/*********************************************************************** Copyright (c) 2006-2012, Skype Limited. All rights reserved. Redistribution and use in source and binary forms, with or without modification, (subject to the limitations in the disclaimer below) are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of Skype Limited, nor the names of specific contributors, may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***********************************************************************/ /* * * File Name: SKP_Silk_resampler_private_down_FIR.c * * * * Description: Hybrid IIR/FIR polyphase implementation of resampling * * * * Copyright 2010 (c), Skype Limited * * All rights reserved. * * */ #include "SKP_Silk_SigProc_FIX.h" #include "SKP_Silk_resampler_private.h" #if EMBEDDED_ARM<5 SKP_INLINE SKP_int16 *SKP_Silk_resampler_private_down_FIR_INTERPOL0( SKP_int16 *out, SKP_int32 *buf2, const SKP_int16 *FIR_Coefs, SKP_int32 max_index_Q16, SKP_int32 index_increment_Q16){ SKP_int32 index_Q16, res_Q6; SKP_int32 *buf_ptr; for( index_Q16 = 0; index_Q16 < max_index_Q16; index_Q16 += index_increment_Q16 ) { /* Integer part gives pointer to buffered input */ buf_ptr = buf2 + SKP_RSHIFT( index_Q16, 16 ); /* Inner product */ res_Q6 = SKP_SMULWB( SKP_ADD32( buf_ptr[ 0 ], buf_ptr[ 11 ] ), FIR_Coefs[ 0 ] ); res_Q6 = SKP_SMLAWB( res_Q6, SKP_ADD32( buf_ptr[ 1 ], buf_ptr[ 10 ] ), FIR_Coefs[ 1 ] ); res_Q6 = SKP_SMLAWB( res_Q6, SKP_ADD32( buf_ptr[ 2 ], buf_ptr[ 9 ] ), FIR_Coefs[ 2 ] ); res_Q6 = SKP_SMLAWB( res_Q6, SKP_ADD32( buf_ptr[ 3 ], buf_ptr[ 8 ] ), FIR_Coefs[ 3 ] ); res_Q6 = SKP_SMLAWB( res_Q6, SKP_ADD32( buf_ptr[ 4 ], buf_ptr[ 7 ] ), FIR_Coefs[ 4 ] ); res_Q6 = SKP_SMLAWB( res_Q6, SKP_ADD32( buf_ptr[ 5 ], buf_ptr[ 6 ] ), FIR_Coefs[ 5 ] ); /* Scale down, saturate and store in output array */ *out++ = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( res_Q6, 6 ) ); } return out; } SKP_INLINE SKP_int16 *SKP_Silk_resampler_private_down_FIR_INTERPOL1( SKP_int16 *out, SKP_int32 *buf2, const SKP_int16 *FIR_Coefs, SKP_int32 max_index_Q16, SKP_int32 index_increment_Q16, SKP_int32 FIR_Fracs){ SKP_int32 index_Q16, res_Q6; SKP_int32 *buf_ptr; SKP_int32 interpol_ind; const SKP_int16 *interpol_ptr; for( index_Q16 = 0; index_Q16 < max_index_Q16; index_Q16 += index_increment_Q16 ) { /* Integer part gives pointer to buffered input */ buf_ptr = buf2 + SKP_RSHIFT( index_Q16, 16 ); /* Fractional part gives interpolation coefficients */ interpol_ind = SKP_SMULWB( index_Q16 & 0xFFFF, FIR_Fracs ); /* Inner product */ interpol_ptr = &FIR_Coefs[ RESAMPLER_DOWN_ORDER_FIR / 2 * interpol_ind ]; res_Q6 = SKP_SMULWB( buf_ptr[ 0 ], interpol_ptr[ 0 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 1 ], interpol_ptr[ 1 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 2 ], interpol_ptr[ 2 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 3 ], interpol_ptr[ 3 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 4 ], interpol_ptr[ 4 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 5 ], interpol_ptr[ 5 ] ); interpol_ptr = &FIR_Coefs[ RESAMPLER_DOWN_ORDER_FIR / 2 * ( FIR_Fracs - 1 - interpol_ind ) ]; res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 11 ], interpol_ptr[ 0 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 10 ], interpol_ptr[ 1 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 9 ], interpol_ptr[ 2 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 8 ], interpol_ptr[ 3 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 7 ], interpol_ptr[ 4 ] ); res_Q6 = SKP_SMLAWB( res_Q6, buf_ptr[ 6 ], interpol_ptr[ 5 ] ); /* Scale down, saturate and store in output array */ *out++ = (SKP_int16)SKP_SAT16( SKP_RSHIFT_ROUND( res_Q6, 6 ) ); } return out; } #else extern SKP_int16 *SKP_Silk_resampler_private_down_FIR_INTERPOL0( SKP_int16 *out, SKP_int32 *buf2, const SKP_int16 *FIR_Coefs, SKP_int32 max_index_Q16, SKP_int32 index_increment_Q16); extern SKP_int16 *SKP_Silk_resampler_private_down_FIR_INTERPOL1( SKP_int16 *out, SKP_int32 *buf2, const SKP_int16 *FIR_Coefs, SKP_int32 max_index_Q16, SKP_int32 index_increment_Q16, SKP_int32 FIR_Fracs); #endif /* Resample with a 2x downsampler (optional), a 2nd order AR filter followed by FIR interpolation */ void SKP_Silk_resampler_private_down_FIR( void *SS, /* I/O: Resampler state */ SKP_int16 out[], /* O: Output signal */ const SKP_int16 in[], /* I: Input signal */ SKP_int32 inLen /* I: Number of input samples */ ) { SKP_Silk_resampler_state_struct *S = (SKP_Silk_resampler_state_struct *)SS; SKP_int32 nSamplesIn; SKP_int32 max_index_Q16, index_increment_Q16; SKP_int16 buf1[ RESAMPLER_MAX_BATCH_SIZE_IN / 2 ]; SKP_int32 buf2[ RESAMPLER_MAX_BATCH_SIZE_IN + RESAMPLER_DOWN_ORDER_FIR ]; const SKP_int16 *FIR_Coefs; /* Copy buffered samples to start of buffer */ SKP_memcpy( buf2, S->sFIR, RESAMPLER_DOWN_ORDER_FIR * sizeof( SKP_int32 ) ); FIR_Coefs = &S->Coefs[ 2 ]; /* Iterate over blocks of frameSizeIn input samples */ index_increment_Q16 = S->invRatio_Q16; while( 1 ) { nSamplesIn = SKP_min( inLen, S->batchSize ); if( S->input2x == 1 ) { /* Downsample 2x */ SKP_Silk_resampler_down2( S->sDown2, buf1, in, nSamplesIn ); nSamplesIn = SKP_RSHIFT32( nSamplesIn, 1 ); /* Second-order AR filter (output in Q8) */ SKP_Silk_resampler_private_AR2( S->sIIR, &buf2[ RESAMPLER_DOWN_ORDER_FIR ], buf1, S->Coefs, nSamplesIn ); } else { /* Second-order AR filter (output in Q8) */ SKP_Silk_resampler_private_AR2( S->sIIR, &buf2[ RESAMPLER_DOWN_ORDER_FIR ], in, S->Coefs, nSamplesIn ); } max_index_Q16 = SKP_LSHIFT32( nSamplesIn, 16 ); /* Interpolate filtered signal */ if( S->FIR_Fracs == 1 ) { out = SKP_Silk_resampler_private_down_FIR_INTERPOL0(out, buf2, FIR_Coefs, max_index_Q16, index_increment_Q16); } else { out = SKP_Silk_resampler_private_down_FIR_INTERPOL1(out, buf2, FIR_Coefs, max_index_Q16, index_increment_Q16, S->FIR_Fracs); } in += nSamplesIn << S->input2x; inLen -= nSamplesIn << S->input2x; if( inLen > S->input2x ) { /* More iterations to do; copy last part of filtered signal to beginning of buffer */ SKP_memcpy( buf2, &buf2[ nSamplesIn ], RESAMPLER_DOWN_ORDER_FIR * sizeof( SKP_int32 ) ); } else { break; } } /* Copy last part of filtered signal to the state for the next call */ SKP_memcpy( S->sFIR, &buf2[ nSamplesIn ], RESAMPLER_DOWN_ORDER_FIR * sizeof( SKP_int32 ) ); }