/* ### * IP: GHIDRA * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /// \file jumptable.hh /// \brief Classes to support jump-tables and their recovery #ifndef __CPUI_JUMPTABLE__ #define __CPUI_JUMPTABLE__ #include "emulateutil.hh" #include "rangeutil.hh" class EmulateFunction; /// \brief Exception thrown for a thunk mechanism that looks like a jump-table struct JumptableThunkError : public LowlevelError { JumptableThunkError(const string &s) : LowlevelError(s) {} ///< Construct with an explanatory string }; /// \brief Exception thrown is there are no legal flows to a switch struct JumptableNotReachableError : public LowlevelError { JumptableNotReachableError(const string &s) : LowlevelError(s) {} ///< Constructor }; /// \brief A description where and how data was loaded from memory /// /// This is a generic table description, giving the starting address /// of the table, the size of an entry, and number of entries. class LoadTable { friend class EmulateFunction; Address addr; ///< Starting address of table int4 size; ///< Size of table entry int4 num; ///< Number of entries in table; public: LoadTable(void) {} // Constructor for use with restoreXml LoadTable(const Address &ad,int4 sz) { addr = ad, size = sz; num = 1; } ///< Constructor for a single entry table LoadTable(const Address &ad,int4 sz,int4 nm) { addr = ad; size = sz; num = nm; } ///< Construct a full table bool operator<(const LoadTable &op2) const { return (addr < op2.addr); } ///< Compare \b this with another table by address void saveXml(ostream &s) const; ///< Save a description of \b this as an \ XML tag void restoreXml(const Element *el,Architecture *glb); ///< Read in \b this table from a \ XML description static void collapseTable(vector &table); ///< Collapse a sequence of table descriptions }; /// \brief All paths from a (putative) switch variable to the CPUI_BRANCHIND /// /// This is a container for intersecting paths during the construction of a /// JumpModel. It contains every PcodeOp from some starting Varnode through /// all paths to a specific BRANCHIND. The paths can split and rejoin. This also /// keeps track of Varnodes that are present on \e all paths, as these are the /// potential switch variables for the model. class PathMeld { /// \brief A PcodeOp in the path set associated with the last Varnode in the intersection /// /// This links a PcodeOp to the point where the flow path to it split from common path struct RootedOp { PcodeOp *op; ///< An op in the container int4 rootVn; ///< The index, within commonVn, of the Varnode at the split point RootedOp(PcodeOp *o,int4 root) { op = o; rootVn = root; } ///< Constructor }; vector commonVn; ///< Varnodes in common with all paths vector opMeld; ///< All the ops for the melded paths void internalIntersect(vector &parentMap); int4 meldOps(const vector &path,int4 cutOff,const vector &parentMap); void truncatePaths(int4 cutPoint); public: void set(const PathMeld &op2); ///< Copy paths from another container void set(const vector &path); ///< Initialize \b this to be a single path void set(PcodeOp *op,Varnode *vn); ///< Initialize \b this container to a single node "path" void append(const PathMeld &op2); ///< Append a new set of paths to \b this set of paths void clear(void); ///< Clear \b this to be an empty container void meld(vector &path); ///< Meld a new path into \b this container void markPaths(bool val,int4 startVarnode); ///< Mark PcodeOps paths from the given start int4 numCommonVarnode(void) const { return commonVn.size(); } ///< Return the number of Varnodes common to all paths int4 numOps(void) const { return opMeld.size(); } ///< Return the number of PcodeOps across all paths Varnode *getVarnode(int4 i) const { return commonVn[i]; } ///< Get the i-th common Varnode Varnode *getOpParent(int4 i) const { return commonVn[ opMeld[i].rootVn ]; } ///< Get the split-point for the i-th PcodeOp PcodeOp *getOp(int4 i) const { return opMeld[i].op; } ///< Get the i-th PcodeOp PcodeOp *getEarliestOp(int4 pos) const; ///< Find \e earliest PcodeOp that has a specific common Varnode as input bool empty(void) const { return commonVn.empty(); } ///< Return \b true if \b this container holds no paths }; /// \brief A light-weight emulator to calculate switch targets from switch variables /// /// We assume we only have to store memory state for individual Varnodes and that dynamic /// LOADs are resolved from the LoadImage. BRANCH and CBRANCH emulation will fail, there can /// only be one execution path, although there can be multiple data-flow paths. class EmulateFunction : public EmulatePcodeOp { Funcdata *fd; ///< The function being emulated map varnodeMap; ///< Light-weight memory state based on Varnodes bool collectloads; ///< Set to \b true if the emulator collects individual LOAD addresses vector loadpoints; ///< The set of collected LOAD records virtual void executeLoad(void); virtual void executeBranch(void); virtual void executeBranchind(void); virtual void executeCall(void); virtual void executeCallind(void); virtual void executeCallother(void); virtual void fallthruOp(void); public: EmulateFunction(Funcdata *f); ///< Constructor void setLoadCollect(bool val) { collectloads = val; } ///< Set whether we collect LOAD information virtual void setExecuteAddress(const Address &addr); virtual uintb getVarnodeValue(Varnode *vn) const; virtual void setVarnodeValue(Varnode *vn,uintb val); uintb emulatePath(uintb val,const PathMeld &pathMeld,PcodeOp *startop,Varnode *startvn); void collectLoadPoints(vector &res) const; ///< Recover any LOAD table descriptions }; class FlowInfo; class JumpTable; /// \brief A (putative) switch variable Varnode and a constraint imposed by a CBRANCH /// /// The record constrains a specific Varnode. If the associated CBRANCH is followed /// along the path that reaches the switch's BRANCHIND, then we have an explicit /// description of the possible values the Varnode can hold. class GuardRecord { PcodeOp *cbranch; ///< PcodeOp CBRANCH the branches around the switch PcodeOp *readOp; ///< The immediate PcodeOp causing the restriction int4 indpath; ///< Specific CBRANCH path going to the switch CircleRange range; ///< Range of values causing the CBRANCH to take the path to the switch Varnode *vn; ///< The Varnode being restricted Varnode *baseVn; ///< Value being (quasi)copied to the Varnode int4 bitsPreserved; ///< Number of bits copied (all other bits are zero) public: GuardRecord(PcodeOp *bOp,PcodeOp *rOp,int4 path,const CircleRange &rng,Varnode *v); ///< Constructor PcodeOp *getBranch(void) const { return cbranch; } ///< Get the CBRANCH associated with \b this guard PcodeOp *getReadOp(void) const { return readOp; } ///< Get the PcodeOp immediately causing the restriction int4 getPath(void) const { return indpath; } ///< Get the specific path index going towards the switch const CircleRange &getRange(void) const { return range; } ///< Get the range of values causing the switch path to be taken void clear(void) { cbranch = (PcodeOp *)0; } ///< Mark \b this guard as unused int4 valueMatch(Varnode *vn2,Varnode *baseVn2,int4 bitsPreserved2) const; static int4 oneOffMatch(PcodeOp *op1,PcodeOp *op2); static Varnode *quasiCopy(Varnode *vn,int4 &bitsPreserved); }; /// \brief An iterator over values a switch variable can take /// /// This iterator is intended to provide the start value for emulation /// of a jump-table model to obtain the associated jump-table destination. /// Each value can be associated with a starting Varnode and PcodeOp in /// the function being emulated, via getStartVarnode() and getStartOp(). class JumpValues { public: virtual ~JumpValues(void) {} virtual void truncate(int4 nm)=0; ///< Truncate the number of values to the given number virtual uintb getSize(void) const=0; ///< Return the number of values the variables can take virtual bool contains(uintb val) const=0; ///< Return \b true if the given value is in the set of possible values /// \brief Initialize \b this for iterating over the set of possible values /// /// \return \b true if there are any values to iterate over virtual bool initializeForReading(void) const=0; virtual bool next(void) const=0; ///< Advance the iterator, return \b true if there is another value virtual uintb getValue(void) const=0; ///< Get the current value virtual Varnode *getStartVarnode(void) const=0; ///< Get the Varnode associated with the current value virtual PcodeOp *getStartOp(void) const=0; ///< Get the PcodeOp associated with the current value virtual bool isReversible(void) const=0; ///< Return \b true if the current value can be reversed to get a label virtual JumpValues *clone(void) const=0; ///< Clone \b this iterator }; /// \brief single entry switch variable that can take a range of values class JumpValuesRange : public JumpValues { protected: CircleRange range; ///< Acceptable range of values for the normalized switch variable Varnode *normqvn; ///< Varnode representing the normalized switch variable PcodeOp *startop; ///< First PcodeOp in the jump-table calculation mutable uintb curval; ///< The current value pointed to be the iterator public: void setRange(const CircleRange &rng) { range = rng; } ///< Set the range of values explicitly void setStartVn(Varnode *vn) { normqvn = vn; } ///< Set the normalized switch Varnode explicitly void setStartOp(PcodeOp *op) { startop = op; } ///< Set the starting PcodeOp explicitly virtual void truncate(int4 nm); virtual uintb getSize(void) const; virtual bool contains(uintb val) const; virtual bool initializeForReading(void) const; virtual bool next(void) const; virtual uintb getValue(void) const; virtual Varnode *getStartVarnode(void) const; virtual PcodeOp *getStartOp(void) const; virtual bool isReversible(void) const { return true; } virtual JumpValues *clone(void) const; }; /// \brief A jump-table starting range with two possible execution paths /// /// This extends the basic JumpValuesRange having a single entry switch variable and /// adds a second entry point that takes only a single value. This value comes last in the iteration. class JumpValuesRangeDefault : public JumpValuesRange { uintb extravalue; ///< The extra value Varnode *extravn; ///< The starting Varnode associated with the extra value PcodeOp *extraop; ///< The starting PcodeOp associated with the extra value mutable bool lastvalue; ///< \b true is the extra value has been visited by the iterator public: void setExtraValue(uintb val) { extravalue = val; } ///< Set the extra value explicitly void setDefaultVn(Varnode *vn) { extravn = vn; } ///< Set the associated start Varnode void setDefaultOp(PcodeOp *op) { extraop = op; } ///< Set the associated start PcodeOp virtual uintb getSize(void) const; virtual bool contains(uintb val) const; virtual bool initializeForReading(void) const; virtual bool next(void) const; virtual Varnode *getStartVarnode(void) const; virtual PcodeOp *getStartOp(void) const; virtual bool isReversible(void) const { return !lastvalue; } // The -extravalue- is not reversible virtual JumpValues *clone(void) const; }; /// \brief A jump-table execution model /// /// This class holds details of the model and recovers these details in various stages. /// The model concepts include: /// - Address Table, the set of destination addresses the jump-table can produce. /// - Normalized Switch Variable, the Varnode with the most restricted set of values used /// by the model to produce the destination addresses. /// - Unnormalized Switch Variable, the Varnode being switched on, as seen in the decompiler output. /// - Case labels, switch variable values associated with specific destination addresses. /// - Guards, CBRANCH ops that enforce the normalized switch variable's value range. class JumpModel { protected: JumpTable *jumptable; ///< The jump-table that is building \b this model public: JumpModel(JumpTable *jt) { jumptable = jt; } ///< Construct given a parent jump-table virtual ~JumpModel(void) {} ///< Destructor virtual bool isOverride(void) const=0; ///< Return \b true if \b this model was manually overridden virtual int4 getTableSize(void) const=0; ///< Return the number of entries in the address table /// \brief Attempt to recover details of the model, given a specific BRANCHIND /// /// This generally recovers the normalized switch variable and any guards. /// \param fd is the function containing the switch /// \param indop is the given BRANCHIND /// \param matchsize is the expected number of address table entries to recover, or 0 for no expectation /// \param maxtablesize is maximum number of address table entries to allow in the model /// \return \b true if details of the model were successfully recovered virtual bool recoverModel(Funcdata *fd,PcodeOp *indop,uint4 matchsize,uint4 maxtablesize)=0; /// \brief Construct the explicit list of target addresses (the Address Table) from \b this model /// /// The addresses produced all come from the BRANCHIND and may not be deduped. Alternate guard /// destinations are not yet included. /// \param fd is the function containing the switch /// \param indop is the root BRANCHIND of the switch /// \param addresstable will hold the list of Addresses /// \param loadpoints if non-null will hold LOAD table information used by the model virtual void buildAddresses(Funcdata *fd,PcodeOp *indop,vector
&addresstable,vector *loadpoints) const=0; /// \brief Recover the unnormalized switch variable /// /// The normalized switch variable must already be recovered. The amount of normalization between /// the two switch variables can be restricted. /// \param maxaddsub is a restriction on arithmetic operations /// \param maxleftright is a restriction on shift operations /// \param maxext is a restriction on extension operations virtual void findUnnormalized(uint4 maxaddsub,uint4 maxleftright,uint4 maxext)=0; /// \brief Recover \e case labels associated with the Address table /// /// The unnormalized switch variable must already be recovered. Values that the normalized /// switch value can hold or walked back to obtain the value that the unnormalized switch /// variable would hold. Labels are returned in the order provided by normalized switch /// variable iterator JumpValues. /// \param fd is the function containing the switch /// \param addresstable is the address table (used to label code blocks with bad or missing labels) /// \param label will hold recovered labels in JumpValues order /// \param orig is the JumpModel to use for the JumpValues iterator virtual void buildLabels(Funcdata *fd,vector
&addresstable,vector &label,const JumpModel *orig) const=0; /// \brief Do normalization of the given switch specific to \b this model. /// /// The PcodeOp machinery is removed so it looks like the CPUI_BRANCHIND simply takes the /// switch variable as an input Varnode and automatically interprets its values to reach /// the correct destination. /// \param fd is the function containing the switch /// \param indop is the given switch as a CPUI_BRANCHIND /// \return the Varnode holding the final unnormalized switch variable virtual Varnode *foldInNormalization(Funcdata *fd,PcodeOp *indop)=0; /// \brief Eliminate any \e guard code involved in computing the switch destination /// /// We now think of the BRANCHIND as encompassing any guard function. /// \param fd is the function containing the switch /// \param jump is the JumpTable owning \b this model. virtual bool foldInGuards(Funcdata *fd,JumpTable *jump)=0; /// \brief Perform a sanity check on recovered addresses /// /// Individual addresses are checked against the function or its program to determine /// if they are reasonable. This method can optionally remove addresses from the table. /// If it does so, the underlying model is changed to reflect the removal. /// \param fd is the function containing the switch /// \param indop is the root BRANCHIND of the switch /// \param addresstable is the list of recovered Addresses, which may be modified /// \return \b true if there are (at least some) reasonable addresses in the table virtual bool sanityCheck(Funcdata *fd,PcodeOp *indop,vector
&addresstable)=0; virtual JumpModel *clone(JumpTable *jt) const=0; ///< Clone \b this model virtual void clear(void) {} ///< Clear any non-permanent aspects of the model virtual void saveXml(ostream &s) const {} ///< Save this model as an XML tag virtual void restoreXml(const Element *el,Architecture *glb) {} ///< Restore \b this model from an XML tag }; /// \brief A trivial jump-table model, where the BRANCHIND input Varnode is the switch variable /// /// This class treats the input Varnode to the BRANCHIND as the switch variable, and recovers /// its possible values from the existing block structure. This is used when the flow following /// fork recovers destination addresses, but the switch normalization action is unable to recover /// the model. class JumpModelTrivial : public JumpModel { uint4 size; ///< Number of addresses in the table as reported by the JumpTable public: JumpModelTrivial(JumpTable *jt) : JumpModel(jt) { size = 0; } ///< Construct given a parent JumpTable virtual bool isOverride(void) const { return false; } virtual int4 getTableSize(void) const { return size; } virtual bool recoverModel(Funcdata *fd,PcodeOp *indop,uint4 matchsize,uint4 maxtablesize); virtual void buildAddresses(Funcdata *fd,PcodeOp *indop,vector
&addresstable,vector *loadpoints) const; virtual void findUnnormalized(uint4 maxaddsub,uint4 maxleftright,uint4 maxext) {} virtual void buildLabels(Funcdata *fd,vector
&addresstable,vector &label,const JumpModel *orig) const; virtual Varnode *foldInNormalization(Funcdata *fd,PcodeOp *indop) { return (Varnode *)0; } virtual bool foldInGuards(Funcdata *fd,JumpTable *jump) { return false; } virtual bool sanityCheck(Funcdata *fd,PcodeOp *indop,vector
&addresstable) { return true; } virtual JumpModel *clone(JumpTable *jt) const; }; /// \brief The basic switch model /// /// This is the most common model: /// - A straight-line calculation from switch variable to BRANCHIND /// - The switch variable is bounded by one or more \e guards that branch around the BRANCHIND /// - The unnormalized switch variable is recovered from the normalized variable through some basic transforms class JumpBasic : public JumpModel { protected: JumpValuesRange *jrange; ///< Range of values for the (normalized) switch variable PathMeld pathMeld; ///< Set of PcodeOps and Varnodes producing the final target addresses vector selectguards; ///< Any guards associated with \b model int4 varnodeIndex; ///< Position of the normalized switch Varnode within PathMeld Varnode *normalvn; ///< Normalized switch Varnode Varnode *switchvn; ///< Unnormalized switch Varnode static bool isprune(Varnode *vn); ///< Do we prune in here in our depth-first search for the normalized switch variable static bool ispoint(Varnode *vn); ///< Is it possible for the given Varnode to be a switch variable? static int4 getStride(Varnode *vn); ///< Get the step/stride associated with the Varnode static uintb backup2Switch(Funcdata *fd,uintb output,Varnode *outvn,Varnode *invn); void findDeterminingVarnodes(PcodeOp *op,int4 slot); void analyzeGuards(BlockBasic *bl,int4 pathout); void calcRange(Varnode *vn,CircleRange &rng) const; void findSmallestNormal(uint4 matchsize); void findNormalized(Funcdata *fd,BlockBasic *rootbl,int4 pathout,uint4 matchsize,uint4 maxtablesize); void markFoldableGuards(); void markModel(bool val); ///< Mark (or unmark) all PcodeOps involved in the model bool flowsOnlyToModel(Varnode *vn,PcodeOp *trailOp); ///< Check if the given Varnode flows to anything other than \b this model /// \brief Eliminate the given guard to \b this switch /// /// We \e disarm the guard instructions by making the guard condition /// always \b false. If the simplification removes the unusable branches, /// we are left with only one path through the switch. /// \param fd is the function containing the switch /// \param guard is a description of the particular guard mechanism /// \param jump is the JumpTable owning \b this model /// \return \b true if a change was made to data-flow virtual bool foldInOneGuard(Funcdata *fd,GuardRecord &guard,JumpTable *jump); public: JumpBasic(JumpTable *jt) : JumpModel(jt) { jrange = (JumpValuesRange *)0; } ///< Construct given a parent JumpTable const PathMeld &getPathMeld(void) const { return pathMeld; } ///< Get the possible of paths to the switch const JumpValuesRange *getValueRange(void) const { return jrange; } ///< Get the normalized value iterator virtual ~JumpBasic(void); virtual bool isOverride(void) const { return false; } virtual int4 getTableSize(void) const { return jrange->getSize(); } virtual bool recoverModel(Funcdata *fd,PcodeOp *indop,uint4 matchsize,uint4 maxtablesize); virtual void buildAddresses(Funcdata *fd,PcodeOp *indop,vector
&addresstable,vector *loadpoints) const; virtual void findUnnormalized(uint4 maxaddsub,uint4 maxleftright,uint4 maxext); virtual void buildLabels(Funcdata *fd,vector
&addresstable,vector &label,const JumpModel *orig) const; virtual Varnode *foldInNormalization(Funcdata *fd,PcodeOp *indop); virtual bool foldInGuards(Funcdata *fd,JumpTable *jump); virtual bool sanityCheck(Funcdata *fd,PcodeOp *indop,vector
&addresstable); virtual JumpModel *clone(JumpTable *jt) const; virtual void clear(void); }; /// \brief A basic jump-table model with an added default address path /// /// This model expects two paths to the switch, 1 from a default value, 1 from the other values that hit the switch /// If A is the guarding control-flow block, C is the block setting the default value, and S the switch block itself, /// We expect one of the following situations: /// - A -> C or S and C -> S /// - A -> C or D and C -> S D -> S /// - C -> S and S -> A A -> S or "out of loop", i.e. S is in a loop, and the guard block doubles as the loop condition /// /// This builds on the analysis performed for JumpBasic, which fails because there are too many paths /// to the BRANCHIND, preventing the guards from being interpreted properly. This class expects to reuse /// the PathMeld calculation from JumpBasic. class JumpBasic2 : public JumpBasic { Varnode *extravn; ///< The extra Varnode holding the default value PathMeld origPathMeld; ///< The set of paths that produce non-default addresses bool checkNormalDominance(void) const; virtual bool foldInOneGuard(Funcdata *fd,GuardRecord &guard,JumpTable *jump); public: JumpBasic2(JumpTable *jt) : JumpBasic(jt) {} ///< Constructor void initializeStart(const PathMeld &pMeld); ///< Pass in the prior PathMeld calculation virtual bool recoverModel(Funcdata *fd,PcodeOp *indop,uint4 matchsize,uint4 maxtablesize); virtual void findUnnormalized(uint4 maxaddsub,uint4 maxleftright,uint4 maxext); virtual JumpModel *clone(JumpTable *jt) const; virtual void clear(void); }; /// \brief A basic jump-table model incorporating manual override information /// /// The list of potential target addresses produced by the BRANCHIND is not recovered by \b this /// model, but must provided explicitly via setAddresses(). /// The model tries to repurpose some of the analysis that JumpBasic does to recover the switch variable. /// But it will revert to the trivial model if it can't find a suitable switch variable. class JumpBasicOverride : public JumpBasic { set
adset; ///< Absolute address table (manually specified) vector values; ///< Normalized switch variable values associated with addresses vector
addrtable; ///< Address associated with each value uintb startingvalue; ///< Possible start for guessing values that match addresses Address normaddress; ///< Dynamic info for recovering normalized switch variable uint8 hash; ///< if (hash==0) there is no normalized switch (use trivial model) bool istrivial; ///< \b true if we use a trivial value model int4 findStartOp(Varnode *vn); int4 trialNorm(Funcdata *fd,Varnode *trialvn,uint4 tolerance); void setupTrivial(void); Varnode *findLikelyNorm(void); void clearCopySpecific(void); public: JumpBasicOverride(JumpTable *jt); ///< Constructor void setAddresses(const vector
&adtable); ///< Manually set the address table for \b this model void setNorm(const Address &addr,uintb h) { normaddress = addr; hash = h; } ///< Set the normalized switch variable void setStartingValue(uintb val) { startingvalue = val; } ///< Set the starting value for the normalized range virtual bool isOverride(void) const { return true; } virtual int4 getTableSize(void) const { return addrtable.size(); } virtual bool recoverModel(Funcdata *fd,PcodeOp *indop,uint4 matchsize,uint4 maxtablesize); virtual void buildAddresses(Funcdata *fd,PcodeOp *indop,vector
&addresstable,vector *loadpoints) const; // findUnnormalized inherited from JumpBasic virtual void buildLabels(Funcdata *fd,vector
&addresstable,vector &label,const JumpModel *orig) const; // foldInNormalization inherited from JumpBasic virtual bool foldInGuards(Funcdata *fd,JumpTable *jump) { return false; } virtual bool sanityCheck(Funcdata *fd,PcodeOp *indop,vector
&addresstable) { return true; } virtual JumpModel *clone(JumpTable *jt) const; virtual void clear(void); virtual void saveXml(ostream &s) const; virtual void restoreXml(const Element *el,Architecture *glb); }; class JumpAssistOp; /// \brief A jump-table model assisted by pseudo-op directives in the code /// /// This model looks for a special \e jumpassist pseudo-op near the branch site, which contains /// p-code models describing how to parse a jump-table for case labels and addresses. /// It views the switch table calculation as a two-stage process: /// - case2index: convert the switchvar to an index into a table /// - index2address: convert the index to an address /// /// The pseudo-op holds: /// - the table address, size (number of indices) /// - exemplar p-code for inverting the case2index part of the calculation /// - exemplar p-code for calculating index2address class JumpAssisted : public JumpModel { PcodeOp *assistOp; ///< The \e jumpassist PcodeOp JumpAssistOp *userop; ///< The \e jumpassist p-code models int4 sizeIndices; ///< Total number of indices in the table (not including the defaultaddress) Varnode *switchvn; ///< The switch variable public: JumpAssisted(JumpTable *jt) : JumpModel(jt) { assistOp = (PcodeOp *)0; switchvn = (Varnode *)0; sizeIndices=0; } ///< Constructor // virtual ~JumpAssisted(void); virtual bool isOverride(void) const { return false; } virtual int4 getTableSize(void) const { return sizeIndices+1; } virtual bool recoverModel(Funcdata *fd,PcodeOp *indop,uint4 matchsize,uint4 maxtablesize); virtual void buildAddresses(Funcdata *fd,PcodeOp *indop,vector
&addresstable,vector *loadpoints) const; virtual void findUnnormalized(uint4 maxaddsub,uint4 maxleftright,uint4 maxext) {} virtual void buildLabels(Funcdata *fd,vector
&addresstable,vector &label,const JumpModel *orig) const; virtual Varnode *foldInNormalization(Funcdata *fd,PcodeOp *indop); virtual bool foldInGuards(Funcdata *fd,JumpTable *jump); virtual bool sanityCheck(Funcdata *fd,PcodeOp *indop,vector
&addresstable) { return true; } virtual JumpModel *clone(JumpTable *jt) const; virtual void clear(void) { assistOp = (PcodeOp *)0; switchvn = (Varnode *)0; } }; /// \brief A map from values to control-flow targets within a function /// /// A JumpTable is attached to a specific CPUI_BRANCHIND and encapsulates all /// the information necessary to model the indirect jump as a \e switch statement. /// It knows how to map from specific switch variable values to the destination /// \e case block and how to label the value. class JumpTable { /// \brief An address table index and its corresponding out-edge struct IndexPair { int4 blockPosition; ///< Out-edge index for the basic-block int4 addressIndex; ///< Index of address targeting the basic-block IndexPair(int4 pos,int4 index) { blockPosition = pos; addressIndex = index; } ///< Constructor bool operator<(const IndexPair &op2) const; ///< Compare by position then by index static bool compareByPosition(const IndexPair &op1,const IndexPair &op2); ///< Compare just by position }; Architecture *glb; ///< Architecture under which this jump-table operates JumpModel *jmodel; ///< Current model of how the jump table is implemented in code JumpModel *origmodel; ///< Initial jump table model, which may be incomplete vector
addresstable; ///< Raw addresses in the jump-table vector block2addr; ///< Map from basic-blocks to address table index vector label; ///< The case label for each explicit target vector loadpoints; ///< Any recovered in-memory data for the jump-table Address opaddress; ///< Absolute address of the BRANCHIND jump PcodeOp *indirect; ///< CPUI_BRANCHIND linked to \b this jump-table uintb switchVarConsume; ///< Bits of the switch variable being consumed int4 defaultBlock; ///< The out-edge corresponding to the \e default switch destination (-1 = undefined) int4 lastBlock; ///< Block out-edge corresponding to last entry in the address table uint4 maxtablesize; ///< Maximum table size we allow to be built (sanity check) uint4 maxaddsub; ///< Maximum ADDs or SUBs to normalize uint4 maxleftright; ///< Maximum shifts to normalize uint4 maxext; ///< Maximum extensions to normalize int4 recoverystage; ///< 0=no stages recovered, 1=additional stage needed, 2=complete bool collectloads; ///< Set to \b true if information about in-memory model data is/should be collected void recoverModel(Funcdata *fd); ///< Attempt recovery of the jump-table model void trivialSwitchOver(void); ///< Switch \b this table over to a trivial model void sanityCheck(Funcdata *fd); ///< Perform sanity check on recovered address targets int4 block2Position(const FlowBlock *bl) const; ///< Convert a basic-block to an out-edge index from the switch. static bool isReachable(PcodeOp *op); ///< Check if the given PcodeOp still seems reachable in its function public: JumpTable(Architecture *g,Address ad=Address()); ///< Constructor JumpTable(const JumpTable *op2); ///< Copy constructor ~JumpTable(void); ///< Destructor bool isRecovered(void) const { return !addresstable.empty(); } ///< Return \b true if a model has been recovered bool isLabelled(void) const { return !label.empty(); } ///< Return \b true if \e case labels are computed bool isOverride(void) const; ///< Return \b true if \b this table was manually overridden bool isPossibleMultistage(void) const { return (addresstable.size()==1); } ///< Return \b true if this could be multi-staged int4 getStage(void) const { return recoverystage; } ///< Return what stage of recovery this jump-table is in. int4 numEntries(void) const { return addresstable.size(); } ///< Return the size of the address table for \b this jump-table uintb getSwitchVarConsume(void) const { return switchVarConsume; } ///< Get bits of switch variable consumed by \b this table int4 getDefaultBlock(void) const { return defaultBlock; } ///< Get the out-edge corresponding to the \e default switch destination const Address &getOpAddress(void) const { return opaddress; } ///< Get the address of the BRANCHIND for the switch PcodeOp *getIndirectOp(void) const { return indirect; } ///< Get the BRANCHIND PcodeOp void setIndirectOp(PcodeOp *ind) { opaddress = ind->getAddr(); indirect = ind; } ///< Set the BRANCHIND PcodeOp void setMaxTableSize(uint4 val) { maxtablesize = val; } ///< Set the maximum entries allowed in the address table void setNormMax(uint4 maddsub,uint4 mleftright,uint4 mext) { maxaddsub = maddsub; maxleftright = mleftright; maxext = mext; } ///< Set the switch variable normalization model restrictions void setOverride(const vector
&addrtable,const Address &naddr,uintb h,uintb sv); int4 numIndicesByBlock(const FlowBlock *bl) const; int4 getIndexByBlock(const FlowBlock *bl,int4 i) const; Address getAddressByIndex(int4 i) const { return addresstable[i]; } ///< Get the i-th address table entry void setLastAsMostCommon(void); ///< Set the most common jump-table target to be the last address in the table void setDefaultBlock(int4 bl) { defaultBlock = bl; } ///< Set out-edge of the switch destination considered to be \e default void setLoadCollect(bool val) { collectloads = val; } ///< Set whether LOAD records should be collected void addBlockToSwitch(BlockBasic *bl,uintb lab); ///< Force a given basic-block to be a switch destination void switchOver(const FlowInfo &flow); ///< Convert absolute addresses to block indices uintb getLabelByIndex(int4 index) const { return label[index]; } ///< Given a \e case index, get its label void foldInNormalization(Funcdata *fd); ///< Hide the normalization code for the switch bool foldInGuards(Funcdata *fd) { return jmodel->foldInGuards(fd,this); } ///< Hide any guard code for \b this switch void recoverAddresses(Funcdata *fd); ///< Recover the raw jump-table addresses (the address table) void recoverMultistage(Funcdata *fd); ///< Recover jump-table addresses keeping track of a possible previous stage bool recoverLabels(Funcdata *fd); ///< Recover the case labels for \b this jump-table bool checkForMultistage(Funcdata *fd); ///< Check if this jump-table requires an additional recovery stage void clear(void); ///< Clear instance specific data for \b this jump-table void saveXml(ostream &s) const; ///< Save \b this jump-table as a \ XML tag void restoreXml(const Element *el); ///< Recover \b this jump-table from a \ XML tag }; /// \param op2 is the other IndexPair to compare with \b this /// \return \b true if \b this is ordered before the other IndexPair inline bool JumpTable::IndexPair::operator<(const IndexPair &op2) const { if (blockPosition != op2.blockPosition) return (blockPosition < op2.blockPosition); return (addressIndex < op2.addressIndex); } /// \param op1 is the first IndexPair to compare /// \param op2 is the second IndexPair to compare /// \return \b true if op1 is ordered before op2 inline bool JumpTable::IndexPair::compareByPosition(const IndexPair &op1,const IndexPair &op2) { return (op1.blockPosition < op2.blockPosition); } #endif