/*********************************************************************** * Copyright (c) 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_SCALAR_IMPL_H #define SECP256K1_SCALAR_IMPL_H #ifdef VERIFY #include #endif #include "scalar.h" #include "util.h" #if defined(SECP256K1_WIDEMUL_INT128) #include "scalar_4x64_impl.h" #else #error "Please select wide multiplication implementation" #endif static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1); static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0); #if 0 static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) { int overflow; secp256k1_scalar_set_b32(r, bin, &overflow); return (!overflow) & (!secp256k1_scalar_is_zero(r)); } #endif /** * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where * lambda is: */ static const secp256k1_scalar secp256k1_const_lambda = SECP256K1_SCALAR_CONST( 0x5363AD4CUL, 0xC05C30E0UL, 0xA5261C02UL, 0x8812645AUL, 0x122E22EAUL, 0x20816678UL, 0xDF02967CUL, 0x1B23BD72UL ); #ifdef VERIFY static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k); #endif /* * Both lambda and beta are primitive cube roots of unity. That is lamba^3 == 1 mod n and * beta^3 == 1 mod p, where n is the curve order and p is the field order. * * Furthermore, because (X^3 - 1) = (X - 1)(X^2 + X + 1), the primitive cube roots of unity are * roots of X^2 + X + 1. Therefore lambda^2 + lamba == -1 mod n and beta^2 + beta == -1 mod p. * (The other primitive cube roots of unity are lambda^2 and beta^2 respectively.) * * Let l = -1/2 + i*sqrt(3)/2, the complex root of X^2 + X + 1. We can define a ring * homomorphism phi : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n. The kernel of phi * is a lattice over Z[l] (considering Z[l] as a Z-module). This lattice is generated by a * reduced basis {a1 + b1*l, a2 + b2*l} where * * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} * * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 * and k2 are small in absolute value. * * The algorithm computes c1 = round(b2 * k / n) and c2 = round((-b1) * k / n), and gives * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and * compute r2 = k2 mod n, and r1 = k1 mod n = (k - r2 * lambda) mod n, avoiding the need for * the constants a1 and a2. * * g1, g2 are precomputed constants used to replace division with a rounded multiplication * when decomposing the scalar for an endomorphism-based point multiplication. * * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. * * The derivation is described in the paper "Efficient Software Implementation of Public-Key * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), * Section 4.3 (here we use a somewhat higher-precision estimate): * d = a1*b2 - b1*a2 * g1 = round(2^384 * b2/d) * g2 = round(2^384 * (-b1)/d) * * (Note that d is also equal to the curve order, n, here because [a1,b1] and [a2,b2] * can be found as outputs of the Extended Euclidean Algorithm on inputs n and lambda). * * The function below splits k into r1 and r2, such that * - r1 + lambda * r2 == k (mod n) * - either r1 < 2^128 or -r1 mod n < 2^128 * - either r2 < 2^128 or -r2 mod n < 2^128 * * See proof below. */ static void secp256k1_scalar_split_lambda(secp256k1_scalar * SECP256K1_RESTRICT r1, secp256k1_scalar * SECP256K1_RESTRICT r2, const secp256k1_scalar * SECP256K1_RESTRICT k) { secp256k1_scalar c1, c2; static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL ); static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL ); static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( 0x3086D221UL, 0xA7D46BCDUL, 0xE86C90E4UL, 0x9284EB15UL, 0x3DAA8A14UL, 0x71E8CA7FUL, 0xE893209AUL, 0x45DBB031UL ); static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C4UL, 0x221208ACUL, 0x9DF506C6UL, 0x1571B4AEUL, 0x8AC47F71UL ); VERIFY_CHECK(r1 != k); VERIFY_CHECK(r2 != k); VERIFY_CHECK(r1 != r2); /* these _var calls are constant time since the shift amount is constant */ secp256k1_scalar_mul_shift_var(&c1, k, &g1, 384); secp256k1_scalar_mul_shift_var(&c2, k, &g2, 384); secp256k1_scalar_mul(&c1, &c1, &minus_b1); secp256k1_scalar_mul(&c2, &c2, &minus_b2); secp256k1_scalar_add(r2, &c1, &c2); secp256k1_scalar_mul(r1, r2, &secp256k1_const_lambda); secp256k1_scalar_negate(r1, r1); secp256k1_scalar_add(r1, r1, k); #ifdef VERIFY secp256k1_scalar_split_lambda_verify(r1, r2, k); #endif } #ifdef VERIFY /* * Proof for secp256k1_scalar_split_lambda's bounds. * * Let * - epsilon1 = 2^256 * |g1/2^384 - b2/d| * - epsilon2 = 2^256 * |g2/2^384 - (-b1)/d| * - c1 = round(k*g1/2^384) * - c2 = round(k*g2/2^384) * * Lemma 1: |c1 - k*b2/d| < 2^-1 + epsilon1 * * |c1 - k*b2/d| * = * |c1 - k*g1/2^384 + k*g1/2^384 - k*b2/d| * <= {triangle inequality} * |c1 - k*g1/2^384| + |k*g1/2^384 - k*b2/d| * = * |c1 - k*g1/2^384| + k*|g1/2^384 - b2/d| * < {rounding in c1 and 0 <= k < 2^256} * 2^-1 + 2^256 * |g1/2^384 - b2/d| * = {definition of epsilon1} * 2^-1 + epsilon1 * * Lemma 2: |c2 - k*(-b1)/d| < 2^-1 + epsilon2 * * |c2 - k*(-b1)/d| * = * |c2 - k*g2/2^384 + k*g2/2^384 - k*(-b1)/d| * <= {triangle inequality} * |c2 - k*g2/2^384| + |k*g2/2^384 - k*(-b1)/d| * = * |c2 - k*g2/2^384| + k*|g2/2^384 - (-b1)/d| * < {rounding in c2 and 0 <= k < 2^256} * 2^-1 + 2^256 * |g2/2^384 - (-b1)/d| * = {definition of epsilon2} * 2^-1 + epsilon2 * * Let * - k1 = k - c1*a1 - c2*a2 * - k2 = - c1*b1 - c2*b2 * * Lemma 3: |k1| < (a1 + a2 + 1)/2 < 2^128 * * |k1| * = {definition of k1} * |k - c1*a1 - c2*a2| * = {(a1*b2 - b1*a2)/n = 1} * |k*(a1*b2 - b1*a2)/n - c1*a1 - c2*a2| * = * |a1*(k*b2/n - c1) + a2*(k*(-b1)/n - c2)| * <= {triangle inequality} * a1*|k*b2/n - c1| + a2*|k*(-b1)/n - c2| * < {Lemma 1 and Lemma 2} * a1*(2^-1 + epslion1) + a2*(2^-1 + epsilon2) * < {rounding up to an integer} * (a1 + a2 + 1)/2 * < {rounding up to a power of 2} * 2^128 * * Lemma 4: |k2| < (-b1 + b2)/2 + 1 < 2^128 * * |k2| * = {definition of k2} * |- c1*a1 - c2*a2| * = {(b1*b2 - b1*b2)/n = 0} * |k*(b1*b2 - b1*b2)/n - c1*b1 - c2*b2| * = * |b1*(k*b2/n - c1) + b2*(k*(-b1)/n - c2)| * <= {triangle inequality} * (-b1)*|k*b2/n - c1| + b2*|k*(-b1)/n - c2| * < {Lemma 1 and Lemma 2} * (-b1)*(2^-1 + epslion1) + b2*(2^-1 + epsilon2) * < {rounding up to an integer} * (-b1 + b2)/2 + 1 * < {rounding up to a power of 2} * 2^128 * * Let * - r2 = k2 mod n * - r1 = k - r2*lambda mod n. * * Notice that r1 is defined such that r1 + r2 * lambda == k (mod n). * * Lemma 5: r1 == k1 mod n. * * r1 * == {definition of r1 and r2} * k - k2*lambda * == {definition of k2} * k - (- c1*b1 - c2*b2)*lambda * == * k + c1*b1*lambda + c2*b2*lambda * == {a1 + b1*lambda == 0 mod n and a2 + b2*lambda == 0 mod n} * k - c1*a1 - c2*a2 * == {definition of k1} * k1 * * From Lemma 3, Lemma 4, Lemma 5 and the definition of r2, we can conclude that * * - either r1 < 2^128 or -r1 mod n < 2^128 * - either r2 < 2^128 or -r2 mod n < 2^128. * * Q.E.D. */ static void secp256k1_scalar_split_lambda_verify(const secp256k1_scalar *r1, const secp256k1_scalar *r2, const secp256k1_scalar *k) { secp256k1_scalar s; unsigned char buf1[32]; unsigned char buf2[32]; /* (a1 + a2 + 1)/2 is 0xa2a8918ca85bafe22016d0b917e4dd77 */ static const unsigned char k1_bound[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa2, 0xa8, 0x91, 0x8c, 0xa8, 0x5b, 0xaf, 0xe2, 0x20, 0x16, 0xd0, 0xb9, 0x17, 0xe4, 0xdd, 0x77 }; /* (-b1 + b2)/2 + 1 is 0x8a65287bd47179fb2be08846cea267ed */ static const unsigned char k2_bound[32] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x8a, 0x65, 0x28, 0x7b, 0xd4, 0x71, 0x79, 0xfb, 0x2b, 0xe0, 0x88, 0x46, 0xce, 0xa2, 0x67, 0xed }; secp256k1_scalar_mul(&s, &secp256k1_const_lambda, r2); secp256k1_scalar_add(&s, &s, r1); VERIFY_CHECK(secp256k1_scalar_eq(&s, k)); secp256k1_scalar_negate(&s, r1); secp256k1_scalar_get_b32(buf1, r1); secp256k1_scalar_get_b32(buf2, &s); VERIFY_CHECK(secp256k1_memcmp_var(buf1, k1_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k1_bound, 32) < 0); secp256k1_scalar_negate(&s, r2); secp256k1_scalar_get_b32(buf1, r2); secp256k1_scalar_get_b32(buf2, &s); VERIFY_CHECK(secp256k1_memcmp_var(buf1, k2_bound, 32) < 0 || secp256k1_memcmp_var(buf2, k2_bound, 32) < 0); } #endif /* VERIFY */ #endif /* SECP256K1_SCALAR_IMPL_H */