#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # Keccak-1600 for x86 MMX. # # June 2017. # # Below code is KECCAK_2X implementation (see sha/keccak1600.c) with # C[5] held in register bank and D[5] offloaded to memory. Though # instead of actually unrolling the loop pair-wise I simply flip # pointers to T[][] and A[][] and the end of round. Since number of # rounds is even, last round writes to A[][] and everything works out. # It's argued that MMX is the only code path meaningful to implement # for x86. This is because non-MMX-capable processors is an extinct # breed, and they as well can lurk executing compiler-generated code. # For reference gcc-5.x-generated KECCAK_2X code takes 89 cycles per # processed byte on Pentium. Which is fair result. But older compilers # produce worse code. On the other hand one can wonder why not 128-bit # SSE2? Well, SSE2 won't provide double improvement, rather far from # that, if any at all on some processors, because it will take extra # permutations and inter-bank data trasfers. Besides, contemporary # CPUs are better off executing 64-bit code, and it makes lesser sense # to invest into fancy 32-bit code. And the decision doesn't seem to # be inadequate, if one compares below results to "64-bit platforms in # 32-bit mode" SIMD data points available at # http://keccak.noekeon.org/sw_performance.html. # ######################################################################## # Numbers are cycles per processed byte out of large message. # # r=1088(i) # # PIII 30/+150% # Pentium M 27/+150% # P4 40/+85% # Core 2 19/+170% # Sandy Bridge(ii) 18/+140% # Atom 33/+180% # Silvermont(ii) 30/+180% # VIA Nano(ii) 43/+60% # Sledgehammer(ii)(iii) 24/+130% # # (i) Corresponds to SHA3-256. Numbers after slash are improvement # coefficients over KECCAK_2X [with bit interleave and lane # complementing] position-independent *scalar* code generated # by gcc-5.x. It's not exactly fair comparison, but it's a # datapoint... # (ii) 64-bit processor executing 32-bit code. # (iii) Result is considered to be representative even for older AMD # processors. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; push(@INC,"${dir}","${dir}../../perlasm"); require "x86asm.pl"; $output=pop; open STDOUT,">$output"; &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386"); my @C = map("mm$_",(0..4)); my @T = map("mm$_",(5..7)); my @A = map([ 8*$_-100, 8*($_+1)-100, 8*($_+2)-100, 8*($_+3)-100, 8*($_+4)-100 ], (0,5,10,15,20)); my @D = map(8*$_+4, (0..4)); my @rhotates = ([ 0, 1, 62, 28, 27 ], [ 36, 44, 6, 55, 20 ], [ 3, 10, 43, 25, 39 ], [ 41, 45, 15, 21, 8 ], [ 18, 2, 61, 56, 14 ]); &static_label("iotas"); &function_begin_B("_KeccakF1600"); &movq (@C[0],&QWP($A[4][0],"esi")); &movq (@C[1],&QWP($A[4][1],"esi")); &movq (@C[2],&QWP($A[4][2],"esi")); &movq (@C[3],&QWP($A[4][3],"esi")); &movq (@C[4],&QWP($A[4][4],"esi")); &mov ("ecx",24); # loop counter &jmp (&label("loop")); &set_label("loop",16); ######################################### Theta &pxor (@C[0],&QWP($A[0][0],"esi")); &pxor (@C[1],&QWP($A[0][1],"esi")); &pxor (@C[2],&QWP($A[0][2],"esi")); &pxor (@C[3],&QWP($A[0][3],"esi")); &pxor (@C[4],&QWP($A[0][4],"esi")); &pxor (@C[0],&QWP($A[1][0],"esi")); &pxor (@C[1],&QWP($A[1][1],"esi")); &pxor (@C[2],&QWP($A[1][2],"esi")); &pxor (@C[3],&QWP($A[1][3],"esi")); &pxor (@C[4],&QWP($A[1][4],"esi")); &pxor (@C[0],&QWP($A[2][0],"esi")); &pxor (@C[1],&QWP($A[2][1],"esi")); &pxor (@C[2],&QWP($A[2][2],"esi")); &pxor (@C[3],&QWP($A[2][3],"esi")); &pxor (@C[4],&QWP($A[2][4],"esi")); &pxor (@C[2],&QWP($A[3][2],"esi")); &pxor (@C[0],&QWP($A[3][0],"esi")); &pxor (@C[1],&QWP($A[3][1],"esi")); &pxor (@C[3],&QWP($A[3][3],"esi")); &movq (@T[0],@C[2]); &pxor (@C[4],&QWP($A[3][4],"esi")); &movq (@T[2],@C[2]); &psrlq (@T[0],63); &movq (@T[1],@C[0]); &psllq (@T[2],1); &pxor (@T[0],@C[0]); &psrlq (@C[0],63); &pxor (@T[0],@T[2]); &psllq (@T[1],1); &movq (@T[2],@C[1]); &movq (&QWP(@D[1],"esp"),@T[0]); # D[1] = E[0] = ROL64(C[2], 1) ^ C[0]; &pxor (@T[1],@C[0]); &psrlq (@T[2],63); &pxor (@T[1],@C[3]); &movq (@C[0],@C[1]); &movq (&QWP(@D[4],"esp"),@T[1]); # D[4] = E[1] = ROL64(C[0], 1) ^ C[3]; &psllq (@C[0],1); &pxor (@T[2],@C[4]); &pxor (@C[0],@T[2]); &movq (@T[2],@C[3]); &psrlq (@C[3],63); &movq (&QWP(@D[0],"esp"),@C[0]); # D[0] = C[0] = ROL64(C[1], 1) ^ C[4]; &psllq (@T[2],1); &movq (@T[0],@C[4]); &psrlq (@C[4],63); &pxor (@C[1],@C[3]); &psllq (@T[0],1); &pxor (@C[1],@T[2]); &pxor (@C[2],@C[4]); &movq (&QWP(@D[2],"esp"),@C[1]); # D[2] = C[1] = ROL64(C[3], 1) ^ C[1]; &pxor (@C[2],@T[0]); ######################################### first Rho(0) is special &movq (@C[3],&QWP($A[3][3],"esi")); &movq (&QWP(@D[3],"esp"),@C[2]); # D[3] = C[2] = ROL64(C[4], 1) ^ C[2]; &pxor (@C[3],@C[2]); &movq (@C[4],&QWP($A[4][4],"esi")); &movq (@T[2],@C[3]); &psrlq (@C[3],64-$rhotates[3][3]); &pxor (@C[4],@T[1]); &psllq (@T[2],$rhotates[3][3]); &movq (@T[1],@C[4]); &psrlq (@C[4],64-$rhotates[4][4]); &por (@C[3],@T[2]); # C[3] = ROL64(A[3][3] ^ C[2], rhotates[3][3]); /* D[3] */ &psllq (@T[1],$rhotates[4][4]); &movq (@C[2],&QWP($A[2][2],"esi")); &por (@C[4],@T[1]); # C[4] = ROL64(A[4][4] ^ E[1], rhotates[4][4]); /* D[4] */ &pxor (@C[2],@C[1]); &movq (@C[1],&QWP($A[1][1],"esi")); &movq (@T[1],@C[2]); &psrlq (@C[2],64-$rhotates[2][2]); &pxor (@C[1],&QWP(@D[1],"esp")); &psllq (@T[1],$rhotates[2][2]); &movq (@T[2],@C[1]); &psrlq (@C[1],64-$rhotates[1][1]); &por (@C[2],@T[1]); # C[2] = ROL64(A[2][2] ^ C[1], rhotates[2][2]); /* D[2] */ &psllq (@T[2],$rhotates[1][1]); &pxor (@C[0],&QWP($A[0][0],"esi")); # /* rotate by 0 */ /* D[0] */ &por (@C[1],@T[2]); # C[1] = ROL64(A[1][1] ^ D[1], rhotates[1][1]); sub Chi() { ######### regular Chi step my ($y,$xrho) = @_; &movq (@T[0],@C[1]); &movq (@T[1],@C[2]); &pandn (@T[0],@C[2]); &pandn (@C[2],@C[3]); &pxor (@T[0],@C[0]); &pxor (@C[2],@C[1]); &pxor (@T[0],&QWP(0,"ebx")) if ($y == 0); &lea ("ebx",&DWP(8,"ebx")) if ($y == 0); &movq (@T[2],@C[3]); &movq (&QWP($A[$y][0],"edi"),@T[0]); # R[0][0] = C[0] ^ (~C[1] & C[2]) ^ iotas[i]; &movq (@T[0],@C[4]); &pandn (@C[3],@C[4]); &pandn (@C[4],@C[0]); &pxor (@C[3],@T[1]); &movq (&QWP($A[$y][1],"edi"),@C[2]); # R[0][1] = C[1] ^ (~C[2] & C[3]); &pxor (@C[4],@T[2]); &movq (@T[2],&QWP($A[0][$xrho],"esi")) if (defined($xrho)); &movq (&QWP($A[$y][2],"edi"),@C[3]); # R[0][2] = C[2] ^ (~C[3] & C[4]); &pandn (@C[0],@C[1]); &movq (&QWP($A[$y][3],"edi"),@C[4]); # R[0][3] = C[3] ^ (~C[4] & C[0]); &pxor (@C[0],@T[0]); &pxor (@T[2],&QWP(@D[$xrho],"esp")) if (defined($xrho)); &movq (&QWP($A[$y][4],"edi"),@C[0]); # R[0][4] = C[4] ^ (~C[0] & C[1]); } &Chi (0, 3); sub Rho() { ######### regular Rho step my $x = shift; #&movq (@T[2],&QWP($A[0][$x],"esi")); # moved to Chi #&pxor (@T[2],&QWP(@D[$x],"esp")); # moved to Chi &movq (@C[0],@T[2]); &psrlq (@T[2],64-$rhotates[0][$x]); &movq (@C[1],&QWP($A[1][($x+1)%5],"esi")); &psllq (@C[0],$rhotates[0][$x]); &pxor (@C[1],&QWP(@D[($x+1)%5],"esp")); &por (@C[0],@T[2]); # C[0] = ROL64(A[0][3] ^ D[3], rhotates[0][3]); &movq (@T[1],@C[1]); &psrlq (@C[1],64-$rhotates[1][($x+1)%5]); &movq (@C[2],&QWP($A[2][($x+2)%5],"esi")); &psllq (@T[1],$rhotates[1][($x+1)%5]); &pxor (@C[2],&QWP(@D[($x+2)%5],"esp")); &por (@C[1],@T[1]); # C[1] = ROL64(A[1][4] ^ D[4], rhotates[1][4]); &movq (@T[2],@C[2]); &psrlq (@C[2],64-$rhotates[2][($x+2)%5]); &movq (@C[3],&QWP($A[3][($x+3)%5],"esi")); &psllq (@T[2],$rhotates[2][($x+2)%5]); &pxor (@C[3],&QWP(@D[($x+3)%5],"esp")); &por (@C[2],@T[2]); # C[2] = ROL64(A[2][0] ^ D[0], rhotates[2][0]); &movq (@T[0],@C[3]); &psrlq (@C[3],64-$rhotates[3][($x+3)%5]); &movq (@C[4],&QWP($A[4][($x+4)%5],"esi")); &psllq (@T[0],$rhotates[3][($x+3)%5]); &pxor (@C[4],&QWP(@D[($x+4)%5],"esp")); &por (@C[3],@T[0]); # C[3] = ROL64(A[3][1] ^ D[1], rhotates[3][1]); &movq (@T[1],@C[4]); &psrlq (@C[4],64-$rhotates[4][($x+4)%5]); &psllq (@T[1],$rhotates[4][($x+4)%5]); &por (@C[4],@T[1]); # C[4] = ROL64(A[4][2] ^ D[2], rhotates[4][2]); } &Rho (3); &Chi (1, 1); &Rho (1); &Chi (2, 4); &Rho (4); &Chi (3, 2); &Rho (2); ###&Chi (4); &movq (@T[0],@C[0]); ######### last Chi(4) is special &xor ("edi","esi"); # &xchg ("esi","edi"); &movq (&QWP(@D[1],"esp"),@C[1]); &xor ("esi","edi"); &xor ("edi","esi"); &movq (@T[1],@C[1]); &movq (@T[2],@C[2]); &pandn (@T[1],@C[2]); &pandn (@T[2],@C[3]); &pxor (@C[0],@T[1]); &pxor (@C[1],@T[2]); &movq (@T[1],@C[3]); &movq (&QWP($A[4][0],"esi"),@C[0]); # R[4][0] = C[0] ^= (~C[1] & C[2]); &pandn (@T[1],@C[4]); &movq (&QWP($A[4][1],"esi"),@C[1]); # R[4][1] = C[1] ^= (~C[2] & C[3]); &pxor (@C[2],@T[1]); &movq (@T[2],@C[4]); &movq (&QWP($A[4][2],"esi"),@C[2]); # R[4][2] = C[2] ^= (~C[3] & C[4]); &pandn (@T[2],@T[0]); &pandn (@T[0],&QWP(@D[1],"esp")); &pxor (@C[3],@T[2]); &pxor (@C[4],@T[0]); &movq (&QWP($A[4][3],"esi"),@C[3]); # R[4][3] = C[3] ^= (~C[4] & D[0]); &sub ("ecx",1); &movq (&QWP($A[4][4],"esi"),@C[4]); # R[4][4] = C[4] ^= (~D[0] & D[1]); &jnz (&label("loop")); &lea ("ebx",&DWP(-192,"ebx")); # rewind iotas &ret (); &function_end_B("_KeccakF1600"); &function_begin("KeccakF1600"); &mov ("esi",&wparam(0)); &mov ("ebp","esp"); &sub ("esp",240); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); &and ("esp",-8); &lea ("esi",&DWP(100,"esi")); # size optimization &lea ("edi",&DWP(8*5+100,"esp")); # size optimization &call ("_KeccakF1600"); &mov ("esp","ebp"); &emms (); &function_end("KeccakF1600"); &function_begin("SHA3_absorb"); &mov ("esi",&wparam(0)); # A[][] &mov ("eax",&wparam(1)); # inp &mov ("ecx",&wparam(2)); # len &mov ("edx",&wparam(3)); # bsz &mov ("ebp","esp"); &sub ("esp",240+8); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); &and ("esp",-8); &mov ("edi","esi"); &lea ("esi",&DWP(100,"esi")); # size optimization &mov (&DWP(-4,"ebp"),"edx"); # save bsz &jmp (&label("loop")); &set_label("loop",16); &cmp ("ecx","edx"); # len < bsz? &jc (&label("absorbed")); &shr ("edx",3); # bsz /= 8 &set_label("block"); &movq ("mm0",&QWP(0,"eax")); &lea ("eax",&DWP(8,"eax")); &pxor ("mm0",&QWP(0,"edi")); &lea ("edi",&DWP(8,"edi")); &sub ("ecx",8); # len -= 8 &movq (&QWP(-8,"edi"),"mm0"); &dec ("edx"); # bsz-- &jnz (&label("block")); &lea ("edi",&DWP(8*5+100,"esp")); # size optimization &mov (&DWP(-8,"ebp"),"ecx"); # save len &call ("_KeccakF1600"); &mov ("ecx",&DWP(-8,"ebp")); # pull len &mov ("edx",&DWP(-4,"ebp")); # pull bsz &lea ("edi",&DWP(-100,"esi")); &jmp (&label("loop")); &set_label("absorbed",16); &mov ("eax","ecx"); # return value &mov ("esp","ebp"); &emms (); &function_end("SHA3_absorb"); &function_begin("SHA3_squeeze"); &mov ("esi",&wparam(0)); # A[][] &mov ("eax",&wparam(1)); # out &mov ("ecx",&wparam(2)); # len &mov ("edx",&wparam(3)); # bsz &mov ("ebp","esp"); &sub ("esp",240+8); &call (&label("pic_point")); &set_label("pic_point"); &blindpop("ebx"); &lea ("ebx",&DWP(&label("iotas")."-".&label("pic_point"),"ebx")); &and ("esp",-8); &shr ("edx",3); # bsz /= 8 &mov ("edi","esi"); &lea ("esi",&DWP(100,"esi")); # size optimization &mov (&DWP(-4,"ebp"),"edx"); # save bsz &jmp (&label("loop")); &set_label("loop",16); &cmp ("ecx",8); # len < 8? &jc (&label("tail")); &movq ("mm0",&QWP(0,"edi")); &lea ("edi",&DWP(8,"edi")); &movq (&QWP(0,"eax"),"mm0"); &lea ("eax",&DWP(8,"eax")); &sub ("ecx",8); # len -= 8 &jz (&label("done")); &dec ("edx"); # bsz-- &jnz (&label("loop")); &lea ("edi",&DWP(8*5+100,"esp")); # size optimization &mov (&DWP(-8,"ebp"),"ecx"); # save len &call ("_KeccakF1600"); &mov ("ecx",&DWP(-8,"ebp")); # pull len &mov ("edx",&DWP(-4,"ebp")); # pull bsz &lea ("edi",&DWP(-100,"esi")); &jmp (&label("loop")); &set_label("tail",16); &mov ("esi","edi"); &mov ("edi","eax"); &data_word("0xA4F39066"); # rep movsb &set_label("done"); &mov ("esp","ebp"); &emms (); &function_end("SHA3_squeeze"); &set_label("iotas",32); &data_word(0x00000001,0x00000000); &data_word(0x00008082,0x00000000); &data_word(0x0000808a,0x80000000); &data_word(0x80008000,0x80000000); &data_word(0x0000808b,0x00000000); &data_word(0x80000001,0x00000000); &data_word(0x80008081,0x80000000); &data_word(0x00008009,0x80000000); &data_word(0x0000008a,0x00000000); &data_word(0x00000088,0x00000000); &data_word(0x80008009,0x00000000); &data_word(0x8000000a,0x00000000); &data_word(0x8000808b,0x00000000); &data_word(0x0000008b,0x80000000); &data_word(0x00008089,0x80000000); &data_word(0x00008003,0x80000000); &data_word(0x00008002,0x80000000); &data_word(0x00000080,0x80000000); &data_word(0x0000800a,0x00000000); &data_word(0x8000000a,0x80000000); &data_word(0x80008081,0x80000000); &data_word(0x00008080,0x80000000); &data_word(0x80000001,0x00000000); &data_word(0x80008008,0x80000000); &asciz("Keccak-1600 absorb and squeeze for MMX, CRYPTOGAMS by "); &asm_finish(); close STDOUT;