reader(read_stream); let request = Message::deserialize(&mut de).unwrap(); let response = Message { message: request.message, }; to_writer(&mut stream, &response).unwrap(); } }); let mut stream = TcpStream::connect("localhost:20000").unwrap(); let request = Message { message: "hi there".to_string(), }; to_writer(&mut stream, &request).unwrap(); let mut de = Deserializer::from_reader(stream); let response = Message::deserialize(&mut de).unwrap(); assert_eq!(request, response); } #[test] fn test_serialize_rejects_adt_keys() { let map = treemap!( Some("a") => 2, Some("b") => 4, None => 6, ); let err = to_vec(&map).unwrap_err(); assert_eq!(err.to_string(), "key must be a string"); } #[test] fn test_bytes_ser() { let buf = vec![]; let bytes = Bytes::new(&buf); assert_eq!(to_string(&bytes).unwrap(), "[]".to_string()); let buf = vec![1, 2, 3]; let bytes = Bytes::new(&buf); assert_eq!(to_string(&bytes).unwrap(), "[1,2,3]".to_string()); } #[test] fn test_byte_buf_ser() { let bytes = ByteBuf::new(); assert_eq!(to_string(&bytes).unwrap(), "[]".to_string()); let bytes = ByteBuf::from(vec![1, 2, 3]); assert_eq!(to_string(&bytes).unwrap(), "[1,2,3]".to_string()); } #[test] fn test_byte_buf_de() { let bytes = ByteBuf::new(); let v: ByteBuf = from_str("[]").unwrap(); assert_eq!(v, bytes); let bytes = ByteBuf::from(vec![1, 2, 3]); let v: ByteBuf = from_str("[1, 2, 3]").unwrap(); assert_eq!(v, bytes); } #[test] fn test_byte_buf_de_lone_surrogate() { let bytes = ByteBuf::from(vec![237, 160, 188]); let v: ByteBuf = from_str(r#""\ud83c""#).unwrap(); assert_eq!(v, bytes); let bytes = ByteBuf::from(vec![237, 160, 188, 10]); let v: ByteBuf = from_str(r#""\ud83c\n""#).unwrap(); assert_eq!(v, bytes); let bytes = ByteBuf::from(vec![237, 160, 188, 32]); let v: ByteBuf = from_str(r#""\ud83c ""#).unwrap(); assert_eq!(v, bytes); let bytes = ByteBuf::from(vec![237, 176, 129]); let v: ByteBuf = from_str(r#""\udc01""#).unwrap(); assert_eq!(v, bytes); let res = from_str::(r#""\ud83c\!""#); assert!(res.is_err()); let res = from_str::(r#""\ud83c\u""#); assert!(res.is_err()); let res = from_str::(r#""\ud83c\ud83c""#); assert!(res.is_err()); } #[cfg(feature = "raw_value")] #[test] fn test_raw_de_lone_surrogate() { use serde_jsonc::value::RawValue; assert!(from_str::>(r#""\ud83c""#).is_ok()); assert!(from_str::>(r#""\ud83c\n""#).is_ok()); assert!(from_str::>(r#""\ud83c ""#).is_ok()); assert!(from_str::>(r#""\udc01 ""#).is_ok()); assert!(from_str::>(r#""\udc01\!""#).is_err()); assert!(from_str::>(r#""\udc01\u""#).is_err()); assert!(from_str::>(r#""\ud83c\ud83c""#).is_ok()); } #[test] fn test_byte_buf_de_multiple() { let s: Vec = from_str(r#"["ab\nc", "cd\ne"]"#).unwrap(); let a = ByteBuf::from(b"ab\nc".to_vec()); let b = ByteBuf::from(b"cd\ne".to_vec()); assert_eq!(vec![a, b], s); } #[test] fn test_json_pointer() { // Test case taken from https://tools.ietf.org/html/rfc6901#page-5 let data: Value = from_str( r#"{ "foo": ["bar", "baz"], "": 0, "a/b": 1, "c%d": 2, "e^f": 3, "g|h": 4, "i\\j": 5, "k\"l": 6, " ": 7, "m~n": 8 }"#, ) .unwrap(); assert_eq!(data.pointer("").unwrap(), &data); assert_eq!(data.pointer("/foo").unwrap(), &json!(["bar", "baz"])); assert_eq!(data.pointer("/foo/0").unwrap(), &json!("bar")); assert_eq!(data.pointer("/").unwrap(), &json!(0)); assert_eq!(data.pointer("/a~1b").unwrap(), &json!(1)); assert_eq!(data.pointer("/c%d").unwrap(), &json!(2)); assert_eq!(data.pointer("/e^f").unwrap(), &json!(3)); assert_eq!(data.pointer("/g|h").unwrap(), &json!(4)); assert_eq!(data.pointer("/i\\j").unwrap(), &json!(5)); assert_eq!(data.pointer("/k\"l").unwrap(), &json!(6)); assert_eq!(data.pointer("/ ").unwrap(), &json!(7)); assert_eq!(data.pointer("/m~0n").unwrap(), &json!(8)); // Invalid pointers assert!(data.pointer("/unknown").is_none()); assert!(data.pointer("/e^f/ertz").is_none()); assert!(data.pointer("/foo/00").is_none()); assert!(data.pointer("/foo/01").is_none()); } #[test] fn test_json_pointer_mut() { // Test case taken from https://tools.ietf.org/html/rfc6901#page-5 let mut data: Value = from_str( r#"{ "foo": ["bar", "baz"], "": 0, "a/b": 1, "c%d": 2, "e^f": 3, "g|h": 4, "i\\j": 5, "k\"l": 6, " ": 7, "m~n": 8 }"#, ) .unwrap(); // Basic pointer checks assert_eq!(data.pointer_mut("/foo").unwrap(), &json!(["bar", "baz"])); assert_eq!(data.pointer_mut("/foo/0").unwrap(), &json!("bar")); assert_eq!(data.pointer_mut("/").unwrap(), 0); assert_eq!(data.pointer_mut("/a~1b").unwrap(), 1); assert_eq!(data.pointer_mut("/c%d").unwrap(), 2); assert_eq!(data.pointer_mut("/e^f").unwrap(), 3); assert_eq!(data.pointer_mut("/g|h").unwrap(), 4); assert_eq!(data.pointer_mut("/i\\j").unwrap(), 5); assert_eq!(data.pointer_mut("/k\"l").unwrap(), 6); assert_eq!(data.pointer_mut("/ ").unwrap(), 7); assert_eq!(data.pointer_mut("/m~0n").unwrap(), 8); // Invalid pointers assert!(data.pointer_mut("/unknown").is_none()); assert!(data.pointer_mut("/e^f/ertz").is_none()); assert!(data.pointer_mut("/foo/00").is_none()); assert!(data.pointer_mut("/foo/01").is_none()); // Mutable pointer checks *data.pointer_mut("/").unwrap() = 100.into(); assert_eq!(data.pointer("/").unwrap(), 100); *data.pointer_mut("/foo/0").unwrap() = json!("buzz"); assert_eq!(data.pointer("/foo/0").unwrap(), &json!("buzz")); // Example of ownership stealing assert_eq!( data.pointer_mut("/a~1b") .map(|m| mem::replace(m, json!(null))) .unwrap(), 1 ); assert_eq!(data.pointer("/a~1b").unwrap(), &json!(null)); // Need to compare against a clone so we don't anger the borrow checker // by taking out two references to a mutable value let mut d2 = data.clone(); assert_eq!(data.pointer_mut("").unwrap(), &mut d2); } #[test] fn test_stack_overflow() { let brackets: String = iter::repeat('[') .take(127) .chain(iter::repeat(']').take(127)) .collect(); let _: Value = from_str(&brackets).unwrap(); let brackets = "[".repeat(129); test_parse_err::(&[(&brackets, "recursion limit exceeded at line 1 column 128")]); } #[test] #[cfg(feature = "unbounded_depth")] fn test_disable_recursion_limit() { let brackets: String = iter::repeat('[') .take(140) .chain(iter::repeat(']').take(140)) .collect(); let mut deserializer = Deserializer::from_str(&brackets); deserializer.disable_recursion_limit(); Value::deserialize(&mut deserializer).unwrap(); } #[test] fn test_integer_key() { // map with integer keys let map = treemap!( 1 => 2, -1 => 6, ); let j = r#"{"-1":6,"1":2}"#; test_encode_ok(&[(&map, j)]); test_parse_ok(vec![(j, map)]); test_parse_err::>(&[ ( r#"{"x":null}"#, "invalid value: expected key to be a number in quotes at line 1 column 2", ), ( r#"{" 123":null}"#, "invalid value: expected key to be a number in quotes at line 1 column 2", ), (r#"{"123 ":null}"#, "expected `\"` at line 1 column 6"), ]); let err = from_value::>(json!({" 123":null})).unwrap_err(); assert_eq!( err.to_string(), "invalid value: expected key to be a number in quotes", ); let err = from_value::>(json!({"123 ":null})).unwrap_err(); assert_eq!( err.to_string(), "invalid value: expected key to be a number in quotes", ); } #[test] fn test_integer128_key() { let map = treemap! { 100000000000000000000000000000000000000u128 => (), }; let j = r#"{"100000000000000000000000000000000000000":null}"#; assert_eq!(to_string(&map).unwrap(), j); assert_eq!(from_str::>(j).unwrap(), map); } #[test] fn test_float_key() { #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone)] struct Float; impl Serialize for Float { fn serialize(&self, serializer: S) -> Result where S: Serializer, { serializer.serialize_f32(1.23) } } impl<'de> Deserialize<'de> for Float { fn deserialize(deserializer: D) -> Result where D: de::Deserializer<'de>, { f32::deserialize(deserializer).map(|_| Float) } } // map with float key let map = treemap!(Float => "x".to_owned()); let j = r#"{"1.23":"x"}"#; test_encode_ok(&[(&map, j)]); test_parse_ok(vec![(j, map)]); let j = r#"{"x": null}"#; test_parse_err::>(&[( j, "invalid value: expected key to be a number in quotes at line 1 column 2", )]); } #[test] fn test_deny_non_finite_f32_key() { // We store float bits so that we can derive Ord, and other traits. In a // real context the code might involve a crate like ordered-float. #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone)] struct F32Bits(u32); impl Serialize for F32Bits { fn serialize(&self, serializer: S) -> Result where S: Serializer, { serializer.serialize_f32(f32::from_bits(self.0)) } } let map = treemap!(F32Bits(f32::INFINITY.to_bits()) => "x".to_owned()); assert!(serde_jsonc::to_string(&map).is_err()); assert!(serde_jsonc::to_value(map).is_err()); let map = treemap!(F32Bits(f32::NEG_INFINITY.to_bits()) => "x".to_owned()); assert!(serde_jsonc::to_string(&map).is_err()); assert!(serde_jsonc::to_value(map).is_err()); let map = treemap!(F32Bits(f32::NAN.to_bits()) => "x".to_owned()); assert!(serde_jsonc::to_string(&map).is_err()); assert!(serde_jsonc::to_value(map).is_err()); } #[test] fn test_deny_non_finite_f64_key() { // We store float bits so that we can derive Ord, and other traits. In a // real context the code might involve a crate like ordered-float. #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone)] struct F64Bits(u64); impl Serialize for F64Bits { fn serialize(&self, serializer: S) -> Result where S: Serializer, { serializer.serialize_f64(f64::from_bits(self.0)) } } let map = treemap!(F64Bits(f64::INFINITY.to_bits()) => "x".to_owned()); assert!(serde_jsonc::to_string(&map).is_err()); assert!(serde_jsonc::to_value(map).is_err()); let map = treemap!(F64Bits(f64::NEG_INFINITY.to_bits()) => "x".to_owned()); assert!(serde_jsonc::to_string(&map).is_err()); assert!(serde_jsonc::to_value(map).is_err()); let map = treemap!(F64Bits(f64::NAN.to_bits()) => "x".to_owned()); assert!(serde_jsonc::to_string(&map).is_err()); assert!(serde_jsonc::to_value(map).is_err()); } #[test] fn test_boolean_key() { let map = treemap!(false => 0, true => 1); let j = r#"{"false":0,"true":1}"#; test_encode_ok(&[(&map, j)]); test_parse_ok(vec![(j, map)]); } #[test] fn test_borrowed_key() { let map: BTreeMap<&str, ()> = from_str("{\"borrowed\":null}").unwrap(); let expected = treemap! { "borrowed" => () }; assert_eq!(map, expected); #[derive(Deserialize, Debug, Ord, PartialOrd, Eq, PartialEq)] struct NewtypeStr<'a>(&'a str); let map: BTreeMap = from_str("{\"borrowed\":null}").unwrap(); let expected = treemap! { NewtypeStr("borrowed") => () }; assert_eq!(map, expected); } #[test] fn test_effectively_string_keys() { #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Serialize, Deserialize)] enum Enum { One, Two, } let map = treemap! { Enum::One => 1, Enum::Two => 2, }; let expected = r#"{"One":1,"Two":2}"#; test_encode_ok(&[(&map, expected)]); test_parse_ok(vec![(expected, map)]); #[derive(Eq, PartialEq, Ord, PartialOrd, Debug, Clone, Serialize, Deserialize)] struct Wrapper(String); let map = treemap! { Wrapper("zero".to_owned()) => 0, Wrapper("one".to_owned()) => 1, }; let expected = r#"{"one":1,"zero":0}"#; test_encode_ok(&[(&map, expected)]); test_parse_ok(vec![(expected, map)]); } #[test] fn test_json_macro() { // This is tricky because the <...> is not a single TT and the comma inside // looks like an array element separator. let _ = json!([ as Clone>::clone(&Ok(())), as Clone>::clone(&Err(())) ]); // Same thing but in the map values. let _ = json!({ "ok": as Clone>::clone(&Ok(())), "err": as Clone>::clone(&Err(())) }); // It works in map keys but only if they are parenthesized. let _ = json!({ ( as Clone>::clone(&Ok("")).unwrap()): "ok", ( as Clone>::clone(&Err("")).unwrap_err()): "err" }); #[deny(unused_results)] let _ = json!({ "architecture": [true, null] }); } #[test] fn issue_220() { #[derive(Debug, PartialEq, Eq, Deserialize)] enum E { V(u8), } assert!(from_str::(r#" "V"0 "#).is_err()); assert_eq!(from_str::(r#"{"V": 0}"#).unwrap(), E::V(0)); } macro_rules! number_partialeq_ok { ($($n:expr)*) => { $( let value = to_value($n).unwrap(); let s = $n.to_string(); assert_eq!(value, $n); assert_eq!($n, value); assert_ne!(value, s); )* } } #[test] fn test_partialeq_number() { number_partialeq_ok!(0 1 100 i8::MIN i8::MAX i16::MIN i16::MAX i32::MIN i32::MAX i64::MIN i64::MAX u8::MIN u8::MAX u16::MIN u16::MAX u32::MIN u32::MAX u64::MIN u64::MAX f32::MIN f32::MAX f32::MIN_EXP f32::MAX_EXP f32::MIN_POSITIVE f64::MIN f64::MAX f64::MIN_EXP f64::MAX_EXP f64::MIN_POSITIVE f32::consts::E f32::consts::PI f32::consts::LN_2 f32::consts::LOG2_E f64::consts::E f64::consts::PI f64::consts::LN_2 f64::consts::LOG2_E ); } #[test] #[cfg(integer128)] #[cfg(feature = "arbitrary_precision")] fn test_partialeq_integer128() { number_partialeq_ok!(i128::MIN i128::MAX u128::MIN u128::MAX) } #[test] fn test_partialeq_string() { let v = to_value("42").unwrap(); assert_eq!(v, "42"); assert_eq!("42", v); assert_ne!(v, 42); assert_eq!(v, String::from("42")); assert_eq!(String::from("42"), v); } #[test] fn test_partialeq_bool() { let v = to_value(true).unwrap(); assert_eq!(v, true); assert_eq!(true, v); assert_ne!(v, false); assert_ne!(v, "true"); assert_ne!(v, 1); assert_ne!(v, 0); } struct FailReader(io::ErrorKind); impl io::Read for FailReader { fn read(&mut self, _: &mut [u8]) -> io::Result { Err(io::Error::new(self.0, "oh no!")) } } #[test] fn test_category() { assert!(from_str::("123").unwrap_err().is_data()); assert!(from_str::("]").unwrap_err().is_syntax()); assert!(from_str::("").unwrap_err().is_eof()); assert!(from_str::("\"").unwrap_err().is_eof()); assert!(from_str::("\"\\").unwrap_err().is_eof()); assert!(from_str::("\"\\u").unwrap_err().is_eof()); assert!(from_str::("\"\\u0").unwrap_err().is_eof()); assert!(from_str::("\"\\u00").unwrap_err().is_eof()); assert!(from_str::("\"\\u000").unwrap_err().is_eof()); assert!(from_str::>("[").unwrap_err().is_eof()); assert!(from_str::>("[0").unwrap_err().is_eof()); assert!(from_str::>("[0,").unwrap_err().is_eof()); assert!(from_str::>("{") .unwrap_err() .is_eof()); assert!(from_str::>("{\"k\"") .unwrap_err() .is_eof()); assert!(from_str::>("{\"k\":") .unwrap_err() .is_eof()); assert!(from_str::>("{\"k\":0") .unwrap_err() .is_eof()); assert!(from_str::>("{\"k\":0,") .unwrap_err() .is_eof()); let fail = FailReader(io::ErrorKind::NotConnected); assert!(from_reader::<_, String>(fail).unwrap_err().is_io()); } #[test] // Clippy false positive: https://github.com/Manishearth/rust-clippy/issues/292 #[allow(clippy::needless_lifetimes)] fn test_into_io_error() { fn io_error<'de, T: Deserialize<'de> + Debug>(j: &'static str) -> io::Error { from_str::(j).unwrap_err().into() } assert_eq!( io_error::("\"\\u").kind(), io::ErrorKind::UnexpectedEof ); assert_eq!(io_error::("0").kind(), io::ErrorKind::InvalidData); assert_eq!(io_error::("]").kind(), io::ErrorKind::InvalidData); let fail = FailReader(io::ErrorKind::NotConnected); let io_err: io::Error = from_reader::<_, u8>(fail).unwrap_err().into(); assert_eq!(io_err.kind(), io::ErrorKind::NotConnected); } #[test] fn test_borrow() { let s: &str = from_str("\"borrowed\"").unwrap(); assert_eq!("borrowed", s); let s: &str = from_slice(b"\"borrowed\"").unwrap(); assert_eq!("borrowed", s); } #[test] fn null_invalid_type() { let err = serde_jsonc::from_str::("null").unwrap_err(); assert_eq!( format!("{}", err), String::from("invalid type: null, expected a string at line 1 column 4") ); } #[test] fn test_integer128() { let signed = &[i128::min_value(), -1, 0, 1, i128::max_value()]; let unsigned = &[0, 1, u128::max_value()]; for integer128 in signed { let expected = integer128.to_string(); assert_eq!(to_string(integer128).unwrap(), expected); assert_eq!(from_str::(&expected).unwrap(), *integer128); } for integer128 in unsigned { let expected = integer128.to_string(); assert_eq!(to_string(integer128).unwrap(), expected); assert_eq!(from_str::(&expected).unwrap(), *integer128); } test_parse_err::(&[ ( "-170141183460469231731687303715884105729", "number out of range at line 1 column 40", ), ( "170141183460469231731687303715884105728", "number out of range at line 1 column 39", ), ]); test_parse_err::(&[ ("-1", "number out of range at line 1 column 1"), ( "340282366920938463463374607431768211456", "number out of range at line 1 column 39", ), ]); } #[test] fn test_integer128_to_value() { let signed = &[i128::from(i64::min_value()), i128::from(u64::max_value())]; let unsigned = &[0, u128::from(u64::max_value())]; for integer128 in signed { let expected = integer128.to_string(); assert_eq!(to_value(integer128).unwrap().to_string(), expected); } for integer128 in unsigned { let expected = integer128.to_string(); assert_eq!(to_value(integer128).unwrap().to_string(), expected); } if !cfg!(feature = "arbitrary_precision") { let err = to_value(u128::from(u64::max_value()) + 1).unwrap_err(); assert_eq!(err.to_string(), "number out of range"); } } #[cfg(feature = "raw_value")] #[test] fn test_borrowed_raw_value() { #[derive(Serialize, Deserialize)] struct Wrapper<'a> { a: i8, #[serde(borrow)] b: &'a RawValue, c: i8, } let wrapper_from_str: Wrapper = serde_jsonc::from_str(r#"{"a": 1, "b": {"foo": 2}, "c": 3}"#).unwrap(); assert_eq!(r#"{"foo": 2}"#, wrapper_from_str.b.get()); let wrapper_to_string = serde_jsonc::to_string(&wrapper_from_str).unwrap(); assert_eq!(r#"{"a":1,"b":{"foo": 2},"c":3}"#, wrapper_to_string); let wrapper_to_value = serde_jsonc::to_value(&wrapper_from_str).unwrap(); assert_eq!(json!({"a": 1, "b": {"foo": 2}, "c": 3}), wrapper_to_value); let array_from_str: Vec<&RawValue> = serde_jsonc::from_str(r#"["a", 42, {"foo": "bar"}, null]"#).unwrap(); assert_eq!(r#""a""#, array_from_str[0].get()); assert_eq!(r#"42"#, array_from_str[1].get()); assert_eq!(r#"{"foo": "bar"}"#, array_from_str[2].get()); assert_eq!(r#"null"#, array_from_str[3].get()); let array_to_string = serde_jsonc::to_string(&array_from_str).unwrap(); assert_eq!(r#"["a",42,{"foo": "bar"},null]"#, array_to_string); } #[cfg(feature = "raw_value")] #[test] fn test_raw_value_in_map_key() { #[derive(RefCast)] #[repr(transparent)] struct RawMapKey(RawValue); impl<'de> Deserialize<'de> for &'de RawMapKey { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { let raw_value = <&RawValue>::deserialize(deserializer)?; Ok(RawMapKey::ref_cast(raw_value)) } } impl PartialEq for RawMapKey { fn eq(&self, other: &Self) -> bool { self.0.get() == other.0.get() } } impl Eq for RawMapKey {} impl Hash for RawMapKey { fn hash(&self, hasher: &mut H) { self.0.get().hash(hasher); } } let map_from_str: HashMap<&RawMapKey, &RawValue> = serde_jsonc::from_str(r#" {"\\k":"\\v"} "#).unwrap(); let (map_k, map_v) = map_from_str.into_iter().next().unwrap(); assert_eq!("\"\\\\k\"", map_k.0.get()); assert_eq!("\"\\\\v\"", map_v.get()); } #[cfg(feature = "raw_value")] #[test] fn test_boxed_raw_value() { #[derive(Serialize, Deserialize)] struct Wrapper { a: i8, b: Box, c: i8, } let wrapper_from_str: Wrapper = serde_jsonc::from_str(r#"{"a": 1, "b": {"foo": 2}, "c": 3}"#).unwrap(); assert_eq!(r#"{"foo": 2}"#, wrapper_from_str.b.get()); let wrapper_from_reader: Wrapper = serde_jsonc::from_reader(br#"{"a": 1, "b": {"foo": 2}, "c": 3}"#.as_ref()).unwrap(); assert_eq!(r#"{"foo": 2}"#, wrapper_from_reader.b.get()); let wrapper_from_value: Wrapper = serde_jsonc::from_value(json!({"a": 1, "b": {"foo": 2}, "c": 3})).unwrap(); assert_eq!(r#"{"foo":2}"#, wrapper_from_value.b.get()); let wrapper_to_string = serde_jsonc::to_string(&wrapper_from_str).unwrap(); assert_eq!(r#"{"a":1,"b":{"foo": 2},"c":3}"#, wrapper_to_string); let wrapper_to_value = serde_jsonc::to_value(&wrapper_from_str).unwrap(); assert_eq!(json!({"a": 1, "b": {"foo": 2}, "c": 3}), wrapper_to_value); let array_from_str: Vec> = serde_jsonc::from_str(r#"["a", 42, {"foo": "bar"}, null]"#).unwrap(); assert_eq!(r#""a""#, array_from_str[0].get()); assert_eq!(r#"42"#, array_from_str[1].get()); assert_eq!(r#"{"foo": "bar"}"#, array_from_str[2].get()); assert_eq!(r#"null"#, array_from_str[3].get()); let array_from_reader: Vec> = serde_jsonc::from_reader(br#"["a", 42, {"foo": "bar"}, null]"#.as_ref()).unwrap(); assert_eq!(r#""a""#, array_from_reader[0].get()); assert_eq!(r#"42"#, array_from_reader[1].get()); assert_eq!(r#"{"foo": "bar"}"#, array_from_reader[2].get()); assert_eq!(r#"null"#, array_from_reader[3].get()); let array_to_string = serde_jsonc::to_string(&array_from_str).unwrap(); assert_eq!(r#"["a",42,{"foo": "bar"},null]"#, array_to_string); } #[cfg(feature = "raw_value")] #[test] fn test_raw_invalid_utf8() { let j = &[b'"', b'\xCE', b'\xF8', b'"']; let value_err = serde_jsonc::from_slice::(j).unwrap_err(); let raw_value_err = serde_jsonc::from_slice::>(j).unwrap_err(); assert_eq!( value_err.to_string(), "invalid unicode code point at line 1 column 4", ); assert_eq!( raw_value_err.to_string(), "invalid unicode code point at line 1 column 4", ); } #[cfg(feature = "raw_value")] #[test] fn test_serialize_unsized_value_to_raw_value() { assert_eq!( serde_jsonc::value::to_raw_value("foobar").unwrap().get(), r#""foobar""#, ); } #[test] fn test_borrow_in_map_key() { #[derive(Deserialize, Debug)] struct Outer { #[allow(dead_code)] map: BTreeMap, } #[derive(Ord, PartialOrd, Eq, PartialEq, Debug)] struct MyMapKey(usize); impl<'de> Deserialize<'de> for MyMapKey { fn deserialize(deserializer: D) -> Result where D: de::Deserializer<'de>, { let s = <&str>::deserialize(deserializer)?; let n = s.parse().map_err(de::Error::custom)?; Ok(MyMapKey(n)) } } let value = json!({ "map": { "1": null } }); Outer::deserialize(&value).unwrap(); } #[test] fn test_value_into_deserializer() { #[derive(Deserialize)] struct Outer { inner: Inner, } #[derive(Deserialize)] struct Inner { string: String, } let mut map = BTreeMap::new(); map.insert("inner", json!({ "string": "Hello World" })); let outer = Outer::deserialize(serde::de::value::MapDeserializer::new( map.iter().map(|(k, v)| (*k, v)), )) .unwrap(); assert_eq!(outer.inner.string, "Hello World"); let outer = Outer::deserialize(map.into_deserializer()).unwrap(); assert_eq!(outer.inner.string, "Hello World"); } #[test] fn hash_positive_and_negative_zero() { fn hash(obj: impl Hash) -> u64 { let mut hasher = DefaultHasher::new(); obj.hash(&mut hasher); hasher.finish() } let k1 = serde_jsonc::from_str::("0.0").unwrap(); let k2 = serde_jsonc::from_str::("-0.0").unwrap(); if cfg!(feature = "arbitrary_precision") { assert_ne!(k1, k2); assert_ne!(hash(k1), hash(k2)); } else { assert_eq!(k1, k2); assert_eq!(hash(k1), hash(k2)); } }