#!/usr/bin/env perl # SPDX-License-Identifier: GPL-1.0+ OR BSD-3-Clause # # ==================================================================== # Written by Andy Polyakov, @dot-asm, initially for the OpenSSL # project. # ==================================================================== # # GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication. # # June 2014 # # Initial version was developed in tight cooperation with Ard # Biesheuvel of Linaro from bits-n-pieces from other assembly modules. # Just like aesv8-armx.pl this module supports both AArch32 and # AArch64 execution modes. # # July 2014 # # Implement 2x aggregated reduction [see ghash-x86.pl for background # information]. # # November 2017 # # AArch64 register bank to "accommodate" 4x aggregated reduction and # improve performance by 20-70% depending on processor. # # Current performance in cycles per processed byte: # # 64-bit PMULL 32-bit PMULL 32-bit NEON(*) # Apple A7 0.58 0.92 5.62 # Apple A10 0.47 # Apple A14/M1 0.44 # Cortex-A53 0.85 1.01 8.39 # Cortex-A57 0.73 1.17 7.61 # Cortex-A76 0.47 # Cortex-X2 0.44 # Denver 0.51 0.65 6.02 # Mongoose 0.65 1.10 8.06 # Kryo 0.76 1.16 8.00 # ThunderX2 1.05 # # (*) presented for reference/comparison purposes; $flavour = shift; $output = shift; if ($flavour && $flavour ne "void") { $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open STDOUT,"| \"$^X\" $xlate $flavour $output"; } else { open STDOUT,">$output"; } $Xi="x0"; # argument block $Htbl="x1"; $inp="x2"; $len="x3"; $inc="x12"; { my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3)); my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14)); my $_byte = ($flavour =~ /win/ ? "DCB" : ".byte"); $code=<<___; #include "arm_arch.h" #if __ARM_MAX_ARCH__>=7 ___ $code.=".arch armv8-a+crypto\n.text\n" if ($flavour =~ /64/); $code.=<<___ if ($flavour !~ /64/); .fpu neon #ifdef __thumb2__ .syntax unified .thumb # define INST(a,b,c,d) $_byte c,0xef,a,b #else .code 32 # define INST(a,b,c,d) $_byte a,b,c,0xf2 #endif .text ___ ################################################################################ # void gcm_init_v8(u128 Htable[16],const u64 H[2]); # # input: 128-bit H - secret parameter E(K,0^128) # output: precomputed table filled with degrees of twisted H; # H is twisted to handle reverse bitness of GHASH; # only few of 16 slots of Htable[16] are used; # data is opaque to outside world (which allows to # optimize the code independently); # $code.=<<___; .global gcm_init_v8 .type gcm_init_v8,%function .align 4 gcm_init_v8: vld1.64 {$t1},[x1] @ load input H vmov.i8 $xC2,#0xe1 vshl.i64 $xC2,$xC2,#57 @ 0xc2.0 vext.8 $IN,$t1,$t1,#8 vshr.u64 $t2,$xC2,#63 vdup.32 $t1,${t1}[1] vext.8 $t0,$t2,$xC2,#8 @ t0=0xc2....01 vshr.u64 $t2,$IN,#63 vshr.s32 $t1,$t1,#31 @ broadcast carry bit vand $t2,$t2,$t0 vshl.i64 $IN,$IN,#1 vext.8 $t2,$t2,$t2,#8 vand $t0,$t0,$t1 vorr $IN,$IN,$t2 @ H<<<=1 veor $H,$IN,$t0 @ twisted H vst1.64 {$H},[x0],#16 @ store Htable[0] @ calculate H^2 vext.8 $t0,$H,$H,#8 @ Karatsuba pre-processing vpmull.p64 $Xl,$H,$H veor $t0,$t0,$H vpmull2.p64 $Xh,$H,$H vpmull.p64 $Xm,$t0,$t0 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $H2,$Xl,$t2 vext.8 $t1,$H2,$H2,#8 @ Karatsuba pre-processing veor $t1,$t1,$H2 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed vst1.64 {$Hhl-$H2},[x0],#32 @ store Htable[1..2] ___ if ($flavour =~ /64/) { my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7)); $code.=<<___; @ calculate H^3 and H^4 vpmull.p64 $Xl,$H, $H2 vpmull.p64 $Yl,$H2,$H2 vpmull2.p64 $Xh,$H, $H2 vpmull2.p64 $Yh,$H2,$H2 vpmull.p64 $Xm,$t0,$t1 vpmull.p64 $Ym,$t1,$t1 vext.8 $t0,$Xl,$Xh,#8 @ Karatsuba post-processing vext.8 $t1,$Yl,$Yh,#8 veor $t2,$Xl,$Xh veor $Xm,$Xm,$t0 veor $t3,$Yl,$Yh veor $Ym,$Ym,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase veor $Ym,$Ym,$t3 vpmull.p64 $t3,$Yl,$xC2 vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Yh#lo,$Ym#hi vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vmov $Ym#hi,$Yl#lo veor $Xl,$Xm,$t2 veor $Yl,$Ym,$t3 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase vext.8 $t3,$Yl,$Yl,#8 vpmull.p64 $Xl,$Xl,$xC2 vpmull.p64 $Yl,$Yl,$xC2 veor $t2,$t2,$Xh veor $t3,$t3,$Yh veor $H, $Xl,$t2 @ H^3 veor $H2,$Yl,$t3 @ H^4 vext.8 $t0,$H, $H,#8 @ Karatsuba pre-processing vext.8 $t1,$H2,$H2,#8 veor $t0,$t0,$H veor $t1,$t1,$H2 vext.8 $Hhl,$t0,$t1,#8 @ pack Karatsuba pre-processed vst1.64 {$H-$H2},[x0] @ store Htable[3..5] ___ } $code.=<<___; ret .size gcm_init_v8,.-gcm_init_v8 ___ ################################################################################ # void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]); # # input: Xi - current hash value; # Htable - table precomputed in gcm_init_v8; # output: Xi - next hash value Xi; # $code.=<<___; .global gcm_gmult_v8 .type gcm_gmult_v8,%function .align 4 gcm_gmult_v8: vld1.64 {$t1},[$Xi] @ load Xi vmov.i8 $xC2,#0xe1 vld1.64 {$H-$Hhl},[$Htbl] @ load twisted H, ... vshl.u64 $xC2,$xC2,#57 #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif vext.8 $IN,$t1,$t1,#8 vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo veor $t1,$t1,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vext.8 $Xl,$Xl,$Xl,#8 vst1.64 {$Xl},[$Xi] @ write out Xi ret .size gcm_gmult_v8,.-gcm_gmult_v8 ___ ################################################################################ # void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len); # # input: table precomputed in gcm_init_v8; # current hash value Xi; # pointer to input data; # length of input data in bytes, but divisible by block size; # output: next hash value Xi; # $code.=<<___; .global gcm_ghash_v8 .type gcm_ghash_v8,%function .align 4 gcm_ghash_v8: ___ $code.=<<___ if ($flavour =~ /64/); cmp $len,#64 b.hs .Lgcm_ghash_v8_4x ___ $code.=<<___ if ($flavour !~ /64/); vstmdb sp!,{d8-d15} @ 32-bit ABI says so ___ $code.=<<___; vld1.64 {$Xl},[$Xi] @ load [rotated] Xi @ "[rotated]" means that @ loaded value would have @ to be rotated in order to @ make it appear as in @ algorithm specification subs $len,$len,#32 @ see if $len is 32 or larger mov $inc,#16 @ $inc is used as post- @ increment for input pointer; @ as loop is modulo-scheduled @ $inc is zeroed just in time @ to preclude overstepping @ inp[len], which means that @ last block[s] are actually @ loaded twice, but last @ copy is not processed vld1.64 {$H-$Hhl},[$Htbl],#32 @ load twisted H, ..., H^2 vmov.i8 $xC2,#0xe1 vld1.64 {$H2},[$Htbl] cclr $inc,eq @ is it time to zero $inc? vext.8 $Xl,$Xl,$Xl,#8 @ rotate Xi vld1.64 {$t0},[$inp],#16 @ load [rotated] I[0] vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant #ifndef __ARMEB__ vrev64.8 $t0,$t0 vrev64.8 $Xl,$Xl #endif vext.8 $IN,$t0,$t0,#8 @ rotate I[0] b.lo .Lodd_tail_v8 @ $len was less than 32 ___ { my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7)); ####### # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = # [(H*Ii+1) + (H*Xi+1)] mod P = # [(H*Ii+1) + H^2*(Ii+Xi)] mod P # $code.=<<___; vld1.64 {$t1},[$inp],$inc @ load [rotated] I[1] #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif vext.8 $In,$t1,$t1,#8 veor $IN,$IN,$Xl @ I[i]^=Xi vpmull.p64 $Xln,$H,$In @ H·Ii+1 veor $t1,$t1,$In @ Karatsuba pre-processing vpmull2.p64 $Xhn,$H,$In b .Loop_mod2x_v8 .align 4 .Loop_mod2x_v8: vext.8 $t2,$IN,$IN,#8 subs $len,$len,#32 @ is there more data? vpmull.p64 $Xl,$H2,$IN @ H^2.lo·Xi.lo cclr $inc,lo @ is it time to zero $inc? vpmull.p64 $Xmn,$Hhl,$t1 veor $t2,$t2,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H2,$IN @ H^2.hi·Xi.hi veor $Xl,$Xl,$Xln @ accumulate vpmull2.p64 $Xm,$Hhl,$t2 @ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi) vld1.64 {$t0},[$inp],$inc @ load [rotated] I[i+2] veor $Xh,$Xh,$Xhn cclr $inc,eq @ is it time to zero $inc? veor $Xm,$Xm,$Xmn vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$t1},[$inp],$inc @ load [rotated] I[i+3] #ifndef __ARMEB__ vrev64.8 $t0,$t0 #endif veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction #ifndef __ARMEB__ vrev64.8 $t1,$t1 #endif vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vext.8 $In,$t1,$t1,#8 vext.8 $IN,$t0,$t0,#8 veor $Xl,$Xm,$t2 vpmull.p64 $Xln,$H,$In @ H·Ii+1 veor $IN,$IN,$Xh @ accumulate $IN early vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $IN,$IN,$t2 veor $t1,$t1,$In @ Karatsuba pre-processing veor $IN,$IN,$Xl vpmull2.p64 $Xhn,$H,$In b.hs .Loop_mod2x_v8 @ there was at least 32 more bytes veor $Xh,$Xh,$t2 vext.8 $IN,$t0,$t0,#8 @ re-construct $IN adds $len,$len,#32 @ re-construct $len veor $Xl,$Xl,$Xh @ re-construct $Xl b.eq .Ldone_v8 @ is $len zero? ___ } $code.=<<___; .Lodd_tail_v8: vext.8 $t2,$Xl,$Xl,#8 veor $IN,$IN,$Xl @ inp^=Xi veor $t1,$t0,$t2 @ $t1 is rotated inp^Xi vpmull.p64 $Xl,$H,$IN @ H.lo·Xi.lo veor $t1,$t1,$IN @ Karatsuba pre-processing vpmull2.p64 $Xh,$H,$IN @ H.hi·Xi.hi vpmull.p64 $Xm,$Hhl,$t1 @ (H.lo+H.hi)·(Xi.lo+Xi.hi) vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 .Ldone_v8: #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vext.8 $Xl,$Xl,$Xl,#8 vst1.64 {$Xl},[$Xi] @ write out Xi ___ $code.=<<___ if ($flavour !~ /64/); vldmia sp!,{d8-d15} @ 32-bit ABI says so ___ $code.=<<___; ret .size gcm_ghash_v8,.-gcm_ghash_v8 ___ if ($flavour =~ /64/) { # 4x subroutine my ($I0,$j1,$j2,$j3, $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23)); $code.=<<___; .type gcm_ghash_v8_4x,%function .align 4 gcm_ghash_v8_4x: .Lgcm_ghash_v8_4x: vld1.64 {$Xl},[$Xi] @ load [rotated] Xi vld1.64 {$H-$H2},[$Htbl],#48 @ load twisted H, ..., H^2 vmov.i8 $xC2,#0xe1 vld1.64 {$H3-$H4},[$Htbl] @ load twisted H^3, ..., H^4 vshl.u64 $xC2,$xC2,#57 @ compose 0xc2.0 constant vld1.64 {$I0-$j3},[$inp],#64 #ifndef __ARMEB__ vrev64.8 $Xl,$Xl vrev64.8 $j1,$j1 vrev64.8 $j2,$j2 vrev64.8 $j3,$j3 vrev64.8 $I0,$I0 #endif vext.8 $I3,$j3,$j3,#8 vext.8 $I2,$j2,$j2,#8 vext.8 $I1,$j1,$j1,#8 vpmull.p64 $Yl,$H,$I3 @ H·Ii+3 veor $j3,$j3,$I3 vpmull2.p64 $Yh,$H,$I3 vpmull.p64 $Ym,$Hhl,$j3 vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2 veor $j2,$j2,$I2 vpmull2.p64 $I2,$H2,$I2 vpmull2.p64 $j2,$Hhl,$j2 veor $Yl,$Yl,$t0 veor $Yh,$Yh,$I2 veor $Ym,$Ym,$j2 vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1 veor $j1,$j1,$I1 vpmull2.p64 $I1,$H3,$I1 vpmull.p64 $j1,$H34,$j1 veor $Yl,$Yl,$j3 veor $Yh,$Yh,$I1 veor $Ym,$Ym,$j1 subs $len,$len,#128 b.lo .Ltail4x b .Loop4x .align 4 .Loop4x: veor $t0,$I0,$Xl vld1.64 {$I0-$j3},[$inp],#64 vext.8 $IN,$t0,$t0,#8 #ifndef __ARMEB__ vrev64.8 $j1,$j1 vrev64.8 $j2,$j2 vrev64.8 $j3,$j3 vrev64.8 $I0,$I0 #endif vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H4,$IN vext.8 $I3,$j3,$j3,#8 vpmull2.p64 $Xm,$H34,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh vext.8 $I2,$j2,$j2,#8 veor $Xm,$Xm,$Ym vext.8 $I1,$j1,$j1,#8 vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh vpmull.p64 $Yl,$H,$I3 @ H·Ii+3 veor $j3,$j3,$I3 veor $Xm,$Xm,$t1 vpmull2.p64 $Yh,$H,$I3 veor $Xm,$Xm,$t2 vpmull.p64 $Ym,$Hhl,$j3 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vpmull.p64 $t0,$H2,$I2 @ H^2·Ii+2 veor $j2,$j2,$I2 vpmull2.p64 $I2,$H2,$I2 veor $Xl,$Xm,$t2 vpmull2.p64 $j2,$Hhl,$j2 veor $Yl,$Yl,$t0 veor $Yh,$Yh,$I2 veor $Ym,$Ym,$j2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 vpmull.p64 $j3,$H3,$I1 @ H^3·Ii+1 veor $j1,$j1,$I1 veor $t2,$t2,$Xh vpmull2.p64 $I1,$H3,$I1 vpmull.p64 $j1,$H34,$j1 veor $Xl,$Xl,$t2 veor $Yl,$Yl,$j3 veor $Yh,$Yh,$I1 vext.8 $Xl,$Xl,$Xl,#8 veor $Ym,$Ym,$j1 subs $len,$len,#64 b.hs .Loop4x .Ltail4x: veor $t0,$I0,$Xl vext.8 $IN,$t0,$t0,#8 vpmull.p64 $Xl,$H4,$IN @ H^4·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H4,$IN vpmull2.p64 $Xm,$H34,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh veor $Xm,$Xm,$Ym adds $len,$len,#64 b.eq .Ldone4x cmp $len,#32 b.lo .Lone b.eq .Ltwo .Lthree: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$I0-$j2},[$inp] veor $Xm,$Xm,$t2 #ifndef __ARMEB__ vrev64.8 $j1,$j1 vrev64.8 $j2,$j2 vrev64.8 $I0,$I0 #endif vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vext.8 $I2,$j2,$j2,#8 vext.8 $I1,$j1,$j1,#8 veor $Xl,$Xm,$t2 vpmull.p64 $Yl,$H,$I2 @ H·Ii+2 veor $j2,$j2,$I2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh vpmull2.p64 $Yh,$H,$I2 vpmull.p64 $Ym,$Hhl,$j2 veor $Xl,$Xl,$t2 vpmull.p64 $j3,$H2,$I1 @ H^2·Ii+1 veor $j1,$j1,$I1 vext.8 $Xl,$Xl,$Xl,#8 vpmull2.p64 $I1,$H2,$I1 veor $t0,$I0,$Xl vpmull2.p64 $j1,$Hhl,$j1 vext.8 $IN,$t0,$t0,#8 veor $Yl,$Yl,$j3 veor $Yh,$Yh,$I1 veor $Ym,$Ym,$j1 vpmull.p64 $Xl,$H3,$IN @ H^3·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H3,$IN vpmull.p64 $Xm,$H34,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh veor $Xm,$Xm,$Ym b .Ldone4x .align 4 .Ltwo: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$I0-$j1},[$inp] veor $Xm,$Xm,$t2 #ifndef __ARMEB__ vrev64.8 $j1,$j1 vrev64.8 $I0,$I0 #endif vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl vext.8 $I1,$j1,$j1,#8 veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 vext.8 $Xl,$Xl,$Xl,#8 vpmull.p64 $Yl,$H,$I1 @ H·Ii+1 veor $j1,$j1,$I1 veor $t0,$I0,$Xl vext.8 $IN,$t0,$t0,#8 vpmull2.p64 $Yh,$H,$I1 vpmull.p64 $Ym,$Hhl,$j1 vpmull.p64 $Xl,$H2,$IN @ H^2·(Xi+Ii) veor $t0,$t0,$IN vpmull2.p64 $Xh,$H2,$IN vpmull2.p64 $Xm,$Hhl,$t0 veor $Xl,$Xl,$Yl veor $Xh,$Xh,$Yh veor $Xm,$Xm,$Ym b .Ldone4x .align 4 .Lone: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 vld1.64 {$I0},[$inp] veor $Xm,$Xm,$t2 #ifndef __ARMEB__ vrev64.8 $I0,$I0 #endif vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 vext.8 $Xl,$Xl,$Xl,#8 veor $t0,$I0,$Xl vext.8 $IN,$t0,$t0,#8 vpmull.p64 $Xl,$H,$IN veor $t0,$t0,$IN vpmull2.p64 $Xh,$H,$IN vpmull.p64 $Xm,$Hhl,$t0 .Ldone4x: vext.8 $t1,$Xl,$Xh,#8 @ Karatsuba post-processing veor $t2,$Xl,$Xh veor $Xm,$Xm,$t1 veor $Xm,$Xm,$t2 vpmull.p64 $t2,$Xl,$xC2 @ 1st phase of reduction vmov $Xh#lo,$Xm#hi @ Xh|Xm - 256-bit result vmov $Xm#hi,$Xl#lo @ Xm is rotated Xl veor $Xl,$Xm,$t2 vext.8 $t2,$Xl,$Xl,#8 @ 2nd phase of reduction vpmull.p64 $Xl,$Xl,$xC2 veor $t2,$t2,$Xh veor $Xl,$Xl,$t2 vext.8 $Xl,$Xl,$Xl,#8 #ifndef __ARMEB__ vrev64.8 $Xl,$Xl #endif vst1.64 {$Xl},[$Xi] @ write out Xi ret .size gcm_ghash_v8_4x,.-gcm_ghash_v8_4x ___ } } $code.=<<___; .asciz "GHASH for ARMv8, CRYPTOGAMS by " .align 2 #endif ___ if ($flavour =~ /64/) { ######## 64-bit code sub unvmov { my $arg=shift; $arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o && sprintf "ins v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1, $3<8?$3:$3+8,($4 eq "lo")?0:1; } sub unpmull { my ($mnemonic,$arg)=@_; if ($arg =~ m/v([0-9]+)\.16b,\s*v([0-9]+)\.16b,\s*v([0-9]+)\.16b/o) { my $inst = 0x0ee0e000|$1|($2<<5)|($3<<16); $inst |= 0x40000000 if ($mnemonic =~ "2"); sprintf ".inst\t0x%08x\t//%s %s $2",$inst,$mnemonic,$arg; } } foreach(split("\n",$code)) { s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel $1$2,$1zr,$1$2,$3/o or s/vmov\.i8/movi/o or # fix up legacy mnemonics s/vmov\s+(.*)/unvmov($1)/geo or s/vext\.8/ext/o or s/vshr\.s/sshr\.s/o or s/vshr/ushr/o or s/^(\s+)v/$1/o or # strip off v prefix s/\bbx\s+lr\b/ret/o; s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo; # old->new registers s/@\s/\/\//o; # old->new style commentary s/(pmull2?)\.p64\s+(.*)/unpmull($1,$2)/geo; # fix up remaining legacy suffixes s/\.[ui]?8(\s)/$1/o; s/\.[uis]?32//o and s/\.16b/\.4s/go; m/\.p64/o and s/\.16b/\.1q/o; # 1st pmull argument m/l\.p64/o and s/\.16b/\.1d/go; # 2nd and 3rd pmull arguments s/\.[uisp]?64//o and s/\.16b/\.2d/go; s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o; print $_,"\n"; } } else { ######## 32-bit code sub unvdup32 { my $arg=shift; $arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o && sprintf "vdup.32 q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1; } sub unvpmullp64 { my ($mnemonic,$arg)=@_; if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) { my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19) |(($2&7)<<17)|(($2&8)<<4) |(($3&7)<<1) |(($3&8)<<2); $word |= 0x00010001 if ($mnemonic =~ "2"); # since ARMv7 instructions are always encoded little-endian. # correct solution is to use .inst directive, but older # assemblers don't implement it:-( sprintf "INST(0x%02x,0x%02x,0x%02x,0x%02x)\t@ %s %s", $word&0xff,($word>>8)&0xff, ($word>>16)&0xff,($word>>24)&0xff, $mnemonic,$arg; } } foreach(split("\n",$code)) { s/\b[wx]([0-9]+)\b/r$1/go; # new->old registers s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go; # new->old registers s/\/\/\s?/@ /o; # new->old style commentary # fix up remaining new-style suffixes s/\],#[0-9]+/]!/o; s/cclr\s+([^,]+),\s*([a-z]+)/mov.$2 $1,#0/o or s/vdup\.32\s+(.*)/unvdup32($1)/geo or s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo or s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo or s/^(\s+)b\./$1b/o or s/^(\s+)ret/$1bx\tlr/o; if (s/^(\s+)mov\.([a-z]+)/$1mov$2/) { print " it $2\n"; } print $_,"\n"; } } close STDOUT; # enforce flush