/*********************************************************************** Copyright (c) 2006-2012, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ #include "SKP_Silk_main.h" SKP_INLINE void SKP_Silk_nsq_scale_states( SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ const SKP_int16 x[], /* I input in Q0 */ SKP_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ SKP_int subfr_length, /* I length of input */ const SKP_int16 sLTP[], /* I re-whitened LTP state in Q0 */ SKP_int32 sLTP_Q16[], /* O LTP state matching scaled input */ SKP_int subfr, /* I subframe number */ const SKP_int LTP_scale_Q14, /* I */ const SKP_int32 Gains_Q16[ NB_SUBFR ], /* I */ const SKP_int pitchL[ NB_SUBFR ] /* I */ ); SKP_INLINE void SKP_Silk_noise_shape_quantizer( SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ SKP_int sigtype, /* I Signal type */ const SKP_int32 x_sc_Q10[], /* I */ SKP_int8 q[], /* O */ SKP_int16 xq[], /* O */ SKP_int32 sLTP_Q16[], /* I/O LTP state */ const SKP_int16 a_Q12[], /* I Short term prediction coefs */ const SKP_int16 b_Q14[], /* I Long term prediction coefs */ const SKP_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */ SKP_int lag, /* I Pitch lag */ SKP_int32 HarmShapeFIRPacked_Q14, /* I */ SKP_int Tilt_Q14, /* I Spectral tilt */ SKP_int32 LF_shp_Q14, /* I */ SKP_int32 Gain_Q16, /* I */ SKP_int Lambda_Q10, /* I */ SKP_int offset_Q10, /* I */ SKP_int length, /* I Input length */ SKP_int shapingLPCOrder, /* I Noise shaping AR filter order */ SKP_int predictLPCOrder /* I Prediction filter order */ ); void SKP_Silk_NSQ( SKP_Silk_encoder_state *psEncC, /* I/O Encoder State */ SKP_Silk_encoder_control *psEncCtrlC, /* I Encoder Control */ SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ const SKP_int16 x[], /* I prefiltered input signal */ SKP_int8 q[], /* O quantized qulse signal */ const SKP_int LSFInterpFactor_Q2, /* I LSF interpolation factor in Q2 */ const SKP_int16 PredCoef_Q12[ 2 * MAX_LPC_ORDER ], /* I Short term prediction coefficients */ const SKP_int16 LTPCoef_Q14[ LTP_ORDER * NB_SUBFR ], /* I Long term prediction coefficients */ const SKP_int16 AR2_Q13[ NB_SUBFR * MAX_SHAPE_LPC_ORDER ], /* I */ const SKP_int HarmShapeGain_Q14[ NB_SUBFR ], /* I */ const SKP_int Tilt_Q14[ NB_SUBFR ], /* I Spectral tilt */ const SKP_int32 LF_shp_Q14[ NB_SUBFR ], /* I */ const SKP_int32 Gains_Q16[ NB_SUBFR ], /* I */ const SKP_int Lambda_Q10, /* I */ const SKP_int LTP_scale_Q14 /* I LTP state scaling */ ) { SKP_int k, lag, start_idx, LSF_interpolation_flag; const SKP_int16 *A_Q12, *B_Q14, *AR_shp_Q13; SKP_int16 *pxq; SKP_int32 sLTP_Q16[ 2 * MAX_FRAME_LENGTH ]; SKP_int16 sLTP[ 2 * MAX_FRAME_LENGTH ]; SKP_int32 HarmShapeFIRPacked_Q14; SKP_int offset_Q10; SKP_int32 FiltState[ MAX_LPC_ORDER ]; SKP_int32 x_sc_Q10[ MAX_FRAME_LENGTH / NB_SUBFR ]; NSQ->rand_seed = psEncCtrlC->Seed; /* Set unvoiced lag to the previous one, overwrite later for voiced */ lag = NSQ->lagPrev; SKP_assert( NSQ->prev_inv_gain_Q16 != 0 ); offset_Q10 = SKP_Silk_Quantization_Offsets_Q10[ psEncCtrlC->sigtype ][ psEncCtrlC->QuantOffsetType ]; if( LSFInterpFactor_Q2 == ( 1 << 2 ) ) { LSF_interpolation_flag = 0; } else { LSF_interpolation_flag = 1; } /* Setup pointers to start of sub frame */ NSQ->sLTP_shp_buf_idx = psEncC->frame_length; NSQ->sLTP_buf_idx = psEncC->frame_length; pxq = &NSQ->xq[ psEncC->frame_length ]; for( k = 0; k < NB_SUBFR; k++ ) { A_Q12 = &PredCoef_Q12[ (( k >> 1 ) | ( 1 - LSF_interpolation_flag )) * MAX_LPC_ORDER ]; B_Q14 = <PCoef_Q14[ k * LTP_ORDER ]; AR_shp_Q13 = &AR2_Q13[ k * MAX_SHAPE_LPC_ORDER ]; /* Noise shape parameters */ SKP_assert( HarmShapeGain_Q14[ k ] >= 0 ); HarmShapeFIRPacked_Q14 = SKP_RSHIFT( HarmShapeGain_Q14[ k ], 2 ); HarmShapeFIRPacked_Q14 |= SKP_LSHIFT( ( SKP_int32 )SKP_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 ); NSQ->rewhite_flag = 0; if( psEncCtrlC->sigtype == SIG_TYPE_VOICED ) { /* Voiced */ lag = psEncCtrlC->pitchL[ k ]; /* Re-whitening */ if( ( k & ( 3 - SKP_LSHIFT( LSF_interpolation_flag, 1 ) ) ) == 0 ) { /* Rewhiten with new A coefs */ start_idx = psEncC->frame_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2; SKP_assert( start_idx >= 0 ); SKP_assert( start_idx <= psEncC->frame_length - psEncC->predictLPCOrder ); SKP_memset( FiltState, 0, psEncC->predictLPCOrder * sizeof( SKP_int32 ) ); SKP_Silk_MA_Prediction( &NSQ->xq[ start_idx + k * ( psEncC->frame_length >> 2 ) ], A_Q12, FiltState, sLTP + start_idx, psEncC->frame_length - start_idx, psEncC->predictLPCOrder ); NSQ->rewhite_flag = 1; NSQ->sLTP_buf_idx = psEncC->frame_length; } } SKP_Silk_nsq_scale_states( NSQ, x, x_sc_Q10, psEncC->subfr_length, sLTP, sLTP_Q16, k, LTP_scale_Q14, Gains_Q16, psEncCtrlC->pitchL ); SKP_Silk_noise_shape_quantizer( NSQ, psEncCtrlC->sigtype, x_sc_Q10, q, pxq, sLTP_Q16, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[ k ], LF_shp_Q14[ k ], Gains_Q16[ k ], Lambda_Q10, offset_Q10, psEncC->subfr_length, psEncC->shapingLPCOrder, psEncC->predictLPCOrder ); x += psEncC->subfr_length; q += psEncC->subfr_length; pxq += psEncC->subfr_length; } /* Update lagPrev for next frame */ NSQ->lagPrev = psEncCtrlC->pitchL[ NB_SUBFR - 1 ]; /* Save quantized speech and noise shaping signals */ SKP_memcpy( NSQ->xq, &NSQ->xq[ psEncC->frame_length ], psEncC->frame_length * sizeof( SKP_int16 ) ); SKP_memcpy( NSQ->sLTP_shp_Q10, &NSQ->sLTP_shp_Q10[ psEncC->frame_length ], psEncC->frame_length * sizeof( SKP_int32 ) ); #ifdef USE_UNQUANTIZED_LSFS DEBUG_STORE_DATA( xq_unq_lsfs.pcm, NSQ->xq, psEncC->frame_length * sizeof( SKP_int16 ) ); #endif } /***********************************/ /* SKP_Silk_noise_shape_quantizer */ /***********************************/ SKP_INLINE void SKP_Silk_noise_shape_quantizer( SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ SKP_int sigtype, /* I Signal type */ const SKP_int32 x_sc_Q10[], /* I */ SKP_int8 q[], /* O */ SKP_int16 xq[], /* O */ SKP_int32 sLTP_Q16[], /* I/O LTP state */ const SKP_int16 a_Q12[], /* I Short term prediction coefs */ const SKP_int16 b_Q14[], /* I Long term prediction coefs */ const SKP_int16 AR_shp_Q13[], /* I Noise shaping AR coefs */ SKP_int lag, /* I Pitch lag */ SKP_int32 HarmShapeFIRPacked_Q14, /* I */ SKP_int Tilt_Q14, /* I Spectral tilt */ SKP_int32 LF_shp_Q14, /* I */ SKP_int32 Gain_Q16, /* I */ SKP_int Lambda_Q10, /* I */ SKP_int offset_Q10, /* I */ SKP_int length, /* I Input length */ SKP_int shapingLPCOrder, /* I Noise shaping AR filter order */ SKP_int predictLPCOrder /* I Prediction filter order */ ) { SKP_int i, j; SKP_int32 LTP_pred_Q14, LPC_pred_Q10, n_AR_Q10, n_LTP_Q14; SKP_int32 n_LF_Q10, r_Q10, q_Q0, q_Q10; SKP_int32 thr1_Q10, thr2_Q10, thr3_Q10; SKP_int32 dither, exc_Q10, LPC_exc_Q10, xq_Q10; SKP_int32 tmp1, tmp2, sLF_AR_shp_Q10; SKP_int32 *psLPC_Q14, *shp_lag_ptr, *pred_lag_ptr; #if !defined(_SYSTEM_IS_BIG_ENDIAN) SKP_int32 a_Q12_tmp[ MAX_LPC_ORDER / 2 ], Atmp; /* Preload LPC coefficients to array on stack. Gives small performance gain */ SKP_memcpy( a_Q12_tmp, a_Q12, predictLPCOrder * sizeof( SKP_int16 ) ); #endif shp_lag_ptr = &NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2 ]; pred_lag_ptr = &sLTP_Q16[ NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2 ]; /* Setup short term AR state */ psLPC_Q14 = &NSQ->sLPC_Q14[ NSQ_LPC_BUF_LENGTH - 1 ]; /* Quantization thresholds */ thr1_Q10 = SKP_SUB_RSHIFT32( -1536, Lambda_Q10, 1 ); thr2_Q10 = SKP_SUB_RSHIFT32( -512, Lambda_Q10, 1 ); thr2_Q10 = SKP_ADD_RSHIFT32( thr2_Q10, SKP_SMULBB( offset_Q10, Lambda_Q10 ), 10 ); thr3_Q10 = SKP_ADD_RSHIFT32( 512, Lambda_Q10, 1 ); for( i = 0; i < length; i++ ) { /* Generate dither */ NSQ->rand_seed = SKP_RAND( NSQ->rand_seed ); /* dither = rand_seed < 0 ? 0xFFFFFFFF : 0; */ dither = SKP_RSHIFT( NSQ->rand_seed, 31 ); /* Short-term prediction */ SKP_assert( ( predictLPCOrder & 1 ) == 0 ); /* check that order is even */ /* check that array starts at 4-byte aligned address */ SKP_assert( ( ( SKP_int64 )( ( SKP_int8* )a_Q12 - ( SKP_int8* )0 ) & 3 ) == 0 ); SKP_assert( predictLPCOrder >= 10 ); /* check that unrolling works */ #if !defined(_SYSTEM_IS_BIG_ENDIAN) /* NOTE: the code below loads two int16 values in an int32, and multiplies each using the */ /* SMLAWB and SMLAWT instructions. On a big-endian CPU the two int16 variables would be */ /* loaded in reverse order and the code will give the wrong result. In that case swapping */ /* the SMLAWB and SMLAWT instructions should solve the problem. */ /* Partially unrolled */ Atmp = a_Q12_tmp[ 0 ]; /* read two coefficients at once */ LPC_pred_Q10 = SKP_SMULWB( psLPC_Q14[ 0 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -1 ], Atmp ); Atmp = a_Q12_tmp[ 1 ]; LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -2 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -3 ], Atmp ); Atmp = a_Q12_tmp[ 2 ]; LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -4 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -5 ], Atmp ); Atmp = a_Q12_tmp[ 3 ]; LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -6 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -7 ], Atmp ); Atmp = a_Q12_tmp[ 4 ]; LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -8 ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -9 ], Atmp ); for( j = 10; j < predictLPCOrder; j += 2 ) { Atmp = a_Q12_tmp[ j >> 1 ]; /* read two coefficients at once */ LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -j ], Atmp ); LPC_pred_Q10 = SKP_SMLAWT( LPC_pred_Q10, psLPC_Q14[ -j - 1 ], Atmp ); } #else /* Partially unrolled */ LPC_pred_Q10 = SKP_SMULWB( psLPC_Q14[ 0 ], a_Q12[ 0 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -1 ], a_Q12[ 1 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -2 ], a_Q12[ 2 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -3 ], a_Q12[ 3 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -4 ], a_Q12[ 4 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -5 ], a_Q12[ 5 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -6 ], a_Q12[ 6 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -7 ], a_Q12[ 7 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -8 ], a_Q12[ 8 ] ); LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -9 ], a_Q12[ 9 ] ); for( j = 10; j < predictLPCOrder; j ++ ) { LPC_pred_Q10 = SKP_SMLAWB( LPC_pred_Q10, psLPC_Q14[ -j ], a_Q12[ j ] ); } #endif /* Long-term prediction */ if( sigtype == SIG_TYPE_VOICED ) { /* Unrolled loop */ LTP_pred_Q14 = SKP_SMULWB( pred_lag_ptr[ 0 ], b_Q14[ 0 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -1 ], b_Q14[ 1 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -2 ], b_Q14[ 2 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -3 ], b_Q14[ 3 ] ); LTP_pred_Q14 = SKP_SMLAWB( LTP_pred_Q14, pred_lag_ptr[ -4 ], b_Q14[ 4 ] ); pred_lag_ptr++; } else { LTP_pred_Q14 = 0; } /* Noise shape feedback */ SKP_assert( ( shapingLPCOrder & 1 ) == 0 ); /* check that order is even */ tmp2 = psLPC_Q14[ 0 ]; tmp1 = NSQ->sAR2_Q14[ 0 ]; NSQ->sAR2_Q14[ 0 ] = tmp2; n_AR_Q10 = SKP_SMULWB( tmp2, AR_shp_Q13[ 0 ] ); for( j = 2; j < shapingLPCOrder; j += 2 ) { tmp2 = NSQ->sAR2_Q14[ j - 1 ]; NSQ->sAR2_Q14[ j - 1 ] = tmp1; n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp1, AR_shp_Q13[ j - 1 ] ); tmp1 = NSQ->sAR2_Q14[ j + 0 ]; NSQ->sAR2_Q14[ j + 0 ] = tmp2; n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp2, AR_shp_Q13[ j ] ); } NSQ->sAR2_Q14[ shapingLPCOrder - 1 ] = tmp1; n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, tmp1, AR_shp_Q13[ shapingLPCOrder - 1 ] ); n_AR_Q10 = SKP_RSHIFT( n_AR_Q10, 1 ); /* Q11 -> Q10 */ n_AR_Q10 = SKP_SMLAWB( n_AR_Q10, NSQ->sLF_AR_shp_Q12, Tilt_Q14 ); n_LF_Q10 = SKP_LSHIFT( SKP_SMULWB( NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx - 1 ], LF_shp_Q14 ), 2 ); n_LF_Q10 = SKP_SMLAWT( n_LF_Q10, NSQ->sLF_AR_shp_Q12, LF_shp_Q14 ); SKP_assert( lag > 0 || sigtype == SIG_TYPE_UNVOICED ); /* Long-term shaping */ if( lag > 0 ) { /* Symmetric, packed FIR coefficients */ n_LTP_Q14 = SKP_SMULWB( SKP_ADD32( shp_lag_ptr[ 0 ], shp_lag_ptr[ -2 ] ), HarmShapeFIRPacked_Q14 ); n_LTP_Q14 = SKP_SMLAWT( n_LTP_Q14, shp_lag_ptr[ -1 ], HarmShapeFIRPacked_Q14 ); n_LTP_Q14 = SKP_LSHIFT( n_LTP_Q14, 6 ); shp_lag_ptr++; } else { n_LTP_Q14 = 0; } /* Input minus prediction plus noise feedback */ //r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP; tmp1 = SKP_SUB32( LTP_pred_Q14, n_LTP_Q14 ); /* Add Q14 stuff */ tmp1 = SKP_RSHIFT( tmp1, 4 ); /* convert to Q10 */ tmp1 = SKP_ADD32( tmp1, LPC_pred_Q10 ); /* add Q10 stuff */ tmp1 = SKP_SUB32( tmp1, n_AR_Q10 ); /* subtract Q10 stuff */ tmp1 = SKP_SUB32( tmp1, n_LF_Q10 ); /* subtract Q10 stuff */ r_Q10 = SKP_SUB32( x_sc_Q10[ i ], tmp1 ); /* Flip sign depending on dither */ r_Q10 = ( r_Q10 ^ dither ) - dither; r_Q10 = SKP_SUB32( r_Q10, offset_Q10 ); r_Q10 = SKP_LIMIT_32( r_Q10, -64 << 10, 64 << 10 ); /* Quantize */ q_Q0 = 0; q_Q10 = 0; if( r_Q10 < thr2_Q10 ) { if( r_Q10 < thr1_Q10 ) { q_Q0 = SKP_RSHIFT_ROUND( SKP_ADD_RSHIFT32( r_Q10, Lambda_Q10, 1 ), 10 ); q_Q10 = SKP_LSHIFT( q_Q0, 10 ); } else { q_Q0 = -1; q_Q10 = -1024; } } else { if( r_Q10 > thr3_Q10 ) { q_Q0 = SKP_RSHIFT_ROUND( SKP_SUB_RSHIFT32( r_Q10, Lambda_Q10, 1 ), 10 ); q_Q10 = SKP_LSHIFT( q_Q0, 10 ); } } q[ i ] = ( SKP_int8 )q_Q0; /* No saturation needed because max is 64 */ /* Excitation */ exc_Q10 = SKP_ADD32( q_Q10, offset_Q10 ); exc_Q10 = ( exc_Q10 ^ dither ) - dither; /* Add predictions */ LPC_exc_Q10 = SKP_ADD32( exc_Q10, SKP_RSHIFT_ROUND( LTP_pred_Q14, 4 ) ); xq_Q10 = SKP_ADD32( LPC_exc_Q10, LPC_pred_Q10 ); /* Scale XQ back to normal level before saving */ xq[ i ] = ( SKP_int16 )SKP_SAT16( SKP_RSHIFT_ROUND( SKP_SMULWW( xq_Q10, Gain_Q16 ), 10 ) ); /* Update states */ psLPC_Q14++; *psLPC_Q14 = SKP_LSHIFT( xq_Q10, 4 ); sLF_AR_shp_Q10 = SKP_SUB32( xq_Q10, n_AR_Q10 ); NSQ->sLF_AR_shp_Q12 = SKP_LSHIFT( sLF_AR_shp_Q10, 2 ); NSQ->sLTP_shp_Q10[ NSQ->sLTP_shp_buf_idx ] = SKP_SUB32( sLF_AR_shp_Q10, n_LF_Q10 ); sLTP_Q16[ NSQ->sLTP_buf_idx ] = SKP_LSHIFT( LPC_exc_Q10, 6 ); NSQ->sLTP_shp_buf_idx++; NSQ->sLTP_buf_idx++; /* Make dither dependent on quantized signal */ NSQ->rand_seed += q[ i ]; } /* Update LPC synth buffer */ SKP_memcpy( NSQ->sLPC_Q14, &NSQ->sLPC_Q14[ length ], NSQ_LPC_BUF_LENGTH * sizeof( SKP_int32 ) ); } SKP_INLINE void SKP_Silk_nsq_scale_states( SKP_Silk_nsq_state *NSQ, /* I/O NSQ state */ const SKP_int16 x[], /* I input in Q0 */ SKP_int32 x_sc_Q10[], /* O input scaled with 1/Gain */ SKP_int subfr_length, /* I length of input */ const SKP_int16 sLTP[], /* I re-whitened LTP state in Q0 */ SKP_int32 sLTP_Q16[], /* O LTP state matching scaled input */ SKP_int subfr, /* I subframe number */ const SKP_int LTP_scale_Q14, /* I */ const SKP_int32 Gains_Q16[ NB_SUBFR ], /* I */ const SKP_int pitchL[ NB_SUBFR ] /* I */ ) { SKP_int i, lag; SKP_int32 inv_gain_Q16, gain_adj_Q16, inv_gain_Q32; inv_gain_Q16 = SKP_INVERSE32_varQ( SKP_max( Gains_Q16[ subfr ], 1 ), 32 ); inv_gain_Q16 = SKP_min( inv_gain_Q16, SKP_int16_MAX ); lag = pitchL[ subfr ]; /* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */ if( NSQ->rewhite_flag ) { inv_gain_Q32 = SKP_LSHIFT( inv_gain_Q16, 16 ); if( subfr == 0 ) { /* Do LTP downscaling */ inv_gain_Q32 = SKP_LSHIFT( SKP_SMULWB( inv_gain_Q32, LTP_scale_Q14 ), 2 ); } for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { SKP_assert( i < MAX_FRAME_LENGTH ); sLTP_Q16[ i ] = SKP_SMULWB( inv_gain_Q32, sLTP[ i ] ); } } /* Adjust for changing gain */ if( inv_gain_Q16 != NSQ->prev_inv_gain_Q16 ) { gain_adj_Q16 = SKP_DIV32_varQ( inv_gain_Q16, NSQ->prev_inv_gain_Q16, 16 ); /* Scale long-term shaping state */ for( i = NSQ->sLTP_shp_buf_idx - subfr_length * NB_SUBFR; i < NSQ->sLTP_shp_buf_idx; i++ ) { NSQ->sLTP_shp_Q10[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sLTP_shp_Q10[ i ] ); } /* Scale long-term prediction state */ if( NSQ->rewhite_flag == 0 ) { for( i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++ ) { sLTP_Q16[ i ] = SKP_SMULWW( gain_adj_Q16, sLTP_Q16[ i ] ); } } NSQ->sLF_AR_shp_Q12 = SKP_SMULWW( gain_adj_Q16, NSQ->sLF_AR_shp_Q12 ); /* Scale short-term prediction and shaping states */ for( i = 0; i < NSQ_LPC_BUF_LENGTH; i++ ) { NSQ->sLPC_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sLPC_Q14[ i ] ); } for( i = 0; i < MAX_SHAPE_LPC_ORDER; i++ ) { NSQ->sAR2_Q14[ i ] = SKP_SMULWW( gain_adj_Q16, NSQ->sAR2_Q14[ i ] ); } } /* Scale input */ for( i = 0; i < subfr_length; i++ ) { x_sc_Q10[ i ] = SKP_RSHIFT( SKP_SMULBB( x[ i ], ( SKP_int16 )inv_gain_Q16 ), 6 ); } /* save inv_gain */ SKP_assert( inv_gain_Q16 != 0 ); NSQ->prev_inv_gain_Q16 = inv_gain_Q16; }