/* ### * IP: GHIDRA * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /// \file subflow.hh /// \brief Classes for reducing/splitting Varnodes containing smaller logical values #ifndef __SUBVARIABLE_FLOW__ #define __SUBVARIABLE_FLOW__ #include "funcdata.hh" /// \brief Class for shrinking big Varnodes carrying smaller logical values /// /// Given a root within the syntax tree and dimensions /// of a logical variable, this class traces the flow of this /// logical variable through its containing Varnodes. It then /// creates a subgraph of this flow, where there is a correspondence /// between nodes in the subgraph and nodes in the original graph /// containing the logical variable. When doReplacement is called, /// this subgraph is duplicated as a new separate piece within the /// syntax tree. Ops are replaced to reflect the manipulation of /// of the logical variable, rather than the containing variable. /// Operations in the original graph which pluck out the logical /// variable from the containing variable, are replaced with copies /// from the corresponding node in the new section of the graph, /// which frequently causes the operations on the original container /// Varnodes to becomes dead code. class SubvariableFlow { class ReplaceOp; /// \brief Placeholder node for Varnode holding a smaller logical value class ReplaceVarnode { friend class SubvariableFlow; Varnode *vn; ///< Varnode being shrunk Varnode *replacement; ///< The new smaller Varnode uintb mask; ///< Bits making up the logical sub-variable uintb val; ///< Value of constant (when vn==NULL) ReplaceOp *def; ///< Defining op for new Varnode }; /// \brief Placeholder node for PcodeOp operating on smaller logical values class ReplaceOp { friend class SubvariableFlow; PcodeOp *op; ///< op getting paralleled PcodeOp *replacement; ///< The new op OpCode opc; ///< Opcode of the new op int4 numparams; ///< Number of parameters in (new) op ReplaceVarnode *output; ///< Varnode output vector input; ///< Varnode inputs }; /// \brief Operation with a new logical value as (part of) input, but output Varnode is unchanged class PatchRecord { friend class SubvariableFlow; /// The possible types of patches on ops being performed enum patchtype { copy_patch, ///< Turn op into a COPY of the logical value compare_patch, ///< Turn compare op inputs into logical values parameter_patch, ///< Convert a CALL/CALLIND/RETURN/BRANCHIND parameter into logical value extension_patch, ///< Convert op into something that copies/extends logical value, adding zero bits push_patch ///< Convert an operator output to the logical value }; patchtype type; ///< The type of \b this patch PcodeOp *patchOp; ///< Op being affected ReplaceVarnode *in1; ///< The logical variable input ReplaceVarnode *in2; ///< (optional second parameter) int4 slot; ///< slot being affected or other parameter }; int4 flowsize; ///< Size of the logical data-flow in bytes int4 bitsize; ///< Number of bits in logical variable bool returnsTraversed; ///< Have we tried to flow logical value across CPUI_RETURNs bool aggressive; ///< Do we "know" initial seed point must be a sub variable bool sextrestrictions; ///< Check for logical variables that are always sign extended into their container Funcdata *fd; ///< Containing function map varmap; ///< Map from original Varnodes to the overlaying subgraph nodes list newvarlist; ///< Storage for subgraph variable nodes list oplist; ///< Storage for subgraph op nodes list patchlist; ///< Operations getting patched (but with no flow thru) vector worklist; ///< Subgraph variable nodes still needing to be traced int4 pullcount; ///< Number of instructions pulling out the logical value static int4 doesOrSet(PcodeOp *orop,uintb mask); static int4 doesAndClear(PcodeOp *andop,uintb mask); Address getReplacementAddress(ReplaceVarnode *rvn) const; ReplaceVarnode *setReplacement(Varnode *vn,uintb mask,bool &inworklist); ReplaceOp *createOp(OpCode opc,int4 numparam,ReplaceVarnode *outrvn); ReplaceOp *createOpDown(OpCode opc,int4 numparam,PcodeOp *op,ReplaceVarnode *inrvn,int4 slot); bool tryCallPull(PcodeOp *op,ReplaceVarnode *rvn,int4 slot); bool tryReturnPull(PcodeOp *op,ReplaceVarnode *rvn,int4 slot); bool tryCallReturnPush(PcodeOp *op,ReplaceVarnode *rvn); bool trySwitchPull(PcodeOp *op,ReplaceVarnode *rvn); bool traceForward(ReplaceVarnode *rvn); ///< Trace the logical data-flow forward for the given subgraph variable bool traceBackward(ReplaceVarnode *rvn); ///< Trace the logical data-flow backward for the given subgraph variable bool traceForwardSext(ReplaceVarnode *rvn); ///< Trace logical data-flow forward assuming sign-extensions bool traceBackwardSext(ReplaceVarnode *rvn); ///< Trace logical data-flow backward assuming sign-extensions bool createLink(ReplaceOp *rop,uintb mask,int4 slot,Varnode *vn); bool createCompareBridge(PcodeOp *op,ReplaceVarnode *inrvn,int4 slot,Varnode *othervn); void addPush(PcodeOp *pushOp,ReplaceVarnode *rvn); void addTerminalPatch(PcodeOp *pullop,ReplaceVarnode *rvn); void addTerminalPatchSameOp(PcodeOp *pullop,ReplaceVarnode *rvn,int4 slot); void addBooleanPatch(PcodeOp *pullop,ReplaceVarnode *rvn,int4 slot); void addSuggestedPatch(ReplaceVarnode *rvn,PcodeOp *pushop,int4 sa); void addComparePatch(ReplaceVarnode *in1,ReplaceVarnode *in2,PcodeOp *op); ReplaceVarnode *addConstant(ReplaceOp *rop,uintb mask,uint4 slot,Varnode *constvn); ReplaceVarnode *addNewConstant(ReplaceOp *rop,uint4 slot,uintb val); void createNewOut(ReplaceOp *rop,uintb mask); void replaceInput(ReplaceVarnode *rvn); bool useSameAddress(ReplaceVarnode *rvn); Varnode *getReplaceVarnode(ReplaceVarnode *rvn); bool processNextWork(void); ///< Extend the subgraph from the next node in the worklist public: SubvariableFlow(Funcdata *f,Varnode *root,uintb mask,bool aggr,bool sext,bool big); ///< Constructor bool doTrace(void); ///< Trace logical value through data-flow, constructing transform void doReplacement(void); ///< Perform the discovered transform, making logical values explicit }; /// \brief Class for splitting up Varnodes that hold 2 logical variables /// /// Starting from a \e root Varnode provided to the constructor, \b this class looks for data-flow /// that consistently holds 2 logical values in a single Varnode. If doTrace() returns \b true, /// a consistent view has been created and invoking apply() will split all Varnodes and PcodeOps /// involved in the data-flow into their logical pieces. class SplitFlow : public TransformManager { LaneDescription laneDescription; ///< Description of how to split Varnodes vector worklist; ///< Pending work list of Varnodes to push the split through TransformVar *setReplacement(Varnode *vn); bool addOp(PcodeOp *op,TransformVar *rvn,int4 slot); bool traceForward(TransformVar *rvn); bool traceBackward(TransformVar *rvn); bool processNextWork(void); ///< Process the next logical value on the worklist public: SplitFlow(Funcdata *f,Varnode *root,int4 lowSize); ///< Constructor bool doTrace(void); ///< Trace split through data-flow, constructing transform }; /// \brief Class for tracing changes of precision in floating point variables /// /// It follows the flow of a logical lower precision value stored in higher precision locations /// and then rewrites the data-flow in terms of the lower precision, eliminating the /// precision conversions. class SubfloatFlow : public TransformManager { int4 precision; ///< Number of bytes of precision in the logical flow int4 terminatorCount; ///< Number of terminating nodes reachable via the root const FloatFormat *format; ///< The floating-point format of the logical value vector worklist; ///< Current list of placeholders that still need to be traced TransformVar *setReplacement(Varnode *vn); bool traceForward(TransformVar *rvn); bool traceBackward(TransformVar *rvn); bool processNextWork(void); public: SubfloatFlow(Funcdata *f,Varnode *root,int4 prec); virtual bool preserveAddress(Varnode *vn,int4 bitSize,int4 lsbOffset) const; bool doTrace(void); ///< Trace logical value as far as possible }; /// \brief Class for splitting data-flow on \e laned registers /// /// From a root Varnode and a description of its \e lanes, trace data-flow as far as /// possible through the function, propagating each lane, using the doTrace() method. Then /// using the apply() method, data-flow can be split, making each lane in every traced /// register into an explicit Varnode class LaneDivide : public TransformManager { /// \brief Description of a large Varnode that needs to be traced (in the worklist) class WorkNode { friend class LaneDivide; TransformVar *lanes; ///< Lane placeholders for underyling Varnode int4 numLanes; ///< Number of lanes in the particular Varnode int4 skipLanes; ///< Number of lanes to skip in the global description }; LaneDescription description; ///< Global description of lanes that need to be split vector workList; ///< List of Varnodes still left to trace bool allowSubpieceTerminator; ///< \b true if we allow lanes to be cast (via SUBPIECE) to a smaller integer size TransformVar *setReplacement(Varnode *vn,int4 numLanes,int4 skipLanes); void buildUnaryOp(OpCode opc,PcodeOp *op,TransformVar *inVars,TransformVar *outVars,int4 numLanes); void buildBinaryOp(OpCode opc,PcodeOp *op,TransformVar *in0Vars,TransformVar *in1Vars,TransformVar *outVars,int4 numLanes); bool buildPiece(PcodeOp *op,TransformVar *outVars,int4 numLanes,int4 skipLanes); bool buildMultiequal(PcodeOp *op,TransformVar *outVars,int4 numLanes,int4 skipLanes); bool buildStore(PcodeOp *op,int4 numLanes,int4 skipLanes); bool buildLoad(PcodeOp *op,TransformVar *outVars,int4 numLanes,int4 skipLanes); bool buildRightShift(PcodeOp *op,TransformVar *outVars,int4 numLanes,int4 skipLanes); bool traceForward(TransformVar *rvn,int4 numLanes,int4 skipLanes); bool traceBackward(TransformVar *rvn,int4 numLanes,int4 skipLanes); bool processNextWork(void); ///< Process the next Varnode on the work list public: LaneDivide(Funcdata *f,Varnode *root,const LaneDescription &desc,bool allowDowncast); ///< Constructor bool doTrace(void); ///< Trace lanes as far as possible from the root Varnode }; #endif