/*********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_GROUP_IMPL_H #define SECP256K1_GROUP_IMPL_H #include "field.h" #include "group.h" /* Begin of section generated by sage/gen_exhaustive_groups.sage. */ #define SECP256K1_G_ORDER_7 SECP256K1_GE_CONST(\ 0x66625d13, 0x317ffe44, 0x63d32cff, 0x1ca02b9b,\ 0xe5c6d070, 0x50b4b05e, 0x81cc30db, 0xf5166f0a,\ 0x1e60e897, 0xa7c00c7c, 0x2df53eb6, 0x98274ff4,\ 0x64252f42, 0x8ca44e17, 0x3b25418c, 0xff4ab0cf\ ) #define SECP256K1_G_ORDER_13 SECP256K1_GE_CONST(\ 0xa2482ff8, 0x4bf34edf, 0xa51262fd, 0xe57921db,\ 0xe0dd2cb7, 0xa5914790, 0xbc71631f, 0xc09704fb,\ 0x942536cb, 0xa3e49492, 0x3a701cc3, 0xee3e443f,\ 0xdf182aa9, 0x15b8aa6a, 0x166d3b19, 0xba84b045\ ) #define SECP256K1_G_ORDER_199 SECP256K1_GE_CONST(\ 0x7fb07b5c, 0xd07c3bda, 0x553902e2, 0x7a87ea2c,\ 0x35108a7f, 0x051f41e5, 0xb76abad5, 0x1f2703ad,\ 0x0a251539, 0x5b4c4438, 0x952a634f, 0xac10dd4d,\ 0x6d6f4745, 0x98990c27, 0x3a4f3116, 0xd32ff969\ ) /** Generator for secp256k1, value 'g' defined in * "Standards for Efficient Cryptography" (SEC2) 2.7.1. */ #define SECP256K1_G SECP256K1_GE_CONST(\ 0x79be667e, 0xf9dcbbac, 0x55a06295, 0xce870b07,\ 0x029bfcdb, 0x2dce28d9, 0x59f2815b, 0x16f81798,\ 0x483ada77, 0x26a3c465, 0x5da4fbfc, 0x0e1108a8,\ 0xfd17b448, 0xa6855419, 0x9c47d08f, 0xfb10d4b8\ ) /* These exhaustive group test orders and generators are chosen such that: * - The field size is equal to that of secp256k1, so field code is the same. * - The curve equation is of the form y^2=x^3+B for some small constant B. * - The subgroup has a generator 2*P, where P.x is as small as possible. * - The subgroup has size less than 1000 to permit exhaustive testing. * - The subgroup admits an endomorphism of the form lambda*(x,y) == (beta*x,y). */ static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_G; #define SECP256K1_B 7 /* End of section generated by sage/gen_exhaustive_groups.sage. */ static const secp256k1_fe secp256k1_fe_const_b = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, SECP256K1_B); static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { secp256k1_fe zi2; secp256k1_fe zi3; VERIFY_CHECK(!a->infinity); secp256k1_fe_sqr(&zi2, zi); secp256k1_fe_mul(&zi3, &zi2, zi); secp256k1_fe_mul(&r->x, &a->x, &zi2); secp256k1_fe_mul(&r->y, &a->y, &zi3); r->infinity = a->infinity; } static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { r->infinity = 0; r->x = *x; r->y = *y; } static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { return a->infinity; } static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { *r = *a; secp256k1_fe_normalize_weak(&r->y); secp256k1_fe_negate(&r->y, &r->y, 1); } #if 0 static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { secp256k1_fe z2, z3; r->infinity = a->infinity; secp256k1_fe_inv(&a->z, &a->z); secp256k1_fe_sqr(&z2, &a->z); secp256k1_fe_mul(&z3, &a->z, &z2); secp256k1_fe_mul(&a->x, &a->x, &z2); secp256k1_fe_mul(&a->y, &a->y, &z3); secp256k1_fe_set_int(&a->z, 1); r->x = a->x; r->y = a->y; } #endif static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { secp256k1_fe z2, z3; if (a->infinity) { secp256k1_ge_set_infinity(r); return; } secp256k1_fe_inv_var(&a->z, &a->z); secp256k1_fe_sqr(&z2, &a->z); secp256k1_fe_mul(&z3, &a->z, &z2); secp256k1_fe_mul(&a->x, &a->x, &z2); secp256k1_fe_mul(&a->y, &a->y, &z3); secp256k1_fe_set_int(&a->z, 1); secp256k1_ge_set_xy(r, &a->x, &a->y); } #if 0 static void secp256k1_ge_set_all_gej_var(secp256k1_ge *r, const secp256k1_gej *a, size_t len) { secp256k1_fe u; size_t i; size_t last_i = SIZE_MAX; for (i = 0; i < len; i++) { if (a[i].infinity) { secp256k1_ge_set_infinity(&r[i]); } else { /* Use destination's x coordinates as scratch space */ if (last_i == SIZE_MAX) { r[i].x = a[i].z; } else { secp256k1_fe_mul(&r[i].x, &r[last_i].x, &a[i].z); } last_i = i; } } if (last_i == SIZE_MAX) { return; } secp256k1_fe_inv_var(&u, &r[last_i].x); i = last_i; while (i > 0) { i--; if (!a[i].infinity) { secp256k1_fe_mul(&r[last_i].x, &r[i].x, &u); secp256k1_fe_mul(&u, &u, &a[last_i].z); last_i = i; } } VERIFY_CHECK(!a[last_i].infinity); r[last_i].x = u; for (i = 0; i < len; i++) { if (!a[i].infinity) { secp256k1_ge_set_gej_zinv(&r[i], &a[i], &r[i].x); } } } #endif static void secp256k1_ge_table_set_globalz(size_t len, secp256k1_ge *a, const secp256k1_fe *zr) { size_t i = len - 1; secp256k1_fe zs; if (len > 0) { /* Ensure all y values are in weak normal form for fast negation of points */ secp256k1_fe_normalize_weak(&a[i].y); zs = zr[i]; /* Work our way backwards, using the z-ratios to scale the x/y values. */ while (i > 0) { secp256k1_gej tmpa; if (i != len - 1) { secp256k1_fe_mul(&zs, &zs, &zr[i]); } i--; tmpa.x = a[i].x; tmpa.y = a[i].y; tmpa.infinity = 0; secp256k1_ge_set_gej_zinv(&a[i], &tmpa, &zs); } } } static void secp256k1_gej_set_infinity(secp256k1_gej *r) { r->infinity = 1; secp256k1_fe_clear(&r->x); secp256k1_fe_clear(&r->y); secp256k1_fe_clear(&r->z); } static void secp256k1_ge_set_infinity(secp256k1_ge *r) { r->infinity = 1; secp256k1_fe_clear(&r->x); secp256k1_fe_clear(&r->y); } #if 0 static void secp256k1_gej_clear(secp256k1_gej *r) { r->infinity = 0; secp256k1_fe_clear(&r->x); secp256k1_fe_clear(&r->y); secp256k1_fe_clear(&r->z); } static void secp256k1_ge_clear(secp256k1_ge *r) { r->infinity = 0; secp256k1_fe_clear(&r->x); secp256k1_fe_clear(&r->y); } #endif static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { secp256k1_fe x2, x3; r->x = *x; secp256k1_fe_sqr(&x2, x); secp256k1_fe_mul(&x3, x, &x2); r->infinity = 0; secp256k1_fe_add_int(&x3, SECP256K1_B); if (!secp256k1_fe_sqrt_var(&r->y, &x3)) { return 0; } secp256k1_fe_normalize_var(&r->y); if (secp256k1_fe_is_odd(&r->y) != odd) { secp256k1_fe_negate(&r->y, &r->y, 1); } return 1; } static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { r->infinity = a->infinity; r->x = a->x; r->y = a->y; secp256k1_fe_set_int(&r->z, !r->infinity); } static int secp256k1_gej_eq_var(const secp256k1_gej *a, const secp256k1_gej *b) { secp256k1_gej tmp; secp256k1_gej_neg(&tmp, a); secp256k1_gej_add_var(&tmp, &tmp, b, NULL); return secp256k1_gej_is_infinity(&tmp); } static int secp256k1_gej_eq_ge_var(const secp256k1_gej *a, const secp256k1_ge *b) { secp256k1_gej tmp; secp256k1_gej_neg(&tmp, a); secp256k1_gej_add_ge_var(&tmp, &tmp, b, NULL); return secp256k1_gej_is_infinity(&tmp); } static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { secp256k1_fe r, r2; VERIFY_CHECK(!a->infinity); secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); r2 = a->x; secp256k1_fe_normalize_weak(&r2); return secp256k1_fe_equal_var(&r, &r2); } static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { r->infinity = a->infinity; r->x = a->x; r->y = a->y; r->z = a->z; secp256k1_fe_normalize_weak(&r->y); secp256k1_fe_negate(&r->y, &r->y, 1); } static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { return a->infinity; } static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { secp256k1_fe y2, x3; if (a->infinity) { return 0; } /* y^2 = x^3 + 7 */ secp256k1_fe_sqr(&y2, &a->y); secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); secp256k1_fe_add_int(&x3, SECP256K1_B); secp256k1_fe_normalize_weak(&x3); return secp256k1_fe_equal_var(&y2, &x3); } static SECP256K1_INLINE void secp256k1_gej_double(secp256k1_gej *r, const secp256k1_gej *a) { /* Operations: 3 mul, 4 sqr, 8 add/half/mul_int/negate */ secp256k1_fe l, s, t; r->infinity = a->infinity; /* Formula used: * L = (3/2) * X1^2 * S = Y1^2 * T = -X1*S * X3 = L^2 + 2*T * Y3 = -(L*(X3 + T) + S^2) * Z3 = Y1*Z1 */ secp256k1_fe_mul(&r->z, &a->z, &a->y); /* Z3 = Y1*Z1 (1) */ secp256k1_fe_sqr(&s, &a->y); /* S = Y1^2 (1) */ secp256k1_fe_sqr(&l, &a->x); /* L = X1^2 (1) */ secp256k1_fe_mul_int(&l, 3); /* L = 3*X1^2 (3) */ secp256k1_fe_half(&l); /* L = 3/2*X1^2 (2) */ secp256k1_fe_negate(&t, &s, 1); /* T = -S (2) */ secp256k1_fe_mul(&t, &t, &a->x); /* T = -X1*S (1) */ secp256k1_fe_sqr(&r->x, &l); /* X3 = L^2 (1) */ secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + T (2) */ secp256k1_fe_add(&r->x, &t); /* X3 = L^2 + 2*T (3) */ secp256k1_fe_sqr(&s, &s); /* S' = S^2 (1) */ secp256k1_fe_add(&t, &r->x); /* T' = X3 + T (4) */ secp256k1_fe_mul(&r->y, &t, &l); /* Y3 = L*(X3 + T) (1) */ secp256k1_fe_add(&r->y, &s); /* Y3 = L*(X3 + T) + S^2 (2) */ secp256k1_fe_negate(&r->y, &r->y, 2); /* Y3 = -(L*(X3 + T) + S^2) (3) */ } static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { if (a->infinity) { secp256k1_gej_set_infinity(r); if (rzr != NULL) { secp256k1_fe_set_int(rzr, 1); } return; } if (rzr != NULL) { *rzr = a->y; secp256k1_fe_normalize_weak(rzr); } secp256k1_gej_double(r, a); /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. * * Having said this, if this function receives a point on a sextic twist, * it is possible for y to be 0. This happens for y^2 = x^3 + 6, * since -6 does have a cube root mod p. For this point, gej_double will not set * the infinity flag even though the point doubles to infinity, so we explicitly set it to infinity. */ r->infinity = secp256k1_fe_normalizes_to_zero_var(&r->z); } static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { /* 12 mul, 4 sqr, 11 add/negate/normalizes_to_zero (ignoring special cases) */ secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, h2, h3, t; if (a->infinity) { VERIFY_CHECK(rzr == NULL); *r = *b; return; } if (b->infinity) { if (rzr != NULL) { secp256k1_fe_set_int(rzr, 1); } *r = *a; return; } secp256k1_fe_sqr(&z22, &b->z); secp256k1_fe_sqr(&z12, &a->z); secp256k1_fe_mul(&u1, &a->x, &z22); secp256k1_fe_mul(&u2, &b->x, &z12); secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); if (secp256k1_fe_normalizes_to_zero_var(&h)) { if (secp256k1_fe_normalizes_to_zero_var(&i)) { secp256k1_gej_double_var(r, a, rzr); } else { if (rzr != NULL) { secp256k1_fe_set_int(rzr, 0); } secp256k1_gej_set_infinity(r); } return; } r->infinity = 0; secp256k1_fe_mul(&t, &h, &b->z); if (rzr != NULL) { *rzr = t; } secp256k1_fe_mul(&r->z, &a->z, &t); secp256k1_fe_sqr(&h2, &h); secp256k1_fe_negate(&h2, &h2, 1); secp256k1_fe_mul(&h3, &h2, &h); secp256k1_fe_mul(&t, &u1, &h2); secp256k1_fe_sqr(&r->x, &i); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_add(&r->x, &t); secp256k1_fe_add(&r->x, &t); secp256k1_fe_add(&t, &r->x); secp256k1_fe_mul(&r->y, &t, &i); secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_add(&r->y, &h3); } static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { /* 8 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */ secp256k1_fe z12, u1, u2, s1, s2, h, i, h2, h3, t; if (a->infinity) { VERIFY_CHECK(rzr == NULL); if (rzr != NULL) { secp256k1_fe_clear(rzr); } secp256k1_gej_set_ge(r, b); return; } if (b->infinity) { if (rzr != NULL) { secp256k1_fe_set_int(rzr, 1); } *r = *a; return; } secp256k1_fe_sqr(&z12, &a->z); u1 = a->x; secp256k1_fe_normalize_weak(&u1); secp256k1_fe_mul(&u2, &b->x, &z12); s1 = a->y; secp256k1_fe_normalize_weak(&s1); secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); if (secp256k1_fe_normalizes_to_zero_var(&h)) { if (secp256k1_fe_normalizes_to_zero_var(&i)) { secp256k1_gej_double_var(r, a, rzr); } else { if (rzr != NULL) { secp256k1_fe_set_int(rzr, 0); } secp256k1_gej_set_infinity(r); } return; } r->infinity = 0; if (rzr != NULL) { *rzr = h; } secp256k1_fe_mul(&r->z, &a->z, &h); secp256k1_fe_sqr(&h2, &h); secp256k1_fe_negate(&h2, &h2, 1); secp256k1_fe_mul(&h3, &h2, &h); secp256k1_fe_mul(&t, &u1, &h2); secp256k1_fe_sqr(&r->x, &i); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_add(&r->x, &t); secp256k1_fe_add(&r->x, &t); secp256k1_fe_add(&t, &r->x); secp256k1_fe_mul(&r->y, &t, &i); secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_add(&r->y, &h3); } static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { /* 9 mul, 3 sqr, 13 add/negate/normalize_weak/normalizes_to_zero (ignoring special cases) */ secp256k1_fe az, z12, u1, u2, s1, s2, h, i, h2, h3, t; if (a->infinity) { secp256k1_fe bzinv2, bzinv3; r->infinity = b->infinity; secp256k1_fe_sqr(&bzinv2, bzinv); secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); secp256k1_fe_mul(&r->x, &b->x, &bzinv2); secp256k1_fe_mul(&r->y, &b->y, &bzinv3); secp256k1_fe_set_int(&r->z, !r->infinity); return; } if (b->infinity) { *r = *a; return; } /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to * secp256k1's isomorphism we can multiply the Z coordinates on both sides * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). * This means that (rx,ry,rz) can be calculated as * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. * The variable az below holds the modified Z coordinate for a, which is used * for the computation of rx and ry, but not for rz. */ secp256k1_fe_mul(&az, &a->z, bzinv); secp256k1_fe_sqr(&z12, &az); u1 = a->x; secp256k1_fe_normalize_weak(&u1); secp256k1_fe_mul(&u2, &b->x, &z12); s1 = a->y; secp256k1_fe_normalize_weak(&s1); secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); secp256k1_fe_negate(&i, &s2, 1); secp256k1_fe_add(&i, &s1); if (secp256k1_fe_normalizes_to_zero_var(&h)) { if (secp256k1_fe_normalizes_to_zero_var(&i)) { secp256k1_gej_double_var(r, a, NULL); } else { secp256k1_gej_set_infinity(r); } return; } r->infinity = 0; secp256k1_fe_mul(&r->z, &a->z, &h); secp256k1_fe_sqr(&h2, &h); secp256k1_fe_negate(&h2, &h2, 1); secp256k1_fe_mul(&h3, &h2, &h); secp256k1_fe_mul(&t, &u1, &h2); secp256k1_fe_sqr(&r->x, &i); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_add(&r->x, &t); secp256k1_fe_add(&r->x, &t); secp256k1_fe_add(&t, &r->x); secp256k1_fe_mul(&r->y, &t, &i); secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_add(&r->y, &h3); } #if 0 static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { /* Operations: 7 mul, 5 sqr, 24 add/cmov/half/mul_int/negate/normalize_weak/normalizes_to_zero */ secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; secp256k1_fe m_alt, rr_alt; int degenerate; VERIFY_CHECK(!b->infinity); VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); /* In: * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. * we find as solution for a unified addition/doubling formula: * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. * x3 = lambda^2 - (x1 + x2) * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). * * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: * U1 = X1*Z2^2, U2 = X2*Z1^2 * S1 = Y1*Z2^3, S2 = Y2*Z1^3 * Z = Z1*Z2 * T = U1+U2 * M = S1+S2 * Q = -T*M^2 * R = T^2-U1*U2 * X3 = R^2+Q * Y3 = -(R*(2*X3+Q)+M^4)/2 * Z3 = M*Z * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) * * This formula has the benefit of being the same for both addition * of distinct points and doubling. However, it breaks down in the * case that either point is infinity, or that y1 = -y2. We handle * these cases in the following ways: * * - If b is infinity we simply bail by means of a VERIFY_CHECK. * * - If a is infinity, we detect this, and at the end of the * computation replace the result (which will be meaningless, * but we compute to be constant-time) with b.x : b.y : 1. * * - If a = -b, we have y1 = -y2, which is a degenerate case. * But here the answer is infinity, so we simply set the * infinity flag of the result, overriding the computed values * without even needing to cmov. * * - If y1 = -y2 but x1 != x2, which does occur thanks to certain * properties of our curve (specifically, 1 has nontrivial cube * roots in our field, and the curve equation has no x coefficient) * then the answer is not infinity but also not given by the above * equation. In this case, we cmov in place an alternate expression * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these * expressions for lambda are defined, they are equal, and can be * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) * then substitution of x^3 + 7 for y^2 (using the curve equation). * For all pairs of nonzero points (a, b) at least one is defined, * so this covers everything. */ secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ /* If lambda = R/M = R/0 we have a problem (except in the "trivial" * case that Z = z1z2 = 0, and this is special-cased later on). */ degenerate = secp256k1_fe_normalizes_to_zero(&m); /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. * This means either x1 == beta*x2 or beta*x1 == x2, where beta is * a nontrivial cube root of one. In either case, an alternate * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), * so we set R/M equal to this. */ rr_alt = s1; secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); secp256k1_fe_cmov(&m_alt, &m, !degenerate); /* Now Ralt / Malt = lambda and is guaranteed not to be Ralt / 0. * From here on out Ralt and Malt represent the numerator * and denominator of lambda; R and M represent the explicit * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ secp256k1_fe_negate(&q, &t, 2); /* q = -T (3) */ secp256k1_fe_mul(&q, &q, &n); /* q = Q = -T*Malt^2 (1) */ /* These two lines use the observation that either M == Malt or M == 0, * so M^3 * Malt is either Malt^4 (which is computed by squaring), or * zero (which is "computed" by cmov). So the cost is one squaring * versus two multiplications. */ secp256k1_fe_sqr(&n, &n); secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Z3 = Malt*Z (1) */ secp256k1_fe_add(&t, &q); /* t = Ralt^2 + Q (2) */ r->x = t; /* r->x = X3 = Ralt^2 + Q (2) */ secp256k1_fe_mul_int(&t, 2); /* t = 2*X3 (4) */ secp256k1_fe_add(&t, &q); /* t = 2*X3 + Q (5) */ secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*X3 + Q) (1) */ secp256k1_fe_add(&t, &n); /* t = Ralt*(2*X3 + Q) + M^3*Malt (3) */ secp256k1_fe_negate(&r->y, &t, 3); /* r->y = -(Ralt*(2*X3 + Q) + M^3*Malt) (4) */ secp256k1_fe_half(&r->y); /* r->y = Y3 = -(Ralt*(2*X3 + Q) + M^3*Malt)/2 (3) */ /* In case a->infinity == 1, replace r with (b->x, b->y, 1). */ secp256k1_fe_cmov(&r->x, &b->x, a->infinity); secp256k1_fe_cmov(&r->y, &b->y, a->infinity); secp256k1_fe_cmov(&r->z, &secp256k1_fe_one, a->infinity); /* Set r->infinity if r->z is 0. * * If a->infinity is set, then r->infinity = (r->z == 0) = (1 == 0) = false, * which is correct because the function assumes that b is not infinity. * * Now assume !a->infinity. This implies Z = Z1 != 0. * * Case y1 = -y2: * In this case we could have a = -b, namely if x1 = x2. * We have degenerate = true, r->z = (x1 - x2) * Z. * Then r->infinity = ((x1 - x2)Z == 0) = (x1 == x2) = (a == -b). * * Case y1 != -y2: * In this case, we can't have a = -b. * We have degenerate = false, r->z = (y1 + y2) * Z. * Then r->infinity = ((y1 + y2)Z == 0) = (y1 == -y2) = false. */ r->infinity = secp256k1_fe_normalizes_to_zero(&r->z); } #endif static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { /* Operations: 4 mul, 1 sqr */ secp256k1_fe zz; VERIFY_CHECK(!secp256k1_fe_is_zero(s)); secp256k1_fe_sqr(&zz, s); secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ secp256k1_fe_mul(&r->y, &r->y, &zz); secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ } static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { secp256k1_fe x, y; VERIFY_CHECK(!a->infinity); x = a->x; secp256k1_fe_normalize_var(&x); y = a->y; secp256k1_fe_normalize_var(&y); secp256k1_fe_to_storage(&r->x, &x); secp256k1_fe_to_storage(&r->y, &y); } static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { secp256k1_fe_from_storage(&r->x, &a->x); secp256k1_fe_from_storage(&r->y, &a->y); r->infinity = 0; } #if 0 static SECP256K1_INLINE void secp256k1_gej_cmov(secp256k1_gej *r, const secp256k1_gej *a, int flag) { secp256k1_fe_cmov(&r->x, &a->x, flag); secp256k1_fe_cmov(&r->y, &a->y, flag); secp256k1_fe_cmov(&r->z, &a->z, flag); r->infinity ^= (r->infinity ^ a->infinity) & flag; } static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { secp256k1_fe_storage_cmov(&r->x, &a->x, flag); secp256k1_fe_storage_cmov(&r->y, &a->y, flag); } static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { *r = *a; secp256k1_fe_mul(&r->x, &r->x, &secp256k1_const_beta); } #endif static int secp256k1_ge_is_in_correct_subgroup(const secp256k1_ge* ge) { (void)ge; /* The real secp256k1 group has cofactor 1, so the subgroup is the entire curve. */ return 1; } #endif /* SECP256K1_GROUP_IMPL_H */