/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_GROUP_H #define SECP256K1_GROUP_H #include "field.h" /** A group element in affine coordinates on the secp256k1 curve, * or occasionally on an isomorphic curve of the form y^2 = x^3 + 7*t^6. * Note: For exhaustive test mode, secp256k1 is replaced by a small subgroup of a different curve. */ typedef struct { secp256k1_fe x; secp256k1_fe y; int infinity; /* whether this represents the point at infinity */ } secp256k1_ge; #define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0} #define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} /** A group element of the secp256k1 curve, in jacobian coordinates. * Note: For exhastive test mode, secp256k1 is replaced by a small subgroup of a different curve. */ typedef struct { secp256k1_fe x; /* actual X: x/z^2 */ secp256k1_fe y; /* actual Y: y/z^3 */ secp256k1_fe z; int infinity; /* whether this represents the point at infinity */ } secp256k1_gej; #define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0} #define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} typedef struct { secp256k1_fe_storage x; secp256k1_fe_storage y; } secp256k1_ge_storage; #define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))} #define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y) /** Set a group element equal to the point with given X and Y coordinates */ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y); /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd); /** Check whether a group element is the point at infinity. */ static int secp256k1_ge_is_infinity(const secp256k1_ge *a); /** Check whether a group element is valid (i.e., on the curve). */ static int secp256k1_ge_is_valid_var(const secp256k1_ge *a); /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a); #if 0 /** Set a group element equal to another which is given in jacobian coordinates. Constant time. */ static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a); #endif /** Set a group element equal to another which is given in jacobian coordinates. */ static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a); #if 0 /** Set a batch of group elements equal to the inputs given in jacobian coordinates */ static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len); #endif /** Bring a batch of inputs to the same global z "denominator", based on ratios between * (omitted) z coordinates of adjacent elements. * * Although the elements a[i] are _ge rather than _gej, they actually represent elements * in Jacobian coordinates with their z coordinates omitted. * * Using the notation z(b) to represent the omitted z coordinate of b, the array zr of * z coordinate ratios must satisfy zr[i] == z(a[i]) / z(a[i-1]) for 0 < 'i' < len. * The zr[0] value is unused. * * This function adjusts the coordinates of 'a' in place so that for all 'i', z(a[i]) == z(a[len-1]). * In other words, the initial value of z(a[len-1]) becomes the global z "denominator". Only the * a[i].x and a[i].y coordinates are explicitly modified; the adjustment of the omitted z coordinate is * implicit. * * The coordinates of the final element a[len-1] are not changed. */ static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr); /** Set a group element (affine) equal to the point at infinity. */ static void secp256k1_ge_set_infinity(secp256k1_ge *r); /** Set a group element (jacobian) equal to the point at infinity. */ static void secp256k1_gej_set_infinity(secp256k1_gej *r); /** Set a group element (jacobian) equal to another which is given in affine coordinates. */ static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a); /** Check two group elements (jacobian) for equality in variable time. */ static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b); /** Check two group elements (jacobian and affine) for equality in variable time. */ static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b); /** Compare the X coordinate of a group element (jacobian). */ static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a); /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a); /** Check whether a group element is the point at infinity. */ static int secp256k1_gej_is_infinity(const secp256k1_gej *a); /** Set r equal to the double of a. Constant time. */ static void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a); /** Set r equal to the double of a. If rzr is not-NULL this sets *rzr such that r->z == a->z * *rzr (where infinity means an implicit z = 0). */ static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr); /** Set r equal to the sum of a and b. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr); #if 0 /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b); #endif /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time guarantee, and b is allowed to be infinity. If rzr is non-NULL this sets *rzr such that r->z == a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr); /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv); #if 0 /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a); /** Clear a secp256k1_gej to prevent leaking sensitive information. */ static void secp256k1_gej_clear(secp256k1_gej *r); /** Clear a secp256k1_ge to prevent leaking sensitive information. */ static void secp256k1_ge_clear(secp256k1_ge *r); #endif /** Convert a group element to the storage type. */ static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a); /** Convert a group element back from the storage type. */ static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a); #if 0 /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. Both *r and *a must be initialized.*/ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag); #endif /** Rescale a jacobian point by b which must be non-zero. Constant-time. */ static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b); /** Determine if a point (which is assumed to be on the curve) is in the correct (sub)group of the curve. * * In normal mode, the used group is secp256k1, which has cofactor=1 meaning that every point on the curve is in the * group, and this function returns always true. * * When compiling in exhaustive test mode, a slightly different curve equation is used, leading to a group with a * (very) small subgroup, and that subgroup is what is used for all cryptographic operations. In that mode, this * function checks whether a point that is on the curve is in fact also in that subgroup. */ static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge); #endif /* SECP256K1_GROUP_H */