/*********************************************************************** * Copyright (c) 2020 Peter Dettman * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef SECP256K1_MODINV64_H #define SECP256K1_MODINV64_H #include "util.h" #ifndef SECP256K1_WIDEMUL_INT128 #error "modinv64 requires 128-bit wide multiplication support" #endif /* A signed 62-bit limb representation of integers. * * Its value is sum(v[i] * 2^(62*i), i=0..4). */ typedef struct { int64_t v[5]; } secp256k1_modinv64_signed62; typedef struct { /* The modulus in signed62 notation, must be odd and in [3, 2^256]. */ secp256k1_modinv64_signed62 modulus; /* modulus^{-1} mod 2^62 */ uint64_t modulus_inv62; } secp256k1_modinv64_modinfo; /* Replace x with its modular inverse mod modinfo->modulus. x must be in range [0, modulus). * If x is zero, the result will be zero as well. If not, the inverse must exist (i.e., the gcd of * x and modulus must be 1). These rules are automatically satisfied if the modulus is prime. * * On output, all of x's limbs will be in [0, 2^62). */ static void secp256k1_modinv64_var(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo); #if 0 /* Same as secp256k1_modinv64_var, but constant time in x (not in the modulus). */ static void secp256k1_modinv64(secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo); /* Compute the Jacobi symbol for (x | modinfo->modulus). x must be coprime with modulus (and thus * cannot be 0, as modulus >= 3). All limbs of x must be non-negative. Returns 0 if the result * cannot be computed. */ static int secp256k1_jacobi64_maybe_var(const secp256k1_modinv64_signed62 *x, const secp256k1_modinv64_modinfo *modinfo); #endif #endif /* SECP256K1_MODINV64_H */