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SM9 identity-based cryptographic algorithms 

Part 1: General 

1 Scope 

This part describes fundamental mathematical knowledge and cryptographic techniques necessary for 
implementing cryptographic mechanisms provided in other parts of this standard. 

This standard is applicable to the implementation, application and testing of commercial identity-based 
cryptographic algorithms. 

This standard applies to the elliptic curves over the finite field 𝐹𝑝, where 𝑝  is a prime number that 

satisfies 𝑝 > 2191. 

2 Terms and definitions 

2.1 identity 

information that can be used to confirm the identity of an entity, composed of non-repudiable 
information about the entity, such as its distinguished name, email address, identity card number, and 
telephone number 

2.2 master key 

topmost key in the key hierarchy of an identity–based cryptographic system, composed of the master 
private key and master public key. The master public key is publicly available, while the master private 
key is preserved by the KGC in secrecy. A user’s private key is generated by the KGC using the master 
private key and the user’s identity. In an identity–based cryptographic system, the master private key is 
usually generated by the KGC using random number generators; the master public key is generated 
with the master private key and system parameters. 

This standard specifies a different master key for the signature system than that of the encryption 
system. The master key of the digital signature algorithm, which belongs to the signature system, is the 
signature master key. The master key of the key exchange protocol, key encapsulation mechanism and 
public key encryption algorithm, which all belong to the encryption system, is the encryption master 
key. 

2.3 key generation center (KGC) 

trusted authority responsible for the selection of the system parameters, generation of master keys and 
generation of users’ private keys within SM9 identity-based cryptographic algorithms 

3 Symbols and abbreviations 

The following symbols and abbreviations apply to this part. 

𝑐𝑓: cofactor of the order of an elliptic curve relative to 𝑁 

𝑐𝑖𝑑: curve identifier used to distinguish the type of elliptic curve used, denoted by one byte 

DLP: discrete logarithm problem over finite fields 
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deg (𝑓): the degree of the polynomial 𝑓(𝑥) 

𝑑1, 𝑑2: two divisors of 𝑘 

𝐸: an elliptic curve over finite fields 

ECDLP: discrete logarithm problem over elliptic curves 

𝐸(𝐹𝑞): a set consisting of all rational points (including the point at infinity 𝑂) of the elliptic curve 𝐸 over 

the finite field 𝐹𝑞 

𝐸(𝐹𝑞)[𝑟]: the set of 𝑟-torsion points in 𝐸(𝐹𝑞), that is the torsion subgroup of 𝐸(𝐹𝑞) of order 𝑟 

𝑒: a bilinear pairing from 𝔾1 × 𝔾2  to 𝔾𝑇 

𝑒𝑖𝑑: bilinear pairing identifier used to distinguish the type of bilinear pairing used, denoted by one byte 

𝐹𝑝: a prime field with 𝑝 elements 

𝐹𝑞: a finite field with 𝑞 elements 

𝐹𝑞
∗: the multiplicative group composed of all the nonzero elements in 𝐹𝑞 

𝐹𝑞𝑚: the 𝑚-dimensional extension field of the finite field 𝐹𝑞 

𝔾𝑇: a multiplicative cyclic group of prime order 𝑁 

𝔾1: an additive cyclic group of prime order 𝑁 

𝔾2: an additive cyclic group of prime order 𝑁 

gcd (𝑥, 𝑦): the greatest common divisor of 𝑥 and 𝑦 

𝑘: the embedding degree of the curve 𝐸(𝐹𝑞) relative to 𝑁, where 𝑁 is a prime factor of #𝐸(𝐹𝑞) 

𝑚: the degree of the finite field extension 𝐹𝑞𝑚/𝐹𝑞 

mod 𝑓(𝑥): the operation of modulo the polynomial 𝑓(𝑥) 

mod 𝑛: the operation of modulo 𝑛, for example, 23 mod 7 =  2 

𝑁: the order of the cyclic groups  𝔾1, 𝔾2 and 𝔾𝑇 , which is a prime number greater than 2191 

𝑂: the point at infinity or the zero point on an elliptic curve, which is the identity element of the elliptic 
curve additive group 

𝑃: 𝑃 =  (𝑥𝑃 , 𝑦𝑃) is a nonzero point on an elliptic curve, where its coordinates 𝑥𝑃 and 𝑦𝑃 satisfy the 
elliptic curve equation 

𝑃1: a generator of 𝔾1 

𝑃2: a generator of 𝔾2 

𝑃 + 𝑄: addition of two points 𝑃 and 𝑄 on the elliptic curve E 
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𝑝: a prime number greater than 2191 

𝑞: the number of elements in the finite field 𝐹𝑞 

𝑥𝑃: the 𝑥-coordinate of point 𝑃 

𝑥||𝑦: the concatenation of 𝑥 and 𝑦, where 𝑥 and 𝑦 are bit strings or byte strings 

𝑥 ≡ 𝑦 (mod 𝑞): 𝑥 and 𝑦 are congruent modulo 𝑞, that is 𝑥 mod 𝑞 =  𝑦 mod 𝑞 

𝑦𝑃: the 𝑦-coordinate of point 𝑃 

#𝐸(𝐾): the number of points in 𝐸(𝐾), also called the order of the elliptic curve group 𝐸(𝐾), where 𝐾 is a 
finite field (including 𝐹𝑞 and 𝐹𝑞𝑘) 

〈𝑃〉: the cyclic group generated by the point 𝑃 on an elliptic curve 

[𝑢]𝑃: the 𝑢 multiple of a point 𝑃 on an elliptic curve 

[𝑥, 𝑦]: the set of integers which are not less than 𝑥 and not greater than 𝑦 

⌈𝑥⌉: ceiling function that maps to the smallest integer not less than 𝑥, for example, ⌈7⌉ = 7, ⌈8.3⌉ = 9 

⌊𝑥⌋: floor function that maps to the largest integer not greater than 𝑥, for example, ⌊7⌋ = 7, ⌊8.3⌋ = 8 

𝛽: twisted curve parameter 

𝛹: a homomorphism from 𝔾2 to 𝔾1 satisfying 𝑃1 = 𝛹(𝑃2) 

⊕: the bitwise XOR operator that operates on two bit strings of the same length 

4 Finite field and elliptic curve 

4.1 Finite field 

4.1.1 Overview 

A field consists of a non-empty set 𝐹 with two operations: the addition (denoted by "+") and the 
multiplication (denoted by "∙"). 

It satisfies following properties: 
a) ( 𝐹, + ) is an additive abelian group, in which 0 denotes the identity element. 
b) (𝐹\{0},∙) is a multiplicative abelian group, in which 1 denotes the identity element. 
𝑐) Distributive law: (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐  for all 𝑎, 𝑏, 𝑐 ∈ 𝐹. 

If 𝐹 is a finite set, then the field is called a finite field. The number of elements in the finite field is called 
the order of the finite field. 

4.1.2 Prime field 𝑭𝒑 

When the order of a finite field is prime, we call the field a prime field. 

Let 𝑝 be a prime number, then the residue of integers modulo 𝑝, {0,1,…𝑝 − 1 }, with respect to the 
addition modulo 𝑝 and the multiplication modulo 𝑝 can construct a prime field of order 𝑝, denoted by 𝐹𝑝. 
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𝐹𝑝 has the following properties: 

a) the additive identity element is 0. 
b) the multiplicative identity element is 1. 
𝑐) the addition of field elements is that of integers modulo 𝑝, namely, if 𝑎, 𝑏 ∈ 𝐹𝑝, then 𝑎 + 𝑏 = (𝑎 +

𝑏)  mod 𝑝. 
d) the multiplication of field elements is that of integers modulo 𝑝, namely, if 𝑎, 𝑏 ∈ 𝐹𝑝, then 𝑎 ∙ 𝑏 = (𝑎 ∙

𝑏)  mod 𝑝. 

4.1.3 Finite field 𝑭𝒒𝒎  

Let 𝑞 be a prime or a prime power, 𝑓(𝑥) be an 𝑚-degree (𝑚 > 1) irreducible polynomial (reduced 
polynomial or field polynomial) in the polynomial ring 𝐹𝑞[𝑥], quotient ring 𝐹𝑞[𝑥]/(𝑓(𝑥)) be a finite field 

with 𝑞𝑚 elements (denoted by 𝐹𝑞𝑚  ), then 𝐹𝑞𝑚  is the extension field of 𝐹𝑞 , 𝐹𝑞 is the subfield of 𝐹𝑞𝑚 , and 

𝑚 is the extension degree. 𝐹𝑞𝑚  can be seen as the 𝑚-dimensional vector space of 𝐹𝑞 and its elements can 

be uniquely represented by 𝑎0𝛽0 + 𝑎1𝛽1 +⋯𝑎𝑚−1𝛽𝑚−1, where 𝑎𝑖 ∈ 𝐹𝑞 , 𝛽0, … , 𝛽𝑚−1  is a base of  𝐹𝑞𝑚  

over  𝐹𝑞 . 

The elements of 𝐹𝑞𝑚  can be represented via polynomial basis or normal basis. In this standard, unless 

otherwise specified, all elements of 𝐹𝑞𝑚  are represented by polynomial basis. 

Choose a monic irreducible polynomial 𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥𝑚−1 +⋯+ 𝑓2𝑥
2 + 𝑓1𝑥 + 𝑓0 (𝑓𝑖 ∈ 𝐹𝑞 , 𝑖 =

0,1,… ,𝑚 − 1), then 𝐹𝑞𝑚  is composed of all polynomials in the polynomial ring 𝐹𝑞[𝑥] of degree less than 

𝑚. The set of polynomials {𝑥𝑚−1, 𝑥𝑚−2, … , 𝑥, 1} is a base for 𝐹𝑞𝑚  over 𝐹𝑞 , which is called a polynomial 

basis. For any element 𝑎(𝑥) = 𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 +⋯+ 𝑎1𝑥 + 𝑎0 in 𝐹𝑞𝑚 , its coefficients over 𝐹𝑞 

constitute an 𝑚 -dimensional vector, denoted by  𝑎 = (𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0) , where 𝑎𝑖 ∈ 𝐹𝑞 , 𝑖 =

0,1,… ,𝑚 − 1. 

𝐹𝑞𝑚  has the following properties: 

a) The zero element 0 is represented by an 𝑚-dimensional vector (0,0, …0,0,0). 
b) The multiplicative identity element is represented by an 𝑚-dimensional vector (0,0, …0,0,1). 
𝑐) The addition of two field elements is the addition of vectors, and each vector component adopts 
addition of field 𝐹𝑞 . 

d) The multiplication of elements 𝑎 and 𝑏 is defined like this: let 𝑎 and 𝑏 correspond to the 
polynomials 𝑎(𝑥) and 𝑏(𝑥) over 𝐹𝑞 respectively; then, 𝑎 ∙ 𝑏 is defined as the corresponding vector of the 

polynomial (𝑎(𝑥) ⋅ 𝑏(𝑥)) mod 𝑓(𝑥). 
e) The inverse element: suppose 𝑎(𝑥) is the corresponding polynomial of 𝑎 over 𝐹𝑞 , 𝑎−1 (𝑥) is the 

corresponding polynomial of 𝑎−1 over 𝐹𝑞 , such that 𝑎(𝑥) ∙ 𝑎−1(𝑥) = 1 mod 𝑓(𝑥). 

See Annex A.1 for more details about 𝐹𝑞𝑚 . 

4.2 Elliptic curves over finite field 

The elliptic curve over finite field 𝐹𝑞𝑚  (𝑚 ≥ 1) is a set of points. A point 𝑃 (except the point 𝑂) on the 

elliptic curve can be represented by the coordinates 𝑃 =  (𝑥𝑃 , 𝑦𝑃), where 𝑥𝑃 and 𝑦𝑃 are field elements 
satisfying a certain equation, and are called the 𝑥-coordinate and 𝑦-coordinate, respectively. 

This part describes elliptic curves whose characteristic is a large prime 𝑝. 

In this part, the points on an elliptic curve are represented by affine coordinates, unless otherwise 
specified. 
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The equation of elliptic curves defined over 𝐹𝑞𝑚  is: 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝐹𝑝𝑚 , and 4𝑎
3 + 27𝑏2 ≠ 0. (1)  

The elliptic curve 𝐸(𝐹𝑞𝑚) is defined as: 

𝐸(𝐹𝑞𝑚) = {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐹𝑞𝑚 , satisfying the equation (1)} ∪ {𝑂},where 𝑂 is the point at infinity. 

The number of points on the elliptic curve 𝐸(𝐹𝑞𝑚) is represented by #𝐸(𝐹𝑞𝑚), which is also called the 

order of 𝐸(𝐹𝑞𝑚). 

This standard requires the prime 𝑝 > 2191. 

Let 𝐸 and 𝐸′ be elliptic curves defined over 𝐹𝑞 . If there exists an isomorphic map 𝜙𝑑: 𝐸′(𝐹𝑞𝑑) → 𝐸(F𝑞d), 

where 𝑑 is the smallest integer which makes the map exist, then 𝐸′ is called the degree 𝑑 twisted curve 
of 𝐸. There are three cases of the value of 𝑑 when 𝑝 ≥ 5: 
a) If 𝑎 = 0, 𝑏 ≠ 0, then 𝑑 = 6, and 𝐸′: y2 = 𝑥3 + 𝛽𝑏, 𝜙6: 𝐸

′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1/3𝑥, 𝛽−1/2𝑦). 
b) If 𝑏 = 0, 𝑎 ≠ 0, then 𝑑 = 4, and 𝐸′: y2 = 𝑥3 + 𝛽𝑎𝑥, 𝜙4: 𝐸

′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1/2𝑥, 𝛽−3/4𝑦). 
𝑐) If 𝑎 ≠ 0, 𝑏 ≠ 0, then 𝑑 = 2, and 𝐸′: y2 = 𝑥3 + 𝛽2𝑎𝑥 + 𝛽3𝑏, 𝜙2: 𝐸

′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1𝑥, 𝛽−3/2𝑦). 

4.3 Elliptic curve group 

The points on elliptic curve 𝐸(𝐹𝑞𝑚), where  (𝑚 ≥ 1), constitute an abelian group based on the following 

addition operation rules:  
a) 𝑂 + 𝑂 = 𝑂. 
b) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑞𝑚)\{𝑂}, 𝑃 +  𝑂 =  𝑂 +  𝑃 =  𝑃. 

𝑐) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑞𝑚)\{𝑂}, the inverse element of 𝑃 is –𝑃 = (𝑥,−𝑦), and 𝑃 + (−𝑃) = 𝑂. 

d) The addition rules for two different points (wherein these points are not the inverse of each other): 
Let 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑞𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹𝑞𝑚)\{𝑂}, and 𝑥1 ≠ 𝑥2. 

Let 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 + 𝑃2, then 

{
𝑥3 = 𝜆

2 − 𝑥1 − 𝑥2,

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1,
 

where 

𝜆 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

. 

e) Point doubling: 

Let 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑞𝑚)\{𝑂}, and 𝑦1 ≠ 0, 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 + 𝑃1, then 

{
𝑥3 = 𝜆

2 − 2𝑥1,

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1,
 

where 

𝜆 =
3𝑥1

2 + 𝑎

2𝑦1
. 
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4.4 Scalar multiplication on elliptic curve 

The repeated addition of the same point is called the scalar multiplication of the point. Let 𝑢 be a 
positive integer, 𝑃 be a point on the elliptic curve, then the 𝑢 multiple of the point 𝑃 is denoted by 𝑄 =
[𝑢]𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏟          

𝑢 𝑃′𝑠

.  

Scalar multiplication can be extended to 0-multiple and negative-multiple operations: [0]𝑃 = 𝑂, 
[−𝑢]𝑃 = [𝑢](−𝑃). 

Scalar multiplication can be calculated efficiently using certain techniques; please refer to Annex A.2 for 
them. 

4.5 Verification of points in a subgroup of an elliptic curve 

Input: The parameters 𝑎 and 𝑏 which define the elliptic curve equation over 𝐹𝑞𝑚 , where 𝑞 is an odd 

prime and 𝑚 ≥ 1, the order 𝑁 of the subgroup 𝔾 of the elliptic curve 𝐸(𝐹𝑞𝑚), a pair of elements in 𝐹𝑞𝑚  

(𝑥, 𝑦). 

Output: If (𝑥, 𝑦) is an element of the group 𝔾, then output “valid”, otherwise output “invalid”. 

a) Check if (𝑥, 𝑦) satisfies the equation of the elliptic curve 𝑦2  =  𝑥3 + 𝑎𝑥 + 𝑏. 
b) Let 𝑄 = (𝑥, 𝑦), check if [𝑁]𝑄 = 𝑂. 

If any of these above verification fail, output “invalid”, otherwise output “valid”. 

4.6 Discrete logarithm problem 

4.6.1 Discrete logarithm problem over finite field 

The set of all nonzero elements in 𝐹𝑞𝑚  (𝑞 is an odd prime, 𝑚 ≥ 1) forms a multiplicative cyclic group, 

denoted by 𝐹𝑞𝑚
∗ . An element 𝑔 ∈ 𝐹𝑞𝑚

∗  is called a generator if it satisfies 𝐹𝑞𝑚
∗ = {𝑔𝑖 | 0 ≤ 𝑖 ≤ 𝑞𝑚 − 2}. The 

minimal integer 𝑡 such that 𝑎𝑡 = 1 is called the order of 𝑎 in 𝐹𝑞𝑚
∗ . The order of 𝐹𝑞𝑚

∗  is 𝑞𝑚 − 1, so 𝑡 | 𝑞𝑚 −

1. 

Suppose the generator of 𝐹𝑞𝑚
∗  is 𝑔, 𝑦 ∈ 𝐹𝑞𝑚

∗ , the discrete logarithm problem over a finite field is to find 

the integer 𝑥 ∈ [0, 𝑞𝑚 − 1] such that 𝑦 = 𝑔𝑥 in 𝐹𝑞𝑚
∗ . 

4.6.2 Elliptic curve discrete logarithm problem (ECDLP) 

For an elliptic curve 𝐸(𝐹𝑞𝑚) (𝑚 ≥ 1), the point 𝑃 ∈ 𝐸(𝐹𝑞𝑚) of order 𝑛 and 𝑄 ∈ 〈𝑃〉, ECDLP is to find 𝑙 ∈

[0, 𝑛 − 1] satisfying 𝑄 =  [𝑙]𝑃. 

5 Bilinear pairings and secure curves 

5.1 Bilinear pairings 

Let (𝔾1, +), (𝔾2, +) and (𝔾𝑇 ,·) be three cyclic groups. The order of 𝔾1, 𝔾2 and 𝔾𝑇 is a prime 𝑁, 𝑃1 is a 
generator of 𝔾1, 𝑃2 is a generator of 𝔾2, and there exists a homomorphism 𝜓 from 𝔾2 to 𝔾1 such 
that 𝜓(𝑃2) = 𝑃1. 

Bilinear pairing 𝑒 is a map of 𝔾1 × 𝔾2 → 𝔾𝑇 satisfying the following conditions: 
a) Bilinearity: for any 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, 𝑎, 𝑏 ∈ ℤ𝑁, 𝑒([𝑎]𝑃, [𝑏]𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏. 
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b) Non-degeneracy: 𝑒(𝑃1, 𝑃2) ≠ 1𝔾𝑇 . 

𝑐) Computability: for any 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, there exists an efficient algorithm to compute 𝑒(𝑃, 𝑄). 

Bilinear pairings used in this part are defined on elliptic curve groups, such as the Weil pairing, the Tate 
pairing, the Ate pairing and the R-ate pairing. 

5.2 Security 

The security of bilinear pairings is based on the following hard problems: 

Problem 1 (Bilinear Inverse Diffie-Hellman Problem, BIDH) For 𝑎, 𝑏 ∈ [1, 𝑁 − 1], given [𝑎]𝑃1, [𝑏]𝑃2, 
it is hard to compute 𝑒(𝑃1, 𝑃2)

𝑏/𝑎. 

Problem 2 (Decisional Bilinear Inverse Diffie-Hellman Problem, DBIDH) For 𝑎, 𝑏, 𝑟 ∈ [1,𝑁 − 1], it 
is hard to distinguish (𝑃1, 𝑃2, [𝑎]𝑃1, [𝑏]𝑃2, 𝑒(𝑃1, 𝑃2)

𝑏/𝑎) from (𝑃1, 𝑃2, [𝑎]𝑃1, [𝑏]𝑃2, 𝑒(𝑃1, 𝑃2)
𝑟).  

Problem 3 (𝝉-Bilinear Inverse Diffie-Hellman Problem, 𝝉-BDHI) For integer 𝜏 and 𝑥 ∈ [1, 𝑁 − 1], 
given (𝑃1, [𝑥]𝑃1, 𝑃2, [𝑥]𝑃2, [𝑥

2]𝑃2, … , [𝑥
𝜏]𝑃2), it is hard to compute 𝑒(𝑃1, 𝑃2)

1/𝑥. 

Problem 4 (𝝉-Gap-Bilinear Inverse Diffie-Hellman Problem, 𝝉-Gap-BDHI) For integer 𝜏 and 𝑥 ∈
[1, 𝑁 − 1], given (𝑃1, [𝑥]𝑃1, 𝑃2, [𝑥]𝑃2, [𝑥

2]𝑃2, … , [𝑥
𝜏]𝑃2) and the DBIDH algorithm, it is hard to compute 

𝑒(𝑃1, 𝑃2)
1/𝑥. 

The security of the SM9 identity-based cryptographic algorithms is founded on the computational 
intractability of the above problems. The hardness of these problems implies that the discrete logarithm 
problems over 𝔾1, 𝔾2, and 𝔾𝑇 are also intractable; and when selecting an elliptic curve the primary 
consideration is to ensure the discrete logarithm problems remain intractable on the selected curve. 

5.3 Embedding degrees and secure curves 

Let 𝔾 be an 𝑁-order subgroup of the elliptic curve 𝐸(𝐹𝑞). The smallest positive integer 𝑘 such that 

𝑁 | 𝑞𝑘 − 1 is called the embedding degree of 𝔾 relative to 𝑁, also known as the embedding degree of 
𝐸(𝐹𝑞) relative to 𝑁. 

Let 𝔾1 be an 𝑁-order subgroup of 𝐸(𝐹𝑞𝑑1), where 𝑑1| 𝑘 , and 𝔾2 be an 𝑁-order subgroup of 𝐸(𝐹𝑞𝑑2), 

where 𝑑2| 𝑘 , then the range 𝔾𝑇 of the bilinear pairings based on the elliptic curves is a subgroup of 𝐹
𝑞𝑘
∗ . 

Thus, the bilinear pairings based on the elliptic curves can convert the elliptic curve discrete logarithm 
problem to the discrete logarithm problem over the finite field 𝐹

𝑞𝑘
∗ . The security of the curve improves 

as the size of the extension field increases (if no faster discrete logarithm algorithm exists in the field), 
yet it becomes harder to compute the bilinear pairings. Hence it is necessary to adopt an elliptic curve 
with an appropriate embedding degree while achieving the desired security level. This standard 
specifies that 𝑞𝑘 > 21536. 

This standard specifies the use of the following curves: 
a) Ordinary curves whose base field is 𝐹𝑞 , where 𝑞 is a prime greater than 2191, and the embedding 

degree 𝑘 = 2𝑖3𝑗, where 𝑖 > 0 and 𝑗 ≥ 0. 
b) Supersingular curves whose base field is 𝐹𝑞 , where 𝑞 is a prime greater than 2768, and the 

embedding degree 𝑘 = 2. 

For 𝑁 less than 2360, it is recommended that 
a) 𝑁 − 1 has a prime factor greater than 2190. 
b) 𝑁 + 1 has a prime factor greater than 2120. 
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6 Data types and conversions 

6.1 Data type 

The data types include bit string, byte string, field element, elliptic curve point and integer in this 
standard. 

Bit string: an ordered sequence of 0’s and 1’s. 

Byte string: an ordered sequence of bytes, where one byte contains 8 bits and the leftmost bit is the 
most significant bit. 

Field element: the elements of finite field 𝐹𝑞𝑚  (𝑚 ≥ 1). 

Elliptic curve point: a point 𝑃 ∈ 𝐸(𝐹𝑞𝑚) (𝑚 ≥ 1) is either a pair of field elements (𝑥𝑃 , 𝑦𝑃), where 

𝑥𝑃 , 𝑦𝑃 satisfy the ecliptic curve equation, or the point at infinity 𝑂. 

A point can be encoded as a byte string in many forms. A byte PC is used to indicate which form is used. 
The byte string representation of the point at infinity 𝑂 is a unique zero byte 𝑃𝐶 = 00. A nonzero point 
𝑃 = (𝑥𝑃 , 𝑦𝑃) can be represented as one of the following three byte string forms: 
a) Compressed form, 𝑃𝐶 = 02 or 03; 
b) Uncompressed form, 𝑃𝐶 = 04; 
𝑐) Hybrid form, 𝑃𝐶 = 06 or 07. 

Note: The hybrid form contains both the compressed and uncompressed forms. In implementation, the 
hybrid form can be converted into the compressed or uncompressed forms. Implementation of the 
compressed and hybrid forms are optional in this standard. Please refer to Annex A.4 for the details of 
the compressed form. 

6.2 Data type conversions 

6.2.1 Conversion relations between data types 

Figure 1 indicates the conversion relations between the data types. The subclauses for the 

6.2.9 6.2.8 

6.2.6 6.2.7 

field element 

byte string integer bit string 

point 

6.2.2 

6.2.3 

6.2.5 

6.2.4 

Figure 1: Data types and their conversions 
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corresponding conversion methods are given by the marks along the lines. 

 

6.2.2 Conversion of an integer to a byte string 

Input: a non-negative integer 𝑥, and the target length of the byte string 𝑙 (where 𝑙 satisfies 28𝑙 > 𝑥). 

Output: a byte string 𝑀 of 𝑙 bytes long. 

a) Let 𝑀𝑙−1,𝑀𝑙−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right. 

b) The bytes of 𝑀 satisfy: 

𝑥 =∑28𝑖𝑀𝑖

𝑙−1

𝑖=0

. 

 

6.2.3 Conversion of a byte string to an integer 

Input: a byte string 𝑀 of 𝑙 bytes long. 

Output: an integer 𝑥. 

a) Let 𝑀𝑙−1,𝑀𝑙−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right. 

b) Convert 𝑀 to the integer 𝑥: 

𝑥 =∑28𝑖𝑀𝑖

𝑙−1

𝑖=0

. 

6.2.4 Conversion of a bit string to a byte string 

Input: a bit string 𝑠 of 𝑛 bits long. 

Output: a byte string 𝑀 of 𝑙 bytes long, where 𝑙 = ⌈𝑛/8⌉. 

a) Let  𝑠𝑛−1, 𝑠𝑛−2, … , 𝑠0 be the individual bits of 𝑠 from left to right. 

b) Let 𝑀𝑙−1,𝑀𝑙−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right, then 

𝑀𝑖 = 𝑠8𝑖+7𝑠8𝑖+6…𝑠8𝑖+1𝑠8𝑖, where 0 ≤ 𝑖 < 𝑙, and when 8𝑖 + 𝑗 ≥ 𝑛 and 0 < 𝑗 ≤ 7, 𝑠8𝑖+𝑗 = 0. 

6.2.5 Conversion of a byte string to a bit string 

Input: a byte string 𝑀 of 𝑙 bytes long. 

Output: a bit string 𝑠 of 𝑛 bits long, where 𝑛 = 8𝑙. 

a) Let 𝑀𝑙−1,𝑀𝑙−2, … ,𝑀0 be the individual bytes of 𝑀 from left to right. 
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b) Let  𝑠𝑛−1, 𝑠𝑛−2, … , 𝑠0 be the individual bits of 𝑠 from left to right, then 𝑠𝑖  is the (𝑖 − 8𝑗 + 1)th bit of 𝑀𝑗  

from the right, where 𝑗 = ⌊𝑖/8⌋. 

6.2.6 Conversion of a field element to a byte string 

Input:  an element 𝛼 = (𝛼𝑚−1, 𝛼𝑚−2, … , 𝛼1, 𝛼0) in 𝐹𝑞𝑚  (𝑚 ≥ 1), and 𝑞 = 𝑝. 

Output: a byte string 𝑠 of length 𝑙, where 𝑙 = ⌈log2𝑞/8⌉ × 𝑚. 

a) If 𝑚 = 1, then 𝛼 = 𝛼0 (𝑞 = 𝑝), α is an integer in [0, 𝑞 − 1], convert 𝛼 to a byte string 𝑆 of 𝑙 bytes 
long as specified in 6.2.2. 

b) If 𝑚 > 1, then 𝛼 = (𝛼𝑚−1, 𝛼𝑚−2, … , 𝛼1, 𝛼0) (𝑞 = 𝑝), where 𝛼𝑖 ∈ 𝐹𝑞 , 𝑖 = 0,1, … ,𝑚 − 1. 

 1) Let 𝑟 = ⌈ log2𝑞/8⌉. 

2) For 𝑖 from 𝑚 − 1 to 0: 
Convert 𝛼𝑖  (𝑞 = 𝑝)  to a byte string 𝑠𝑖 of 𝑟 bytes long as specified in 6.2.2. 

3) 𝑆 = 𝑠𝑚−1||𝑠𝑚−2||… ||𝑠0. 

6.2.7 Conversion of a byte string to a field element 

Case 1: Convert to element in the base field 

Input: a field 𝐹𝑞 , 𝑞 = 𝑝, and a byte string 𝑆 of 𝑙 bytes long, where 𝑙 = ⌈log2𝑞/8⌉. 

Output: an element 𝛼 in 𝐹𝑞 . 

If 𝑞 = 𝑝, convert 𝑆 to an integer 𝛼 as specified in 6.2.3. If 𝛼 is not in the range [0, 𝑞 − 1], report an error. 

Case 2: Convert to element in extension field 

Input: a field 𝐹𝑞𝑚  (𝑚 ≥ 2), 𝑞 = 𝑝, and a byte string 𝑆 of 𝑙 bytes long, where 𝑙 = ⌈log2𝑞/8⌉ × 𝑚. 

Output: an element 𝛼 in 𝐹𝑞𝑚 . 

a) Equally divide the byte string 𝑆 into 𝑚 parts, where the length of each part is 𝑙/𝑚 bytes long, 
denote it as 𝑆 = (𝑆𝑚−1, 𝑆𝑚−2, … , 𝑆1, 𝑆0). 

b) For 𝑖 from 𝑚 − 1 to 0: 

Convert 𝑆𝑖 to an integer 𝛼𝑖 as specified in 6.2.3, and if 𝛼 is not in [0, 𝑞 − 1], report an error. 

c) If 𝑞 = 𝑝, output 𝑎 = (𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0). 

6.2.8 Conversion of a point to a byte string 

There are two cases in the conversion of a point to a byte string. 

The first case is that in the computation process, convert the elliptic curve point to a byte string before 
setting it as the input of some function (e.g., a hash function). In this case, we only need to convert the 
point to byte string. 
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The second case is when transmitting or storing elliptic curve points, in order to reduce the 
transmission quantity or storage space, we can use the compressed or the hybrid compressed form of 
the points. In such case, we need to add an identifier 𝑃𝐶 to indicate the encoding form of the point. 

The details of the two cases of conversion are as follows. 

Case 1: Direct conversion 

Input: a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) on the elliptic curve 𝐸(𝐹𝑞𝑚), where 𝑃 ≠ 𝑂. 

Output: a byte string 𝑋1||𝑌1 of 2𝑙 bytes long. (If 𝑚 = 1, 𝑙 = ⌈log2𝑞/8⌉; if 𝑚 > 1, 𝑙 = ⌈log2𝑞/8⌉ × 𝑚.) 

a) Convert the field element 𝑥𝑃 to the byte string 𝑋1 of 𝑙 bytes long as specified in 6.2.6; 

b) Convert the field element 𝑦𝑃 to the byte string 𝑌1 of 𝑙 bytes long as specified in 6.2.6; 

c) Output the byte string 𝑋1||𝑌1. 

Case 2: Conversion by adding a byte string identifier 𝑷𝑪 

Input: a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) on the elliptic curve 𝐸(𝐹𝑞𝑚), where 𝑃 ≠ 𝑂. 

Output: a byte string 𝑃𝑂. If the uncompressed form or the hybrid form is used, output a byte string of 
length 2𝑙 + 1; if the compressed form is used, output a byte string of 𝑙 + 1 bytes long. (If 𝑚 = 1, 𝑙 =
⌈log2𝑞/8⌉; if 𝑚 > 1, 𝑙 = ⌈log2𝑞/8⌉ × 𝑚.) 

a) Convert the field element 𝑥𝑃 to the byte string 𝑋1 of 𝑙 bytes long as specified in 6.2.6; 

b) If the compressed form is used, then 

1) Compute the bit 𝑦̃𝑃 . (See Annex A.4.) 

2) If 𝑦̃𝑃 = 0, then let 𝑃𝐶 = 02; if  𝑦̃𝑃=1, 𝑃𝐶 = 03; 

3) Output the byte string 𝑃𝑂 = 𝑃𝐶||𝑋1. 

c) If the uncompressed form is used, then  

1) Convert the field element 𝑦𝑃 to the byte string 𝑌1 of 𝑙 bytes long as specified in 6.2.6; 

2) Let 𝑃𝐶 = 04; 

3) Output the byte string 𝑃𝑂 = 𝑃𝐶|| 𝑋1||𝑌1. 

d) If the hybrid form is used, then 

1) Convert the field element 𝑦𝑃 to the byte string 𝑌1 of 𝑙 bytes long as specified in 6.2.6; 

2) Compute the bit 𝑦̃𝑃; (See Annex A.4.) 

3) If 𝑦̃𝑃 = 0, then let 𝑃𝐶 = 06; if 𝑦̃𝑃 = 1, 𝑃𝐶 = 07; 

4) Output the byte string 𝑃𝑂 = 𝑃𝐶|| 𝑋1||𝑌1. 
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6.2.9 Conversion of a byte string to a point 

The conversion of a byte string to a point is the inverse process of 6.2.8. The conversion is explained in 
the following two cases. 

Case 1: Direct conversion 

Input: field elements 𝑎 and 𝑏 which define an elliptic curve over 𝐹𝑞𝑚  (𝑚 ≥ 1), and the byte string 𝑋1||𝑌1 

of length 2𝑙 bytes long. The lengths of both 𝑋1 and 𝑌1 are 𝑙 bytes. (If 𝑚 = 1, 𝑙 = ⌈log2𝑞/8⌉; if 𝑚 > 1, 𝑙 =
⌈log2𝑞/8⌉ × 𝑚.). 

Output: a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) of the elliptic curve, where 𝑃 ≠ 𝑂. 

a) Convert the byte string 𝑋1 to a field element 𝑥𝑃 as specified in 6.2.7; 

b) Convert the byte string 𝑌1 to a field element 𝑦𝑃 as specified in 6.2.7; 

Case 2: Conversion of a byte string containing the byte identifier 𝑷𝑪  

Input: field elements 𝑎 and 𝑏 which define an elliptic curve over 𝐹𝑞𝑚  (𝑚 ≥ 1), and the byte string 𝑃𝑂. If 

the uncompressed or hybrid forms are used, the length of 𝑃𝑂 is 2𝑙 + 1 bytes long. If the compressed 
form is used, the length of 𝑃𝑂 is 𝑙 + 1 bytes long. (If 𝑚 = 1, then 𝑙 = ⌈log2𝑞/8⌉; if 𝑚 > 1, then 𝑙 =
⌈log2𝑞/8⌉ × 𝑚.) 

Output: a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) of the elliptic curve, where 𝑃 ≠ 𝑂. 

a) If the compressed form is used, then 𝑃𝑂 = 𝑃𝐶||𝑋1; if the uncompressed or hybrid forms are used, 
𝑃𝑂 = 𝑃𝐶|| 𝑋1||𝑌1, where 𝑃𝐶 is a single byte, and both 𝑋1 and 𝑌1 are byte strings of 𝑙 bytes long; 

b) Convert the byte string 𝑋1 to a field element 𝑥𝑃 as specified in 6.2.7; 

c) If the compressed form is used, then 

1) Check whether 𝑃𝐶 = 02 or 𝑃𝐶 = 03; if not, report an error; 
2) If 𝑃𝐶 = 02, then let 𝑦̃𝑃 = 0; if 𝑃𝐶 = 03, let 𝑦̃𝑃 = 1; 
3) Convert (𝑥𝑃 , 𝑦̃𝑃) to a point (𝑥𝑃 , 𝑦𝑃) on the elliptic curve; (See Annex A.4.) 

d) If the uncompressed form is used, then 

1) Check whether PC = 04; if not, report error; 

2) Convert the byte string 𝑌1 to a field element 𝑦𝑃 as specified in 6.2.7; 

e) If the hybrid form is used, then 

e.1) Check whether 𝑃𝐶 = 06 or 𝑃𝐶 = 07; if not, report an error; 

e.2) Perform e.2.1) or e.2.2): 

 Convert the byte string 𝑌1 to a field element 𝑦𝑃 as specified in 6.2.7; 

 If 𝑃𝐶 = 06, then let 𝑦̃𝑃 = 0, otherwise let 𝑦̃𝑃 = 1; convert (𝑥𝑃 , 𝑦̃𝑃) to a point (𝑥𝑃 , 𝑦𝑃) on the 
elliptic curve; (See Annex A.4.) 
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f) Check whether (𝑥𝑃 , 𝑦𝑃) satisfies the equation of the curve; if not, report an error; 

g) 𝑃 = (𝑥𝑃 , 𝑦𝑃). 

7 System parameters and parameters verification 

7.1 System parameters 

The system parameters include: 

a) The curve identifier 𝑐𝑖𝑑 is denoted by one byte: 0x10 represents an ordinary curve over 𝐹𝑞 

(where the prime number 𝑞 > 3), 0x11 represents a supersingular curve over 𝐹𝑞 , and 0x12 

represents an ordinary curve and the corresponding twisted curve over 𝐹𝑞; 

b) The parameter of the base field 𝐹𝑞  of the elliptic curve: the parameter of the base field is a 

prime number 𝑞 > 3; 

c) Two elements 𝑎 and 𝑏 in 𝐹𝑞 , which define the equation of the elliptic curve 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏; 

the twisted curve parameter 𝛽 (if the least 4 significant bits of 𝑐𝑖𝑑 is 2); 

d) The cofactor 𝑐𝑓 and a prime number 𝑁, where 𝑐𝑓 × 𝑁 = #𝐸(𝐹𝑞). GM/T 0044‒2016 requires 

𝑁 > 2191 and 𝑁 is not divisible by 𝑐𝑓. If 𝑁 < 2360, GM/T 0044‒2016 recommends that 𝑁 − 1 
has prime factors greater than 2190 and 𝑁 + 1 has prime factors greater than 2120; 

e) The embedding degree 𝑘 of the curve 𝐸(𝐹𝑞) relative to 𝑁. (The cyclic group with order  

(𝔾𝑇 ,∙) ⊂ 𝐹𝑞𝑘
∗ ). GM/T 0044‒2016 specifies that 𝑞𝑘 > 21536; 

f) A generator 𝑃1 = (𝑥𝑃1 , 𝑦𝑃1) of the cyclic group (𝔾1, +), where 𝑃1 ≠ 𝑂; 

g) A generator 𝑃2 = (𝑥𝑃2 , 𝑦𝑃2) of the cyclic group (𝔾2, +), where 𝑃2 ≠ 𝑂; 

h) The bilinear pairing 𝑒: 𝔾1 × 𝔾2 → 𝔾𝑇 is denoted by one byte identifier 𝑒𝑖𝑑: 0x01 represents 
the Tate pairing, 0x02 represents the Weil pairing, 0x03 represents the Ate pairing, and 0x04 
represents the R-ate pairing; 

i) (Optional) The parameters 𝑑1, 𝑑2, both of which are factors of 𝑘; 

j) (Optional) The homomorphism 𝛹 from 𝔾2 to 𝔾1 such that 𝑃1 = 𝛹(𝑃2); 

k) (Optional) The characteristic of the base field of the BN curves, the order of curve 𝑟, and the 
trace of the Frobenius map which can be determined by the parameter 𝑡, where 𝑡 is at least 63 
bits long. 

7.2 Verification of the system parameters 

The following conditions shall be verified by the generator of the system parameters. They can also be 
verified by the users of the system parameters. 

Input: the set of the system parameters. 

Output: if all parameters are valid, output “valid”; otherwise output “invalid”. 

a) Verify that 𝑞 is a prime greater than 3; (See Annex C.1.5.) 
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b) Verify that 𝑎, 𝑏 are integers in [0, 𝑞 − 1]; 

c) Verify that 4𝑎3 + 27𝑏2 ≠ 0 over 𝐹𝑞; if the least 4 significant bits of 𝑐𝑖𝑑 are 2, verify that 𝛽 is a non-

square element; (See Annex C.1.4.3.1.) 

d) Verify that 𝑁 is a prime greater than 2191 and 𝑐𝑓 is not divisible by 𝑁; if 𝑁 < 2360, verify that 𝑁 − 1 
has prime factors greater than 2190 and 𝑁 + 1 has prime factors greater than 2120; 

e) Verify that |𝑞 + 1 − 𝑐𝑓 × 𝑁| < 2𝑞1/2; 

f) Verify that 𝑞𝑘 > 21536 and 𝑘 is the smallest positive integer 𝑚 such that 𝑁 | (𝑞𝑚 − 1); 

g) Verify that (𝑥𝑃1 , 𝑦𝑃1) is an element of 𝔾1; 

h) Verify that (𝑥𝑃2 , 𝑦𝑃2) is an element of 𝔾2; 

i) Verify 𝑒(𝑃1, 𝑃2) ∈ 𝐹𝑞𝑘
∗ \{1}, and 𝑒(𝑃1, 𝑃2)

𝑁 = 1; 

j) (Optional) Verify 𝑑1, 𝑑2 | 𝑘; 

k) (Optional) Verify that 𝑃1 = 𝛹(𝑃2); 

If any of the above verification fails, output “invalid”; otherwise output “valid”. 
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Annex A 
(informative) 

 
Elliptic curve basics 

A.1 Finite field 

A.1.1 Prime field 𝑭𝒑 

Suppose 𝑝 is prime, then in the set of remainders {0,1,2, . . . , 𝑝 − 1} modulo 𝑝, the addition and 
multiplication in terms of the arithmetic of integers modulo 𝑝 form a 𝑝-order prime field, which is 
symbolized by 𝐹𝑝. The additive identity is 0, while the multiplicative identity is 1. The elements of 𝐹𝑝 

have the following operation rules: 
-- Addition: if 𝑎, 𝑏 ∈ 𝐹𝑝, then 𝑎 + 𝑏 = 𝑟, where 𝑟 = (𝑎 + 𝑏) mod 𝑝, 𝑟 ∈ [0, 𝑝 − 1]. 

-- Multiplication: if 𝑎, 𝑏 ∈ 𝐹𝑝, then 𝑎 ⋅ 𝑏 = 𝑠, where 𝑠 = (𝑎 · 𝑏) mod 𝑝, 𝑠 ∈ [0, 𝑝 − 1]. 

Let 𝐹𝑝
∗ be the multiplicative group composed of all nonzero elements of 𝐹𝑝. Since 𝐹𝑝

∗ is a multiplicative 

group, there is at least one element 𝑔 in 𝐹𝑝, satisfying that any nonzero element in 𝐹𝑝 can be represented 

by the power of 𝑔. We call 𝑔 the generator (primitive element) of 𝐹𝑝
∗, and 𝐹𝑝

∗ = {𝑔𝑖 | 0 ≤ 𝑖 ≤ 𝑝 − 2}. Let 

𝑎 = 𝑔𝑖 ∈ 𝐹𝑝
∗, and 0 ≤ 𝑖 ≤ 𝑝 − 2, then the multiplicative inverse of 𝑎 is: 𝑎−1 = 𝑔𝑝−1−𝑖. 

Example 1: the prime field 𝐹19 = {0, 1, 2, … , 18}. 

Example of addition in 𝐹19: 10, 14 ∈ 𝐹19, 10 + 14 = 24, 24 mod 19 = 5, then 10 + 14 = 5. 

Example of multiplication in 𝐹19: 7, 8 ∈ 𝐹19, 7 × 8 = 56, 56 mod 19 = 18, then 7 ⋅ 8 = 18. 

13 is a generator of 𝐹19
∗ , then the elements of 𝐹19

∗  can be represented by the powers of 13: 
130 = 1, 131 = 13, 132 = 17, 133 = 12, 134 = 4, 135 = 14, 136 = 11, 137 =  10, 138 =  16, 139 =
18,1310 = 6, 1311 = 2, 1312 = 7, 1313 = 15, 1314 = 5, 1315 = 8, 1316 = 9, 1317 = 3, 1318 = 1. 

A.1.2 Finite field 𝑭𝒒𝒎  

Suppose 𝑞 is a prime or a prime power, 𝑓(𝑥) be an 𝑚-degree (𝑚 > 1) irreducible polynomial (which is 
called the reduced polynomial or the field polynomial) in the polynomial ring 𝐹𝑞[𝑥], the quotient ring 

𝐹𝑞[𝑥]/(𝑓(𝑥)) be a finite field composed of 𝑞𝑚 elements, then 𝐹𝑞𝑚  is an extension field of 𝐹𝑞 , 𝐹𝑞 is a 

subfield of 𝐹𝑞𝑚 , 𝑚 is the extension degree. 𝐹𝑞𝑚  can be seen as the 𝑚-dimensional vector space of 𝐹𝑞 , 

that is to say there exist 𝑚 elements 𝛼0, 𝛼1, … , 𝛼𝑚−1 in 𝐹𝑞𝑚 , such that ∀𝛼 ∈ 𝐹𝑞𝑚 , 𝛼 can be uniquely 

represented by 𝛼 = 𝑎𝑚−1𝛼𝑚−1+⋯+ 𝑎0𝛼0 + 𝑎1𝛼1 (𝑎𝑖 ∈ 𝐹𝑞), then {𝛼0, 𝛼1,⋯ , 𝛼𝑚−1} is called a basis of 

𝐹𝑞𝑚  over 𝐹𝑞 . Given such a basis, then we can use the vector (𝑎0, 𝑎1, … , 𝑎𝑚−1) to represent the field 

element 𝛼. 

There are many possible choices for the selection of a basis, such as the polynomial basis and the 
normal basis. 

Suppose the irreducible polynomial 𝑓(𝑥) is a monic polynomial 𝑓(𝑥) = 𝑥𝑚 + 𝑓𝑚−1𝑥
𝑚−1 +⋯+ 𝑓2𝑥

2 +
𝑓1𝑥 + 𝑓0 (𝑓𝑖 ∈ 𝐹𝑞 , 𝑖 = 0,1,… ,𝑚 − 1), and the elements of 𝐹𝑞𝑚  can be represented by all polynomials with 

degree less than 𝑚 in the polynomial ring 𝐹𝑞[𝑥], that is, 𝐹𝑞𝑚  = {𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 +··· +𝑎1𝑥 +

𝑎0 | 𝑎𝑖 ∈ 𝐹𝑞 , 𝑖 = 0,1, . . . , 𝑚 − 1}. The set of polynomials {𝑥𝑚−1, 𝑥𝑚−2, … , 𝑥, 1} is a basis of 𝐹𝑞𝑚  as a vector 
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space over 𝐹𝑞 , which is called a polynomial basis. When 𝑚 has a divisor 𝑑 (1 < 𝑑 < 𝑚), 𝐹𝑞𝑑  could be 

extended to 𝐹𝑞𝑚 . If a suitable 𝑚/𝑑-degree irreducible polynomial is selected from 𝐹𝑞𝑑[𝑥] to act as 𝐹𝑞𝑚 ’s 

reduced polynomial on 𝐹𝑞𝑑 , then 𝐹𝑞𝑚  could be generated according to the towering method. This 

extension’s basic forms are still vectors composed of the elements of 𝐹𝑞 . For example, when 𝑚 = 6, 𝐹𝑞  

could be extended three times to the extension field 𝐹𝑞3 , and 𝐹𝑞3  could be further extended twice to the 

extension field 𝐹𝑞6 . 𝐹𝑞  could be extended twice to the extension field 𝐹𝑞2 , and 𝐹𝑞2 could be further 

extended three times to the extension field 𝐹𝑞6 . 

The basis of the form {𝛽, 𝛽𝑞 , 𝛽𝑞
2
, . . . , 𝛽𝑞

𝑚−1
} of 𝐹𝑞𝑚  over 𝐹𝑞 are called normal basis, where 𝛽 ∈ 𝐹𝑞𝑚 . ∀𝑎 ∈

𝐹𝑞𝑚 , 𝑎 could be represented as 𝑎 = 𝑎0𝛽 + 𝑎1𝛽
𝑞 +··· +𝑎𝑚−1𝛽

𝑞𝑚−1 , where 𝑎𝑖 ∈ 𝐹𝑞 , 𝑖 = 0,1, . . . , 𝑚 − 1. For 

any finite field 𝐹𝑞 and its extension field 𝐹𝑞𝑚 , such basis always exist. 

Unless otherwise specified, all elements in 𝐹𝑞𝑚  are represented by the polynomial basis. 

The field element 𝑎𝑚−1𝑥
𝑚−1 + 𝑎𝑚−2𝑥

𝑚−2 +··· +𝑎1𝑥 + 𝑎0  could be represented by the vector 
(𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0) in terms of the polynomial basis, so 𝐹𝑞𝑚 = {(𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0) | 𝑎𝑖 ∈ 𝐹𝑞 , 𝑖 =

 0,1, … ,𝑚 − 1}.  

The multiplicative identity is represented by (0, … ,0,1), and the zero element is represented by 
(0, … ,0,0). The addition and multiplication of the field elements are defined as follows. 

Addition. ∀(𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0), (𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏1, 𝑏0) ∈ 𝐹𝑞𝑚 , then (𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0) +

(𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏1, 𝑏0) = (𝑐𝑚−1, 𝑐𝑚−2, … , 𝑐1, 𝑐0), where 𝑐𝑖 = 𝑎𝑖 + 𝑏𝑖, 𝑖 = 0,1,… ,𝑚 − 1. That is, addition is 
implemented by component-wise addition in 𝐹𝑞 . 

Multiplication. ∀(𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0), (𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏1, 𝑏0) ∈ 𝐹𝑞𝑚 , then (𝑎𝑚−1, 𝑎𝑚−2, … , 𝑎1, 𝑎0) ⋅

(𝑏𝑚−1, 𝑏𝑚−2, … , 𝑏1, 𝑏0) = (𝑟𝑚−1, 𝑟𝑚−2, … , 𝑟1, 𝑟0) , where the polynomial 𝑟𝑚−1𝑥
𝑚−1 + 𝑟𝑚−2𝑥

𝑚−2 +···
+𝑟1𝑥 + 𝑟0 is the remainder of (𝑎𝑚−1𝑥

𝑚−1 + 𝑎𝑚−2𝑥
𝑚−2 +··· +𝑎1𝑥 + 𝑎0) ⋅ (𝑏𝑚−1𝑥

𝑚−1 + 𝑏𝑚−2𝑥
𝑚−2 +···

+𝑏1𝑥 + 𝑏0) modulo 𝑓(𝑥) in 𝐹𝑞[𝑥]. 

𝐹𝑞𝑚  contains 𝑞𝑚 elements. Let 𝐹𝑞𝑚
∗  be the multiplicative group composed of all nonzero elements in 

𝐹𝑞𝑚 . Since 𝐹𝑞𝑚  is a multiplicative group, there exists at least one element 𝑔 in 𝐹𝑞𝑚  such that any 

nonzero element of 𝐹𝑞𝑚  can be represented by the powers of 𝑔. 𝑔 is called the generator (or primitive 

element) of 𝐹𝑞𝑚
∗ , and 𝐹𝑞𝑚

∗ = {𝑔𝑖 | 0 ≤ 𝑖 ≤ 𝑞𝑚 − 2}. Let 𝑎 = 𝑔𝑖 ∈ 𝐹𝑞𝑚
∗ , where 0 ≤ 𝑖 ≤ 𝑞𝑚 − 2, then the 

multiplicative inverse of 𝑎 is 𝑎−1 = 𝑔𝑞
𝑚−1−𝑖. 

Example 2: the polynomial basis representation of 𝐹32 . 

Let 𝑓(𝑥) = 𝑥2 + 1 be an irreducible polynomial over 𝐹3, then the elements of 𝐹32 are: 
(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2). 
Addition: (2,1) + (2,0) = (1,1) . 
Multiplication: (2,1) ⋅ (2,0) = (2,2) 

(2𝑥 + 1) ⋅ 2𝑥 = 4𝑥2 + 2𝑥 
= 𝑥2 + 2𝑥 
= 2𝑥 + 2 (mod 𝑓(𝑥)) 

That is, 2𝑥 + 2 is the reminder of (2𝑥 + 1) ⋅ 2𝑥 modulo 𝑓(𝑥). 

The multiplicative identity is (0, 1), and 𝛼 = 𝑥 + 1 is a generator of 𝐹32
∗ , then the powers of 𝛼 are 

𝛼0 = (0,1), 𝛼1 = (1,1), 𝛼2 = (2,0), 𝛼3 = (2,1), 𝛼4 = (0,2), 𝛼5 = (2,2), 𝛼6 = (1,0), 𝛼7 = (1,2), 𝛼8 =
(0,1). 
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A.1.3 Elliptic curves over finite fields 

A.1.3.1 Overview 

There are two common representations for the elliptic curves over finite fields: an affine coordinate and 
a projective coordinate. 

A.1.3.2 Affine coordinate 

Suppose 𝑝 is a prime greater than 3, the elliptic curve equation over 𝐹𝑝𝑚  in the affine coordinate system 

can be simplified as 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, where 𝑎, 𝑏 ∈ 𝐹𝑝, satisfying (4𝑎3 + 27𝑏2) mod 𝑝 ≠ 0. The set of 

points on the elliptic curve is denoted by 𝐸(𝐹𝑝𝑚) = {(𝑥, 𝑦) | 𝑥, 𝑦 ∈ 𝐹𝑝𝑚 , satisfying the equation 𝑦
2 =

𝑥3 + 𝑎𝑥 + 𝑏} ∪ {𝑂}, where 𝑂 in the point at infinity, also called the zero point. 

The points on 𝐸(𝐹𝑝𝑚) form an abelian group according to the following addition operation rules: 

a) 𝑂 +  𝑂 =  𝑂; 
b) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃; 

𝑐) ∀𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, the inverse element of 𝑃 is –𝑃 = (𝑥,−𝑦), 𝑃 + (−𝑃) = 𝑂; 

d) 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, and 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 + 𝑃2 ≠ 𝑂, then 

{
𝑥3 = 𝜆

2 − 𝑥1 − 𝑥2,

𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1,
 

where 

λ =

{
 

 
𝑦2 − 𝑦1
𝑥2 − 𝑥1

,   if 𝑥1 ≠ 𝑥2,

3𝑥1
2 + 𝑎

2𝑦1
,   if 𝑥1 = 𝑥2, and 𝑃2 ≠ −𝑃1.

 

Example 3: an elliptic curve over 𝑭𝟏𝟗 

The equation over 𝐹19: 𝑦2 = 𝑥3 + 𝑥 + 1, where 𝑎 = 1, 𝑏 = 1. The points on the curve are: 

(0,1) , (0,18) , (2,7) , (2,12) , (5,6) , (5,13) , (7,3) , (7,16) , (9,6) , (9,13) , (10,2) , (10,17) , (13,8) , (13,11) , 
(14,2), (14,17), (15,3), (15,16), (16,3), (16,16). 

There are 21 points (including 𝑂) on 𝐸(𝐹19). 

a) Let 𝑃1 = (10, 2), 𝑃2 = (9, 6), then compute 𝑃3 = 𝑃1 + 𝑃2: 

λ =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

=
6 − 2

9 − 10
=
4

−1
= −4 ≡ 15 (mod 19), 

𝑥3 = 152 − 10 − 9 = 225 − 10 − 9 = 16 − 10 − 9 = −3 ≡ 16 (mod 19), 
𝑦3 = 15 × (10 –  16)–  2 = 15 × (– 6)–  2 ≡ 3 (mod 19), 

thus, 𝑃3 = (16, 3). 

b) Let 𝑃1  =  (10, 2), then compute [2]𝑃1: 

λ =
3𝑥1

2 + 𝑎

2𝑦1
=
3 × 102 + 1

2 × 2
=
3 × 5 + 1

4
=
16

4
= 4 (mod 19), 

𝑥3 = 42 − 10 − 10 =  −4 ≡ 15(mod 19), 
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𝑦3 = 4 × (10 –  15)–  2 =–22 ≡ 16(mod 19), 

thus, [2]𝑃1 = (15, 16). 

A.1.3.3 Projective coordinate 

A.1.3.3.1 Standard projective coordinate system 

The elliptic curve equation over 𝐹𝑝𝑚  in the standard projective coordinate system can be simplified as 

𝑦2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3, where 𝑎, 𝑏 ∈ 𝐹𝑝𝑚 , satisfying 4𝑎3 + 27𝑏2 ≠ 0. The set of points on the elliptic 

curve is denoted by 𝐸(𝐹𝑝𝑚) = {(𝑥, 𝑦, 𝑧) | 𝑥, 𝑦, 𝑧 ∈ 𝐹𝑝𝑚 , satisfying the equation 𝑦
2𝑧 = 𝑥3 + 𝑎𝑥𝑧2 + 𝑏𝑧3}. 

For (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2), if there is a 𝑢 ∈ 𝐹𝑝𝑚  (𝑢 ≠ 0) such that 𝑥1 = 𝑢𝑥2, 𝑦1 = 𝑢𝑦2, and 𝑧1 = 𝑢𝑧2, 

then these two triples are equivalent, and they represent the same point. 

If 𝑧 ≠ 0, let 𝑋 = 𝑥/𝑧, 𝑌 = 𝑦/𝑧, then the standard projective coordinates can be converted to the affine 
coordinates: 𝑌2 = 𝑋3 + 𝑎𝑋 + 𝑏. 

If 𝑧 = 0, then the point (0,1,0) corresponds to the point at infinity 𝑂 of the affine coordinate system. 

In the standard projective coordinate system, the addition of the points on 𝐸(𝐹𝑝𝑚) is defined as follows: 

a) 𝑂 +  𝑂 =  𝑂; 
b) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃; 

𝑐) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, the inverse element of 𝑃 is –𝑃 = (𝑢𝑥,−𝑢𝑦, 𝑢𝑧), 𝑢 ∈ 𝐹𝑝𝑚  (𝑢 ≠

0), and 𝑃 + (−𝑃) = 𝑂; 
d) Let 𝑃1 = (𝑥1, 𝑦1, 𝑧1) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, and 𝑃3 = 𝑃1 + 𝑃2 =

(𝑥3, 𝑦3, 𝑧3) ≠ 𝑂. 
If 𝑃1 ≠ 𝑃2, then 
𝜆1 = 𝑥1𝑧2, 𝜆2 = 𝑥2𝑧1, 𝜆3 = 𝜆1 − 𝜆2, 𝜆4 = 𝑦1𝑧2, 𝜆5 = 𝑦2𝑧1, 𝜆6 = 𝜆4 − 𝜆5, 𝜆7 = 𝜆1 + 𝜆2, 𝜆8 = 𝑧1𝑧2, 𝜆9 = 𝜆3

2, 
𝜆10 = 𝜆3𝜆9, 𝜆11 = 𝜆8𝜆6

2 − 𝜆7𝜆9, 𝑥3 = 𝜆3𝜆11, 𝑦3 = 𝜆6(𝜆9𝜆1 − 𝜆11) − 𝜆4𝜆10, 𝑧3 = 𝜆10𝜆8. 
If 𝑃1 = 𝑃2, then 
𝜆1 = 3𝑥1

2 + 𝑎𝑧1
2, 𝜆2 = 2𝑦1𝑧1, 𝜆3 = 𝑦1

2, 𝜆4 = 𝜆3𝑥1𝑧1, 𝜆5 = 𝜆2
2, 𝜆6 = 𝜆1

2 − 8𝜆4, 𝑥3 = 𝜆2𝜆6, 𝑦3 = 𝜆1(4𝜆4 −
𝜆6) − 2𝜆5𝜆3, 𝑧3 = 𝜆2𝜆5. 

A.1.3.3.2 Jacobian projective coordinate system 

The elliptic curve equation over 𝐹𝑝𝑚  in the Jacobian projective coordinate system can be simplified as 

𝑦2 = 𝑥3 + 𝑎𝑥𝑧4 + 𝑏𝑧6, where 𝑎, 𝑏 ∈ 𝐹𝑝𝑚 , satisfying 4𝑎3 + 27𝑏2 ≠ 0. The set of points on the elliptic 

curve is denoted by 𝐸(𝐹𝑝𝑚) = {(𝑥, 𝑦, 𝑧) | 𝑥, 𝑦, 𝑧 ∈ 𝐹𝑝𝑚 , satisfying the equation 𝑦
2 = 𝑥3 + 𝑎𝑥𝑧4 + 𝑏𝑧6}. 

For (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2), if there is a 𝑢 ∈ 𝐹𝑝𝑚  (𝑢 ≠ 0) such that 𝑥1 = 𝑢
2𝑥2, 𝑦1 = 𝑢

3𝑦2, and 𝑧1 = 𝑢𝑧2, 

then these two triples are equivalent, and they represent the same point. 

If 𝑧 ≠ 0, let 𝑋 = 𝑥/𝑧2, 𝑌 = 𝑦/𝑧3, then the Jacobian projective coordinates can be converted to the affine 
coordinates: 𝑌2 = 𝑋3 + 𝑎𝑋 + 𝑏. 

If 𝑧 = 0, then the point (1,1,0) corresponds to the point at infinity 𝑂 of the affine coordinate system. 

In the Jacobian projective coordinate system, the addition of the points on 𝐸(𝐹𝑝𝑚) is defined as follows:  

a) 𝑂 +  𝑂 =  𝑂; 
b) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃; 

𝑐) ∀𝑃 = (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, the inverse element of 𝑃 is –𝑃 = (𝑢2𝑥,−𝑢3𝑦, 𝑢𝑧), 𝑢 ∈ 𝐹𝑝𝑚  (𝑢 ≠

0), and 𝑃 + (−𝑃) = 𝑂; 
d) Let 𝑃1 = (𝑥1, 𝑦1, 𝑧1) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ 𝐸(𝐹𝑝𝑚)\{𝑂}, and 𝑃3 = 𝑃1 + 𝑃2 =
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(𝑥3, 𝑦3, 𝑧3) ≠ 𝑂. 
If 𝑃1 ≠ 𝑃2, then 
𝜆1 = 𝑥1𝑧2

2, 𝜆2 = 𝑥2𝑧1
2, 𝜆3 = 𝜆1 − 𝜆2, 𝜆4 = 𝑦1𝑧2

3, 𝜆5 = 𝑦2𝑧1
3, 𝜆6 = 𝜆4 − 𝜆5, 𝜆7 = 𝜆1 + 𝜆2, 𝜆8 = 𝜆4 + 𝜆5, 𝜆9 =

𝜆7𝜆3
2, 𝑥3 = 𝜆6

2 − 𝜆9, 𝜆10 = 𝜆9
2 − 2𝑥3, 𝑦3 = (𝜆10𝜆6 − 𝜆8𝜆3

3)/2, 𝑧3 = 𝑧1𝑧2𝜆3. 
If 𝑃1 = 𝑃2, then 
𝜆1 = 3𝑥1

2 + 𝑎𝑧1
4, 𝜆2 = 4𝑥1𝑦1

2, 𝜆3 = 8𝑦1
4, 𝑥3 = 𝜆1

2 − 2𝜆2, 𝑦3 = 𝜆1(𝜆2 − 𝑥3) − 𝜆3, 𝑧3 = 2𝑦1𝑧1. 

A.1.4 Order of elliptic curves over finite field 

The order of an elliptic curve over finite field 𝐹𝑞𝑚  is the number of elements in the set 𝐸(𝐹𝑞𝑚), denoted 

by #𝐸(𝐹𝑞𝑚). According to the Hasse theorem, we have 𝑞𝑚 + 1 − 2𝑞𝑚/2 ≤ #𝐸(𝐹𝑞𝑚)  ≤ 𝑞
𝑚 + 1 + 2𝑞𝑚/2, 

that is to say, #𝐸(𝐹𝑞𝑚) =  𝑞
𝑚 + 1 − 𝑡, where 𝑡 is called the Frobenius trace, satisfying |𝑡| ≤ 2𝑞𝑚/2.  

If the Frobenius trace 𝑡 is divisible by the characteristic of 𝐹𝑞𝑚 , this curve is supersingular; otherwise, it 

is non-supersingular.  

Suppose 𝐸(𝐹𝑞𝑚) is an elliptic curve over 𝐹𝑞𝑚 , the integer 𝑟 and 𝑞𝑚 are coprime, then the 𝑟-order 

twisted subgroup of 𝐸(𝐹𝑞𝑚) is 𝐸(𝐹𝑞𝑚)[𝑟] = {𝑃 ∈ 𝐸(𝐹𝑞𝑚) | [𝑟]𝑃 = 𝑂} and any 𝑃 ∈ 𝐸(𝐹𝑞𝑚)[𝑟] is an 𝑟-

fulcrum. 

A.2 Elliptic curve scalar multiplication 

The operation of adding a point along an elliptic curve to itself repeatedly is called the scalar 
multiplication of the point. Let 𝑢 be a positive integer, 𝑃 be a point on an elliptic curve, then the 𝑢 
multiple of the point 𝑃 is denoted as 𝑄 = [𝑢]𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏟          

𝑢 𝑃′s

. 

Scalar multiplication can be extended to 0-scalar and negative-scalar: [0]𝑃 = 0, [−𝑢]𝑃 = [𝑢](−𝑃). 

There are many ways to implement elliptic curve scalar multiplication, and the most fundamental three 
methods are noted here, where 1 ≤ 𝑢 < 𝑁. 

Algorithm 1: Binary expansion method 

Input: a point 𝑃, an 𝑙-bit long integer 𝑢 = ∑
𝑙−1

𝑗=0
𝑢𝑗2

𝑗, 𝑢𝑗 ∈ {0, 1}. 

Output: 𝑄 = [𝑢]𝑃. 

a) Set 𝑄 = 𝑂; 

b) For 𝑗 = 𝑙 − 1 to 0: 

b.1) 𝑄 = [2]𝑄; 

b.2) If 𝑢𝑗 = 1, then 𝑄 =  𝑄 + 𝑃; 

 𝑐) Output 𝑄. 

Algorithm 2: Addition and subtraction method 

Input: a point 𝑃, an 𝑙-bit long integer 𝑢 = ∑
𝑙−1

𝑗=0
𝑢𝑗2

𝑗, 𝑢𝑗 ∈ {0, 1}. 



   20  

Output: 𝑄 = [𝑢]𝑃. 

a) Suppose the binary representation of 3𝑢 is ℎ𝑟ℎ𝑟−1…ℎ1ℎ0, and the most significant bit ℎ𝑟 is 1. 
Obviously 𝑟 = 𝑙 or 𝑟 = 𝑙 + 1; 

b) The binary representation of 𝑢 is 𝑢𝑟𝑢𝑟−1…𝑢1𝑢0; 

c) Set 𝑄 = 𝑃; 

d) For 𝑖 = 𝑟 − 1 to 1: 

d.1) 𝑄 = [2]𝑄; 

d.2) If ℎ𝑖 = 1 and 𝑢𝑖 = 0, then 𝑄 = 𝑄 + 𝑃; 

d.3) If ℎ𝑖 = 0 and 𝑢𝑖 = 1, then 𝑄 = 𝑄 − 𝑃; 

e) Output 𝑄. 

Note: Subtracting the point (𝑥, 𝑦) is equivalent to adding the point (𝑥, −𝑦). There are many different 
methods to accelerate this operation. 

Algorithm 3: Sliding window method 

Input: a point 𝑃, an 𝑙-bit long integer 𝑢 = ∑
𝑙−1

𝑗=0
𝑢𝑗2

𝑗, 𝑢𝑗 ∈ {0, 1}. 

Output: 𝑄 = [𝑢]𝑃. 

Let the window length 𝑟 > 1. 

Pre-computation: 

a) 𝑃1 = 𝑃, 𝑃2 = [2]𝑃; 

b) For 𝑖 = 1 to 2𝑟−1 − 1, compute 𝑃2𝑖+1 = 𝑃2𝑖−1 + 𝑃2; 

c) Set 𝑗 = 𝑙 − 1, 𝑄 = 0. 

Main loop:  

d) When 𝑗 ≥ 0: 

d.1) if 𝑢𝑗 = 0, then 𝑄 = [2]𝑄, 𝑗 = 𝑗 − 1; 

d.2) otherwise 

d.2.1) let 𝑡 be the smallest integer satisfying 𝑗 − 𝑡 + 1 ≤ 𝑟 and 𝑢𝑡 = 1; 

d.2.2) ℎ𝑗 = ∑
𝑗−𝑡

𝑖=0
𝑢𝑡+𝑖2

𝑖; 

d.2.3) 𝑄 = [2𝑗−𝑡+1]𝑄 + 𝑃ℎ𝑗; 
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d.2.4) set 𝑗 = 𝑡 − 1; 

e) Output 𝑄.  

A.3 Discrete logarithm problem 

A.3.1 Methods to solve the field discrete logarithm problem 

Let 𝐹𝑞
∗ be the multiplicative group composed of all nonzero elements in the finite field 𝐹𝑞 . We call 𝑔 the 

generator of 𝐹𝑞
∗, and 𝐹𝑞

∗ = {𝑔𝑖 | 0 ≤ 𝑖 ≤ 𝑞 − 2}. The order of 𝑎 ∈ 𝐹𝑞 is the smallest positive integer 𝑡 

satisfying 𝑎𝑡 = 1. The order of the multiplicative group 𝐹𝑞
∗ is 𝑞 − 1, so 𝑡 | 𝑞 − 1.  

Suppose the generator of the multiplicative group 𝐹𝑞
∗ is 𝑔 and 𝑦 ∈ 𝐹𝑞

∗, the finite field discrete logarithm 

problem is to determine the integer 𝑥 ∈ [0, 𝑞 − 2] such that 𝑦 = 𝑔𝑥 mod 𝑞. 

The existing attacks on the finite field discrete logarithm problem are: 

a) Pohlig-Hellman method: let 𝑙 be the largest prime divisor of 𝑞 − 1, then the time complexity is 
𝑂(𝑙1/2); 

b) BSGS method: the time and space complexity are both (𝜋𝑞/2)1/2; 

c) Pollard's method: the time complexity is (𝜋𝑞/2)1/2; 

d) Parallel Pollard's method: let 𝑠 be the number of parallel processors, the time complexity reduces 
to (𝜋𝑞/2)1/2/𝑠; 

e) Linear sieve method (for the prime fields 𝐹𝑞): the time complexity is exp ((1 +

𝑜(1))(log 𝑞)1/2(log log 𝑞)1/2); 

f) Gauss integer method (for the prime fields 𝐹𝑞): the time complexity is exp ((1 +

𝑜(1))(log 𝑞)1/2(log log 𝑞)1/2); 

g) Remainder listing sieve method (for prime fields 𝐹𝑞): the time complexity is exp ((1 +

𝑜(1))(log 𝑞)1/2(log log 𝑞)1/2); 

h) Number field sieve method (for prime fields 𝐹𝑞): the time complexity is exp (((64/9)1/3 +

𝑜(1)) (log 𝑞(log log 𝑞)2)1/3); 

i) Function field sieve method (for fields of small characteristics): the time complexity is 
exp (𝑐(log 𝑞(log log 𝑞)2)1/4+𝑜(1)) and quasi-polynomial time. 

From the above enumerated methods for the finite field discrete logarithm problems and their time 
complexity, we know that: for discrete logarithm problems over fields of large characteristics, there are 
attack methods with sub-exponential complexity; for discrete logarithm problems over fields of small 
characteristics, there are quasi-polynomial time attack methods. 

A.3.2 Methods to solve the elliptic curve discrete logarithm problem 

For an elliptic curve 𝐸(𝐹𝑞), the point 𝑃 ∈ 𝐸(𝐹𝑞) with order 𝑛 and 𝑄 ∈ 〈𝑃〉, the elliptic curve discrete 

logarithm problem is to determine the integer 𝑢 ∈ [0, 𝑛 − 1] such that 𝑄 = [𝑢]𝑃. 
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The existing attacks on ECDLP are: 

a) Pohlig-Hellman method: let 𝑙 be the largest prime divisor of 𝑛, then the time complexity is 𝑂(𝑙1/2); 

b) BSGS method: the time and space complexity are both (𝜋𝑛/2)1/2; 

c) Pollard's method: the time complexity is (𝜋𝑛/2)1/2; 

d) Parallel Pollard's method: let 𝑟 be the numbers of parallel processors, the time complexity reduces 
to (𝜋𝑛/2)1/2/𝑟; 

e) MOV method: Reduces the ECDLP over supersingular curves and similar curves to DLP over 𝐹𝑞’s 

small extension fields (This is a method of sub-exponential complexity); 

f) Anomalous method: efficient attack methods for the anomalous curves (curves of #𝐸(𝐹𝑞) = 𝑞) 

(This is a method of polynomial complexity); 

g) GHS method: use Weil descent technique to solve the ECDLP of curves over binary extension field 
(the extension degree is a composite number), and convert the ECDLP to hyper-elliptic curve 
discrete logarithm problem, and there is the algorithm with sub-exponential complexity to this 
problem. 

h) DGS-points decomposing method: use to compute the indexes used by elliptic curve discrete 
logarithm over low-degree extension fields. In some special cases, its complexity is lower than the 
square-root time method.  

From the above description and analysis of ECDLP solutions and their time complexity, we can know 
that: for the discrete logarithm problem of general curves, the current solutions have exponential 
complexity, and no efficient attack method with sub-exponential complexity has been found; and for the 
discrete logarithm problem of some special curves, there are attack algorithms with polynomial 
complexity or sub-exponential complexity. 

A.4 Compression of points on elliptic curve 

A.4.1 Overview 

For any nonzero point 𝑃 = (𝑥𝑃 , 𝑦𝑃) on 𝐸(𝐹𝑞), this point can be represented simply by the 𝑥-coordinate 

and a specific bit derived from 𝑦𝑃 . This is the compression representation of points. 

A4.2 Compression and decompression methods for points on elliptic curves over 𝑭𝒑 

Let 𝑃 = (𝑥𝑃 , 𝑦𝑃) be a point on 𝐸(𝐹𝑝): 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏, and 𝑦̃𝑃 be the rightmost bit of 𝑦𝑃 , then 𝑃 can be 

represented by 𝑥𝑃 and the bit 𝑦̃𝑃 . 

The method of recovering 𝑦𝑃 from 𝑥𝑃 and 𝑦̃𝑃 is as follows: 

a) Compute the field element 𝛼 = 𝑥𝑃
3 + 𝑎𝑥𝑃 + 𝑏 in 𝐹𝑝; 

b) Compute the square root 𝛽 of 𝛼 in 𝐹𝑝 (referring to Annex C.1.4). If no square root exists, then report 

an error; 

c) If the rightmost bit of 𝛽 is equal to 𝑦̃𝑃 , then set 𝑦𝑃 = 𝛽; otherwise set 𝑦𝑃 = 𝑝 − 𝛽. 
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A.4.3 Compression and decompression methods for points on elliptic curve over 𝑭𝒒𝒎  
(where 𝒒 is an odd prime number and 𝒎 ≥ 𝟐) 

Let 𝑃 = (𝑥𝑃 , 𝑦𝑃)  be a point on 𝐸(𝐹𝑞𝑚): 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏 , then 𝑦𝑃  can be represented as 

(𝑦𝑚−1, 𝑦𝑚−2, … , 𝑦1, 𝑦0); let 𝑦̃𝑃 be the rightmost bit of 𝑦𝑃 , then 𝑃 can be represented by 𝑥𝑃 and the bit 𝑦̃𝑃 . 

The method of recovering 𝑦𝑃 from 𝑥𝑃 and 𝑦̃𝑃 is as follows: 

a) Compute the field element 𝛼 = 𝑥𝑃
3 + 𝑎𝑥𝑃 + 𝑏 in 𝐹𝑞𝑚  ; 

b) Compute the square root 𝛽 of 𝛼 in 𝐹𝑞𝑚  (referring to Annex C.1.4). If no square root exists, then 

report an error; 

If in the representation (𝛽𝑚−1, 𝛽𝑚−2, … , 𝛽1, 𝛽0) of 𝛽, the rightmost bit of 𝛽0 is equal to 𝑦̃𝑃 , then set 𝑦𝑃 =
𝛽; otherwise set 𝑦𝑃 = (𝛽𝑚−1

′ , 𝛽𝑚−2
′ , … , 𝛽1

′ , 𝛽0
′), where 𝛽𝑖

′ = (𝑞 − 𝛽𝑖) ∈ 𝐹𝑞 , 𝑖 = 0,1,… ,𝑚 − 1. 
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Annex B 
(informative) 

 
Computation of bilinear pairings over elliptic curves 

B.1 Overview 

Let an elliptic curve over finite field be 𝐸(𝐹𝑞). If #𝐸(𝐹𝑞) = 𝑐𝑓 × 𝑟, 𝑟 is prime, 𝑐𝑓 is the cofactor, then the 

smallest positive integer 𝑘 satisfying 𝑟 | 𝑞𝑘 − 1 is known as the elliptic curve’s embedding degree 
relative to 𝑟. If 𝔾 is an 𝑟 order subgroup of 𝐸(𝐹𝑞), the embedding degree of 𝔾 is 𝑘 as well. 

Let 𝐹̅𝑞 be an algebraic closure of finite field 𝐹𝑞 , and 𝐸[𝑟] the set of all points of order 𝑟 in E(𝐹̅𝑞). 

B.2 Miller's algorithm 

Let the equation of elliptic curves 𝐸(𝐹𝑞𝑘) over 𝐹𝑞𝑘  be 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, and define the straight line 

passing through the points 𝑈 and 𝑉 on 𝐸(𝐹𝑞𝑘) as 𝑔𝑈,𝑉: 𝐸(𝐹𝑞𝑘) → 𝐹𝑞𝑘 . If the equation of the line passing 

through the points 𝑈 and 𝑉 is 𝜆𝑥 + 𝛿𝑦 + 𝑡 = 0, then set function 𝑔𝑈,𝑉(𝑄)  = 𝜆𝑥𝑄 + 𝛿𝑦𝑄 + 𝑡, where 𝑄 =

(𝑥𝑄 , 𝑦𝑄). When 𝑈 = 𝑉, 𝑔𝑈,𝑉 is defined as the tangent line passing through the point 𝑈; if either 𝑈 or 𝑉 is 

the point at infinity, 𝑔𝑈,𝑉  is a straight line perpendicular to the 𝑥-axis and passing through the other 

point. Generally, 𝑔𝑈,−𝑈 is abbreviated as 𝑔𝑈. 

Let 𝑈 = (𝑥𝑈, 𝑦𝑈), 𝑉 = (𝑥𝑉 , 𝑦𝑉), 𝑄 = (𝑥𝑄 , 𝑦𝑄), 𝜆1 = (3𝑥𝑉
2 + 𝑎)/(2𝑦𝑉), 𝜆2 = (𝑦𝑈– 𝑦𝑉)/(𝑥𝑈–𝑥𝑉), then there 

should have the following properties: 
a) 𝑔𝑈,𝑉(𝑂) = 𝑔𝑈,𝑂(𝑄) = 𝑔𝑂,𝑉(𝑄) = 1; 

b) 𝑔𝑉,𝑉(𝑄) = 𝜆1(𝑥𝑄 − 𝑥𝑉) − 𝑦𝑄 + 𝑦𝑉 , 𝑄 ≠ 𝑂; 

𝑐) 𝑔𝑈,𝑉(𝑄) = 𝜆2(𝑥𝑄 − 𝑥𝑉) − 𝑦𝑄 + 𝑦𝑉 , 𝑄 ≠ 𝑂, 𝑈 ≠ ±𝑉; 

d) 𝑔𝑉,−𝑉(𝑄) = 𝑥𝑄 − 𝑥𝑉 , 𝑄 ≠ 𝑂. 

Miller's algorithm is an efficient algorithm to compute bilinear pairings. 

Miller's algorithm 

Input: a curve 𝐸, two points 𝑃 and 𝑄 on 𝐸, and an integer 𝑐. 

Output: 𝑓𝑃,𝑐(𝑄). 

a) The binary representation of 𝑐 is 𝑐𝑗 …𝑐1𝑐0, and the most significant bit 𝑐𝑗 is 1; 

b) Set 𝑓 = 1, and 𝑉 = 𝑃; 

c) For 𝑖 = 𝑗 − 1 to 0: 

𝑐.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄)/𝑔2𝑉(𝑄), 𝑉 = [2]𝑉; 

𝑐.2) If 𝑐𝑖 = 1, let 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄)/𝑔𝑉+𝑃(𝑄) , 𝑉 = 𝑉 + 𝑃. 

d) Output 𝑓. 

Generally, 𝑓𝑃,𝑐(𝑄) is known as the Miller function. 
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B.3 Computation of the Weil pairing 

Let 𝐸 be an elliptic curve over 𝐹𝑞 , and 𝑟 be a positive integer coprime to 𝑞. Suppose 𝜇𝑟 is the set of 𝑟th 

unit roots, and 𝑘 is the embedding degree relative to 𝑟, that is 𝑟 | 𝑞𝑘 − 1, then 𝜇𝑟  ⊂ 𝐹𝑞𝑘 . 

Let 𝔾1 = 𝐸[𝑟], 𝔾2 = 𝐸[𝑟], 𝔾𝑇 = 𝜇𝑟 , then the Weil pairing is a bilinear mapping from 𝔾1 × 𝔾2 to 𝔾𝑇 , 
which is denoted as 𝑒𝑟. 

Let 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, if 𝑃 = 𝑂 or 𝑄 = 𝑂, then 𝑒𝑟(𝑃, 𝑄) = 1; if 𝑃 ≠ 𝑂 and 𝑄 ≠ 𝑂, for randomly selected 
points 𝑇 ∈ 𝔾1 and 𝑄 ∈ 𝔾2, which are not the point at infinity, such that neither 𝑃 + 𝑇 nor 𝑇 equal to 𝑈 
or 𝑈 + 𝑄, then the Weil pairing is 

𝑒𝑟(𝑃, 𝑄) =
𝑓𝑃+𝑇,𝑟(𝑄 + 𝑈)𝑓𝑇,𝑟(𝑈)𝑓𝑈,𝑟(𝑃 + 𝑇)𝑓𝑄+𝑈,𝑟(𝑇)

𝑓𝑇,𝑟(𝑄 + 𝑈)𝑓𝑃+𝑇,𝑟(𝑈)𝑓𝑄+𝑈,𝑟(𝑃 + 𝑇)𝑓𝑈,𝑟(𝑇)
. 

𝑓𝑃+𝑇,𝑟(𝑄 + 𝑈) , 𝑓𝑇,𝑟(𝑄 + 𝑈) , 𝑓𝑃+𝑇,𝑟(𝑈) , 𝑓𝑇,𝑟(𝑈) , 𝑓𝑄+𝑈,𝑟(𝑃 + 𝑇) , 𝑓𝑄+𝑈,𝑟(𝑇) , 𝑓𝑈,𝑟(𝑃 + 𝑇) , 𝑓𝑈,𝑟(𝑇)  can be 

computed using the Miller algorithm. If the denominator happens to be 0 during computation, replace 
the point 𝑇 or 𝑈 and recompute. 

B.4 Computation of the Tate pairing 

Let 𝐸 be an elliptic curve over 𝐹𝑞 , 𝑟 be a positive integer coprime to 𝑞, and 𝑘 the embedding degree 

relative to 𝑟. Let 𝑄 be the 𝑟 order on 𝐸(𝐹𝑞𝑘)[𝑟], and 〈𝑄〉 is the cyclic group generated by 𝑄. (𝐹
𝑞𝑘
∗ )

𝑟
 is the 

set of the 𝑟th power of each element in 𝐹
𝑞𝑘
∗ , (𝐹

𝑞𝑘
∗ )

𝑟
 is a subgroup of 𝐹

𝑞𝑘
∗ , the quotient group of 𝐹

𝑞𝑘
∗  about 

(𝐹
𝑞𝑘
∗ )

𝑟
 is written as 𝐹

𝑞𝑘
∗ / (𝐹

𝑞𝑘
∗ )

𝑟
. 

Let 𝔾1 = 𝐸(𝐹𝑞)[𝑟], 𝔾2 = 〈𝑄〉, 𝔾𝑇 = 𝐹𝑞𝑘
∗ / (𝐹

𝑞𝑘
∗ )

𝑟
, then the Tate pairing is a bilinear mapping from 𝔾1 ×

𝔾2 to 𝔾𝑇 , written as 𝑡𝑟. 

Let 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, if 𝑃 = 𝑂 or 𝑄 = 𝑂, then 𝑡𝑟 = 1; if 𝑃 ≠ 𝑂 and 𝑄 ≠ 𝑂, for randomly selected point 𝑈 ∈
𝐸(𝐹𝑞𝑘) which is not the point at infinity, such that 𝑃 ≠ 𝑄, 𝑃 ≠ 𝑄 + 𝑈, 𝑈 ≠ −𝑄, then the Tate pairing is 

𝑡𝑟(𝑃, 𝑄) =
𝑓𝑃,𝑟(𝑄 + 𝑈)

𝑓𝑃,𝑟(𝑈)
. 

𝑓𝑃,𝑟(𝑄 + 𝑈) and 𝑓𝑃,𝑟(𝑈) can be computed using the Miller algorithm. During the computation, if the 

denominator happens to be 0, replace the point 𝑈 and re-compute. 

In practice, the reduced Tate pairings as follows is generally used: 

𝑡𝑟(𝑃, 𝑄) = {𝑓𝑃,𝑟(𝑄)
𝑞𝑘−1
𝑟 ,   𝑄 ≠ 𝑂,

1,   𝑄 = 𝑂.
 

The computation amount would be cut in half if the reduced Tate pairings is applied instead of the 
general Tate pairings. If the embedding degree 𝑘 relative to 𝑟 is an even number, then the computation 
method of reduced Tate pairings could be further optimized. Algorithm 1 describes the common 
methods applied to reduce Tate pairings, Algorithm 2, 3 and 4 deal with circumstances when 𝑘 = 2𝑑. 

Algorithm 1 
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Input: an integer 𝑟 coprime to 𝑞, 𝑃 ∈ 𝐸(𝐹𝑞)[𝑟], 𝑄 ∈ 𝐸(𝐹𝑞𝑘)[𝑟]. 

Output: 𝑡𝑟(𝑃, 𝑄). 

a) The binary representation of 𝑟 is 𝑟𝑗…𝑟1𝑟0, and the most significant bit 𝑟𝑗 is 1; 

b) Set 𝑓 = 1, 𝑉 = 𝑃; 

c) For 𝑖 = 𝑗 − 1 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄)/𝑔2𝑉(𝑄), 𝑉 = [2]𝑉; 

c.2) If 𝑟𝑖 = 1, let 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄)/𝑔𝑉+𝑃(𝑄) , 𝑉 = 𝑉 + 𝑃. 

d) Compute 𝑓 = 𝑓𝑞
𝑑−1; 

e) Compute 𝑓 = 𝑓(𝑞
𝑑+1)/𝑟. 

f) Output 𝑓. 

Algorithm 2 

Input: an integer 𝑟 coprime to 𝑞, 𝑃 ∈ 𝐸(𝐹𝑞)[𝑟], 𝑄 ∈ 𝐸(𝐹𝑞𝑘)[𝑟]. 

Output: 𝑡𝑟(𝑃, 𝑄). 

a) The binary representation of 𝑟 is 𝑟𝑗…𝑟1𝑟0, and the most significant bit 𝑟𝑗 is 1; 

b) Set 𝑓 = 1, 𝑉 = 𝑃; 

c) For 𝑖 = 𝑗 − 1 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄)/𝑔2𝑉(𝑄), 𝑉 = [2]𝑉; 

c.2) If 𝑟𝑖 = 1, let 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄)/𝑔𝑉+𝑃(𝑄) , 𝑉 = 𝑉 + 𝑃. 

d) Compute 𝑓 = 𝑓𝑞
𝑑−1; 

e) Compute 𝑓 = 𝑓(𝑞
𝑑+1)/𝑟; 

f) Output 𝑓. 

Algorithm 3 

If 𝐹𝑞𝑘  (𝑘 = 2𝑑) is seen as the quadratic extension of 𝐹𝑞𝑑 , then the elements in 𝐹𝑞𝑘  can be represented as 

𝑤 = 𝑤0  + 𝑖𝑤1, where 𝑤0, 𝑤1 ∈ 𝐹𝑞𝑑 , then the conjugate of 𝑤 is 𝑤̅ = 𝑤0 − 𝑖𝑤1, and in this case, the 

inverse in algorithm 1 can be replaced with conjugate. 

Input: an integer 𝑟 coprime to 𝑞, 𝑃 ∈ 𝐸(𝐹𝑞)[𝑟], 𝑄 ∈ 𝐸(𝐹𝑞𝑘)[𝑟]. 

Output: 𝑡𝑟(𝑃, 𝑄). 
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a) The binary representation of 𝑟 is 𝑟𝑗…𝑟1𝑟0, and the most significant bit 𝑟𝑗 is 1; 

b) Set 𝑓 = 1, 𝑉 = 𝑃; 

c) For 𝑖 = 𝑗 − 1 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄)/𝑔2𝑉(𝑄), 𝑉 = [2]𝑉; 

c.2) If 𝑟𝑖 = 1, let 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄)/𝑔̅𝑉+𝑃(𝑄) , 𝑉 = 𝑉 + 𝑃. 

d) Compute 𝑓 =  𝑓𝑞
𝑑−1; 

e) Compute 𝑓 =  𝑓(𝑞
𝑑+ 1)/𝑟; 

f) Output 𝑓. 

Algorithm 4 

When 𝑞 is a prime greater than 3, then the point 𝑄 ∈ 𝐸′, where 𝐸′ is the torsion curve of 𝐸. In this case, 
the algorithm could be further optimized. 

Input: 𝑃 ∈ 𝐸(𝐹𝑞)[𝑟], 𝑄 ∈ 𝐸′(𝐹𝑞𝑑)[𝑟], an integer 𝑟. 

Output: 𝑡𝑟(𝑃, 𝑄). 

a) The binary representation of 𝑟 is 𝑟𝑗…𝑟1𝑟0, and the most significant bit 𝑟𝑗 is 1; 

b) Set 𝑓 = 1, 𝑉 = 𝑃; 

c) For 𝑖 = 𝑗 − 1 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄), 𝑉 = [2]𝑉; 

c.2) If 𝑟𝑖 = 1, let 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄), 𝑉 = 𝑉 + 𝑃. 

d) Compute 𝑓 =  𝑓𝑞
𝑑−1; 

e) Compute 𝑓 =  𝑓(𝑞
𝑑+ 1)/𝑟; 

f) Output 𝑓. 

B.5 Computation of the Ate pairing 

Let 𝜋𝑞  be the Frobenius endomorphism, 𝜋𝑞: 𝐸 → 𝐸, (𝑥, 𝑦) ↦ (𝑥𝑞 , 𝑦𝑞); let [𝑞] be the mapping: 𝐸 →

𝐸,𝑄 ↦ [𝑞]𝑄; [1] unit map; the dual of 𝜋𝑞 is 𝜋𝑞
′ , satisfying 𝜋𝑞 ⋅ 𝜋𝑞

′ = [𝑞]; Ker() refers to the kernel of the 

mapping; let the Frobenius trace of elliptic curve 𝐸(𝐹𝑞) be 𝑡, and 𝑇 = 𝑡 − 1. 

The computation methods for Ate pairings under various structures are given below. 
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B.5.1 Computation of the Ate pairing over 𝔾𝟐 × 𝔾𝟏 

Let 𝔾1 = 𝐸[𝑟]  ∩ Ker(𝜋𝑞 − [1]), 𝔾2 = 𝐸[𝑟] ∩ Ker(𝜋𝑞 − [𝑞]), 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2. Define the Ate pairings over 

𝔾2 × 𝔾1 as: 

Ate: 𝔾2 ×𝔾1 → 𝐹
𝑞𝑘
∗ / (𝐹

𝑞𝑘
∗ )

𝑟
 

(𝑄, 𝑃) ↦ 𝑓𝑄,𝑇(𝑃)
(𝑞𝑘−1)/𝑟. 

The computation method for Ate pairings on 𝔾2 × 𝔾1 is given below. 

Input: 𝔾1 = 𝐸[𝑟]  ∩ Ker(𝜋𝑞 − [1]), 𝔾2 = 𝐸[𝑟] ∩ Ker(𝜋𝑞 − [𝑞]), 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, an integer 𝑇 = 𝑡 − 1. 

Output: Ate(𝑄, 𝑃). 

a) The binary representation of 𝑇 is 𝑡𝑗 …𝑡1𝑡0, and the most significant bit 𝑡𝑗 is 1;; 

b) Set 𝑓 = 1, 𝑉 = 𝑄; 

c) For 𝑖 = 𝑗 − 1 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑃), 𝑉 = [2]𝑉; 

c.2) If 𝑡𝑖 = 1, compute 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑄(𝑄)/𝑔𝑉+𝑄(𝑃), 𝑉 = 𝑉 + 𝑄. 

d) Compute 𝑓 =  𝑓(𝑞
𝑘− 1)/𝑟; 

e) Output 𝑓. 

B.5.2 Computation of the Ate pairing over 𝔾𝟏 × 𝔾𝟐 

For supersingular elliptic curves, the definition and technique of Ate pairings mentioned above can be 
directly applied; whereas for ordinary curves, 𝔾2 needs to be transformed to torsion curve before Ate 
pairings could be defined. 

B5.2.1 Ate pairings on supersingular elliptic curves 

Let 𝐸 be a supersingular elliptic curve defined over 𝐹𝑞 ,  

Let 𝔾1 = 𝐸[𝑟]  ∩ Ker(𝜋𝑞
′ − [𝑞]) , 𝔾2 = 𝐸[𝑟] ∩ Ker(𝜋𝑞

′ − [1]) , 𝔾𝑇 = 𝐹𝑞𝑘
∗ / (𝐹

𝑞𝑘
∗ )

𝑟
, 𝑃 ∈ 𝔾1 , 𝑄 ∈ 𝔾2 . Define 

the Ate pairings over 𝔾1 × 𝔾2 as: 

Ate: 𝔾1 × 𝔾2 → 𝐹
𝑞𝑘
∗ / (𝐹

𝑞𝑘
∗ )

𝑟
 

( 𝑃, 𝑄) ↦ 𝑓𝑃,𝑇(𝑄)
(𝑞𝑘−1)/𝑟. 

The computation method for Ate pairings on 𝔾1 × 𝔾2 is given below. 

Input: 𝔾1 = 𝐸[𝑟]  ∩ Ker(𝜋𝑞
′ − [𝑞]), 𝔾2 = 𝐸[𝑟] ∩ Ker(𝜋𝑞

′ − [1]), 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, an integer 𝑇 = 𝑡 − 1. 

Output: 𝐴𝑡𝑒(𝑃, 𝑄). 

a) The binary representation of 𝑇 is 𝑡𝑗 …𝑡1𝑡0, and the most significant bit 𝑡𝑗 is 1; 
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b) Set 𝑓 = 1, 𝑉 = 𝑃; 

c) For 𝑖 = 𝑗 − 1 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄), 𝑉 = [2]𝑉; 

c.2) If 𝑡𝑖 = 1, compute 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄)/𝑔𝑉+𝑃(𝑃), 𝑉 = 𝑉 + 𝑃. 

d) Compute 𝑓 =  𝑓(𝑞
𝑘− 1)/𝑟; 

e) Output 𝑓. 

B.5.2.2 Ate pairings on ordinary curves 

For ordinary curves, there exists an integer 𝑒, making (𝜋𝑞
′ )
𝑒

 the automorphism on 𝔾1, thus, torsion 

curve theory could be applied to establish the relationship between 𝐴𝑡𝑒(𝑃, 𝑄) and 𝑓𝑃,𝑇𝑒(𝑄), where 𝑇 =

𝑡 + 1, and 𝑡 is trace. 

Let 𝐸 be an elliptic curve defined over 𝐹𝑞 , 𝐸′ be the 𝑑th torsion curve of 𝐸, and 𝑘 its embedding degree, 

𝑚 = gcd (𝑘, 𝑑), 𝑒 = 𝑘/𝑚, 𝜁𝑚 be the 𝑚th primitive unit root. The value of 𝑑 has three cases when 𝑝 ≥ 5: 

a) 𝑑 = 6, 𝛽 = 𝜁𝑚
−6, 𝐸′: 𝑦2 = 𝑥3 + 𝛽𝑏, 𝜙6: 𝐸

′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1/3𝑥, 𝛽−1/2𝑦), 𝔾1 = 𝐸[𝑟] ∩ Ker(𝜋𝑞 − [1]), 

𝔾2 = 𝐸
′[𝑟] ∩ Ker([𝛽−1/6]𝜋𝑞

𝑒 − [1]). 

b) 𝑑 = 4 , 𝛽 = 𝜁𝑚
−4 , 𝐸′: 𝑦2 = 𝑥3 + 𝛽𝑎𝑥 , 𝜙4: 𝐸

′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1/2𝑥, 𝛽−3/4𝑦) , 𝔾1 = 𝐸[𝑟] ∩ Ker(𝜋𝑞 −

[1]), 𝔾2 = 𝐸
′[𝑟] ∩ Ker([𝛽−1/4]𝜋𝑞

𝑒 − [1]). 

c) 𝑑 = 2 , 𝛽 = 𝜁𝑚
−2 , 𝐸′: 𝑦2 = 𝑥3 + 𝛽2𝑎𝑥 + 𝛽3𝑏 , 𝜙2: 𝐸

′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1𝑥, 𝛽−3/2𝑦) , 𝔾1 = 𝐸[𝑟] ∩

Ker(𝜋𝑞 − [1]), 𝔾2 = 𝐸
′[𝑟] ∩ Ker([𝛽−1/2]𝜋𝑞

𝑒 − [1]). 

Let 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2. The Ate pairings on 𝔾1 ×𝔾2  are defined as: 

𝐴𝑡𝑒: 𝔾1 × 𝔾2 → 𝐹
𝑞𝑘
∗ / (𝐹

𝑞𝑘
∗ )

𝑟
 

( 𝑃, 𝑄) ↦ 𝑓𝑃,𝑇𝑒(𝑄)
(𝑞𝑘−1)/𝑟. 

The computation method is given below. 

Input: 𝔾1,𝔾2, 𝑃 ∈ 𝔾1, 𝑄 ∈ 𝔾2, an integer 𝑇 = 𝑡 − 1. 

Output: 𝐴𝑡𝑒(𝑃, 𝑄). 

a) Compute 𝑢 = 𝑇𝑒; 

b) The binary representation of 𝑢 is 𝑡𝑗…𝑡1𝑡0, and the most significant bit 𝑡𝑗 is 1; 

c) Set 𝑓 = 1, 𝑉 = 𝑃; 

d) For 𝑖 = 𝑗 − 1 to 0: 

d.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑉,𝑉(𝑄), 𝑉 = [2]𝑉; 

d.2) If 𝑡𝑖 = 1, compute 𝑓 = 𝑓 ⋅ 𝑔𝑉,𝑃(𝑄)/𝑔𝑉+𝑃(𝑄), 𝑉 = 𝑉 + 𝑃. 
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e) Compute 𝑓 =  𝑓(𝑞
𝑘− 1)/𝑟; 

f) Output 𝑓. 

If the elliptic curve on which the Ate pairings defined on 𝔾1 × 𝔾2 is based is supersingular, then it is 
easy to see that Ate pairings are more efficient than Tate pairings. However, for ordinary curves, Ate 
pairings are more computationally efficient than Tate pairings only when |𝑇𝑒| ≤ 𝑟, therefore, Ate 
pairings are recommended only when the value of 𝑡 is relatively small. 

B.6 Computation of the R-ate pairing 

B.6.1 Definition of the R-ate pairing 

The "R" in R-ate can be seen as the ratio of two pairings, and it could also be regarded as a certain fixed 
power of Tate pairings. 

Let 𝐴, 𝐵, 𝑎, 𝑏 ∈ 𝑍, 𝐴 = 𝑎𝐵 + 𝑏. The Miller function 𝑓𝑄,𝐴(𝑃) has the following features: 

𝑓𝑄,𝐴(𝑃) = 𝑓𝑄,𝑎𝐵+𝑏(𝑃) = 𝑓𝑄,𝑎𝐵(𝑃) ⋅ 𝑓𝑄,𝑏(𝑃) ⋅ 𝑔[𝑎𝐵]𝑄,[𝑏]𝑄(𝑃)/𝑔[𝐴]𝑄(𝑃)

= 𝑓𝑄,𝐵
𝑎 (𝑃) ⋅ 𝑓[𝐵]𝑄,𝑎(𝑃) ⋅ 𝑓𝑄,𝑏(𝑃) ⋅

𝑔[𝑎𝐵]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝐴]𝑄(𝑃)
 

The R-ate pairing is defined as: 

𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓[𝐵]𝑄,𝑎(𝑃) ⋅ 𝑓𝑄,𝑏(𝑃) ⋅
𝑔[𝑎𝐵]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝐴]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

= (
𝑓𝑄,𝐴(𝑃)

𝑓𝑄,𝐵
𝑎 (𝑃)

)

(𝑞𝑘−1)/𝑛

. 

If 𝑓𝑄,𝐴(𝑃) and 𝑓𝑄,𝐵(𝑃) are non-degenerate Miller functions, then 𝑅𝐴,𝐵(𝑄, 𝑃) is a non-degenerate pairing. 

Let 𝐿1, 𝐿2,𝑀1,𝑀2 ∈ 𝑍, satisfying 

𝑒𝑛
𝐿1(𝑄, 𝑃) = (𝑓𝑄,𝐴(𝑃))

𝑀1⋅(𝑞
𝑘−1)/𝑛

, 

𝑒𝑛
𝐿2(𝑄, 𝑃) = (𝑓𝑄,𝐵(𝑃))

𝑀2⋅(𝑞
𝑘−1)/𝑛

. 

Let 𝑀 = lcm(𝑀1,𝑀2), 𝑚 = (𝑀/𝑀1 ) ⋅ 𝐿1 − 𝑎(𝑀/𝑀2 ) ⋅ 𝐿2. 

For the sake of non-degeneracy, 𝑚 is not divisible by 𝑛. We have: 

𝑒𝑛
𝑚(𝑄, 𝑃) = 𝑒𝑛

𝑀
𝑀1
𝐿1−𝑎

𝑀
𝑀2
𝐿2
(𝑄, 𝑃) =

𝑒𝑛(𝑄, 𝑃)
𝐿1
𝑀
𝑀1

𝑒𝑛(𝑄, 𝑃)
𝑎𝐿2

𝑀
𝑀2

= (
𝑓𝑄,𝐴(𝑃)

𝑓𝑄,𝐵(𝑃)
)

𝑀⋅(𝑞𝑘−1)/𝑛

. 

It is easy to see that 𝑒𝑛
𝑚(𝑄, 𝑃) = 𝑅𝐴,𝐵(𝑄, 𝑃)

𝑀 .  

Generally, a non-degenerate pairing cannot be provided by any integer pairing (𝐴, 𝐵), and (𝐴, 𝐵) has 
four cases as follows: 

1. (𝐴, 𝐵) = (𝑞𝑖, 𝑛) 

2. (𝐴, 𝐵) = (𝑞, 𝑇1) 
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3. (𝐴, 𝐵) = (𝑇𝑖, 𝑇𝑗) 

4. (𝐴, 𝐵) = (𝑛, 𝑇𝑖). 

where 𝑇𝑖 ≡ 𝑞
𝑖 (mod 𝑛), 𝑖 ∈ 𝑍, and 0 < 𝑖 < 𝑘. 

Case 1: (𝐴, 𝐵) = (𝑞𝑖, 𝑛), because 𝐴 =  𝑎𝐵 +  𝑏, that is 𝑞𝑖 = 𝑎𝑛 + 𝑏, therefore, 𝑏 ≡  𝑞𝑖 (mod 𝑛), and  

(
𝑓𝑄,𝑞𝑖(𝑃)

𝑓𝑄,𝑛
𝑎 (𝑃)

)

(𝑞𝑘−1)/𝑛

= 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓[𝑛]𝑄,𝑎(𝑃)𝑓𝑄,𝑏(𝑃)
𝑔[𝑎𝑛]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑞𝑖]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

 

Because 𝑏 ≡ 𝑞𝑖 (mod 𝑛), 𝑔[𝑎𝑛]𝑄,[𝑏]𝑄(𝑃) = 𝑔[𝑞𝑖]𝑄(𝑃). Furthermore, 𝑓[𝑛]𝑄,𝑎(𝑃) = 1. Hence 

 𝑅𝐴,𝐵(𝑄, 𝑃) = 𝑓𝑄,𝑞𝑖(𝑃)
(𝑞𝑘−1)/𝑛. (1) 

Case 2: (𝐴, 𝐵) = (𝑞, 𝑇1), that is 𝑞 = 𝑎𝑇1 + 𝑏. Then 

(
𝑓𝑄,𝑞(𝑃)

𝑓𝑄,𝑇1
𝑎 (𝑃)

)

(𝑞𝑘−1)/𝑛

= 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓[𝑇1]𝑄,𝑎(𝑃)𝑓𝑄,𝑏(𝑃)
𝑔[𝑎𝑇1]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑞]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

. 

Since 𝑓[𝑇1]𝑄,𝑎(𝑃) = 𝑓𝑄,𝑎
𝑞 (𝑃), therefore 

 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓𝑄,𝑎
𝑞 (𝑃)𝑓𝑄,𝑏(𝑃)

𝑔[𝑎𝑇1]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑞]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

. (2) 

 

Case 3: (𝐴, 𝐵) = (𝑇𝑖, 𝑇𝑗), that is 𝑇𝑖 = 𝑎𝑇𝑗  + 𝑏, then 

(
𝑓𝑄,𝑇𝑖(𝑃)

𝑓𝑄,𝑇𝑗
𝑎 (𝑃)

)

(𝑞𝑘−1)/𝑛

= 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓[𝑇𝑗]𝑄,𝑎(𝑃)𝑓𝑄,𝑏(𝑃)
𝑔[𝑎𝑇𝑗]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑞𝑖]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

. 

Similarly, since 𝑓[𝑇𝑗]𝑄,𝑎(𝑃) = 𝑓𝑄,𝑎
𝑞𝑗 (𝑃), therefore 

 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓𝑄,𝑎
𝑞𝑗 (𝑃)𝑓𝑄,𝑏(𝑃)

𝑔[𝑎𝑇1]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑞𝑖]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

. (3) 

Case 4: (𝐴, 𝐵) = (𝑛, 𝑇𝑖), that is 𝑛 = 𝑎𝑇𝑖 + 𝑏, therefore 

(
𝑓𝑄,𝑛(𝑃)

𝑓𝑄,𝑇𝑖
𝑎 (𝑃)

)

(𝑞𝑘−1)/𝑛

= 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓[𝑇𝑖]𝑄,𝑎(𝑃)𝑓𝑄,𝑏(𝑃)
𝑔[𝑎𝑇𝑖]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑛]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

. 

Similarly, from 𝑓[𝑇𝑖]𝑄,𝑎(𝑃) = 𝑓𝑄,𝑎
𝑞𝑖 (𝑃), we have 
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 𝑅𝐴,𝐵(𝑄, 𝑃) = (𝑓𝑄,𝑎
𝑞𝑖 (𝑃)𝑓𝑄,𝑏(𝑃)

𝑔[𝑎𝑇𝑖]𝑄,[𝑏]𝑄(𝑃)

𝑔[𝑛]𝑄(𝑃)
)

(𝑞𝑘−1)/𝑛

. (3) 

The R-ate pairing of case 1 is also known as 𝐴𝑡𝑒𝑖  pairing. Pairing computation of cases 2, 3 and 4 require 
two Miller loops of length log 𝑎 and log 𝑏 respectively. Case 2 and 4 can only alter one parameter 𝑖 to 
obtain efficient pairings, while case 3 can alter two parameters. Therefore the R-ate pairings of case 3 
are usually chosen, then (𝐴, 𝐵) = (𝑇𝑖, 𝑇𝑗). 

In order to reduce the degree of the Miller loop, various 𝑖 and 𝑗 can be tried to minimize the integers 𝑎 
and 𝑏, thus, the degree of the Miller loop could be reduced to log(𝑟1/Φ(𝑘)). 

B.6.2 Computation of the R-ate pairing on BN curves 

Barreto and Naehrig put forward a method to construct ordinary curves over prime field 𝐹𝑞 suitable for 

pairings, and curves constructed via this method are called BN curves. The equation of the BN curves is 
𝐸: 𝑦2 = 𝑥3  + 𝑏, where 𝑏 ≠ 0. The embedding degree 𝑘 = 12, the curve order 𝑟 is a prime. The base field 
feature is 𝑞, the curve order is 𝑟, and the trace 𝑡𝑟 of the Frobenius mapping can be obtained by the 
parameter 𝑡: 

𝑞(𝑡) = 36𝑡4 + 24𝑡3 + 24𝑡2 + 6𝑡 + 1 
𝑟(𝑡) = 36𝑡4 + 36𝑡3 + 18𝑡2 + 6𝑡 + 1 
𝑡𝑟(𝑡) = 6𝑡2 + 1 

where 𝑡 ∈ 𝑍, such that both 𝑞 = 𝑞(𝑡) and 𝑟 = 𝑟(𝑡) are primes, and in order to achieve a certain security 
level, 𝑡 must be large enough, which is at least 63 bits long. 

There exists 6th order torsion curves for BN curves over 𝐹𝑞2: 𝐸
′: 𝑦2 = 𝑥3  + 𝛽𝑏, where 𝛽 ∈ 𝐹𝑞2 , which is 

neither a square root nor cubic root in 𝐹𝑞2 , such that 𝑟 | #𝐸′(𝐹𝑞2). The points in 𝔾2 can be represented 

by the points on the torsion curve 𝐸′, 𝜙6: 𝐸
′ → 𝐸: (𝑥, 𝑦) ↦ (𝛽−1/3𝑥, 𝛽−1/2𝑦). Thus, the computation of 

pairings is restricted on the point 𝑃 on 𝐸(𝐹𝑞) and the point 𝑄′ on 𝐸′(𝐹𝑞2). 

Frobenius automorphism is 𝜋𝑞, and 𝜋𝑞: 𝐸 → 𝐸, 𝜋𝑞(𝑥, 𝑦) = (𝑥
𝑞 , 𝑦𝑞), 𝜋𝑞2: 𝐸 → 𝐸, 𝜋𝑞2(𝑥, 𝑦) = (𝑥

𝑞2 , 𝑦𝑞
2
). 

The computation of R-ate pairing is as follows. 

Input: 𝑃 ∈ 𝐸(𝐹𝑞)[𝑟], 𝑄 ∈ 𝐸′( 𝐹𝑞2)[𝑟], 𝑎 = 6𝑡 + 2. 

Output: 𝑅𝑎(𝑄, 𝑃). 

a) Suppose 𝑎 = ∑
𝐿−1

𝑗=0
𝑎𝑖2

𝑗 , 𝑎𝐿−1 = 1; 

b) Set 𝑇 = 𝑄, 𝑓 = 1; 

c) For 𝑖 = 𝐿 − 2 to 0: 

c.1) Compute 𝑓 = 𝑓2 ⋅ 𝑔𝑇,𝑇(𝑃), 𝑇 = [2]𝑇; 

c.2) If 𝑎𝑖 = 1, compute 𝑓 = 𝑓 ⋅ 𝑔𝑇,𝑄(𝑃), 𝑇 = 𝑇 + 𝑄; 

d) Compute 𝑄1 = 𝜋𝑞(𝑄), 𝑄2 = 𝜋𝑞2(𝑄); 
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e) Compute 𝑓 = 𝑓 ⋅ 𝑔𝑇,𝑄1(𝑃), 𝑇 = 𝑇 + 𝑄1; 

f) Compute 𝑓 = 𝑓 ⋅ 𝑔𝑇,−𝑄2(𝑃), 𝑇 = 𝑇 − 𝑄2; 

g) Compute 𝑓 =  𝑓(𝑞
12− 1)/𝑟; 

h) Output 𝑓. 

For more computation methods for Weil pairings, Tate pairings, Ate pairings and R-ate pairings, please 
refer to (Barreto P, Lynn, Scott M. 2003), (Barreto P, Galbraith S, et al. 2004), (Eisentrager K, Lauter K, 
Montgomery P. 2003), (Galbraith S, Harrison K, Soldera D. 2002), (Kobayashi T, Aoki K, Imai H. 2006), 
(Miller V. 2004), (Scott M. 2005), (Scott M. 2006) and (Scott M, Barreto P. 2004). 

B.7 Elliptic curves suitable for pairings 

It is relatively easy to construct bilinear pairings for supersingular curves, yet for curves randomly 
generated, it is difficult to construct computable pairings. Therefore, when considering ordinary curves, 
ones with a structure suitable for pairings should be selected. 

Assume that 𝐸 is an elliptic curve defined over 𝐹𝑞 , if the three conditions listed below are satisfied, then 

𝐸 is a curve suitable for pairings: 

a) #𝐸(𝐹𝑞) has a prime factor 𝑟 no less than √𝑞; 

b) The embedding degree of 𝐸 relative to 𝑟 is less than log2(𝑟)/8; 

c) The size of the largest prime factor of 𝑟 ± 1 equals that of 𝑟. 

Below are the steps to construct elliptic curves suitable for pairings: 

Step 1: Select 𝑘, compute integer 𝑡, 𝑟 and 𝑞, so that there exists an elliptic curve 𝐸(𝐹𝑞) whose trace is 𝑡, 

and the curve has a subgroup of prime order 𝑟 and its embedding degree is 𝑘. 

Step 2: Use complex multiplication method to compute the equation parameter of this curve over 𝐹𝑞 . 

For methods to construct elliptic curves suitable for pairings, please refer to (Atkin A, Morain F. 1993), 
(Barreto P, Lynn B, Scott M. 2002), (Barreto P, Lynn B, Scott M. 2003), (Barreto P, Naehrig M. 2005), 
(Brezing F, Weng A. 2005), (Duan P, Cui S, Wah Chan C. 2005), (Dupont R, Enge A, Morain F. 2005), 
(Freeman D. 2006), (Freeman D, Scott M, Tesk E. 2006), (Lay G, Zimmer H. 1994), (Milne J. 2006.), 
(Miyaji A, Nakabayashi M, Takano S. 2001), (Scott M. 2006) and (Thuen Ø. 2006). 
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Annex C 
(informative) 

 
Number-theoretic algorithm 

C.1 Calculation over finite fields 

C.1.1 Exponentiation operation in finite fields 

Let 𝑎 be a positive integer, 𝑔 be an element of field 𝐹𝑞 , then the exponentiation is the process of 

computing 𝑔𝑎. By the binary method described below, exponentiation can be performed efficiently. 

Input: a positive integer 𝑎, a field 𝐹𝑞 and a field element 𝑔. 

Output: 𝑔𝑎. 

a) Set 𝑒 = 𝑎 mod (𝑞 − 1), if 𝑒 = 0, then output 1; 

b) The binary representation of 𝑒 is 𝑒𝑟𝑒𝑟−1…𝑒1𝑒0, and the most significant bit 𝑒𝑟 is 1; 

c) Set 𝑥 = 𝑔; 

d) For 𝑖 = 𝑟 − 1 to 0: 

d.1) Set 𝑥 = 𝑥2; 

d.2) If 𝑒𝑖 = 1, set 𝑥 = 𝑔 ⋅ 𝑥; 

e) Output 𝑥. 

For other accelerated algorithms, please refer to (Brickell et al. 1993), (Knuth 1981). 

C.1.2 Inverse operation in finite fields 

Let 𝑔 be a nonzero element in the field 𝐹𝑞 , then the inverse element 𝑔−1 is the field element 𝑐 satisfying 

𝑔 ⋅ 𝑐 = 1. Since 𝑐 = 𝑔𝑞−2 , the inverse operation can be implemented using the exponentiation 
operation. Note that if 𝑞 is prime and 𝑔 is an integer satisfying 1 ≤ 𝑔 ≤ 𝑞 − 1, then 𝑔−1 is the integer 𝑐, 
1 ≤ 𝑐 ≤ 𝑞 − 1, and 𝑔 ⋅ 𝑐 ≡ 1 (mod 𝑞). 

Input: a field 𝐹𝑞 and a nonzero field element 𝑔 in 𝐹𝑞 . 

Output: the inverse element 𝑔−1. 

a) Compute 𝑐 = 𝑔𝑞−2 (see C.1.1); 

b) Output 𝑐. 

A more efficient method is the extended Euclidean algorithm; please refer to (Knuth D. 1981). 
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C.1.3 Generation of Lucas sequences 

Let 𝑋 and 𝑌 be two nonzero integers, then the Lucas sequences 𝑈𝑘  and 𝑉𝑘 of 𝑋 and 𝑌 are defined as 
follows: 

𝑈0 = 0, 𝑈1 = 1, if 𝑘 ≥ 2, 𝑈𝑘 = 𝑋 ⋅ 𝑈𝑘−1–𝑌 ⋅ 𝑈𝑘−2; 

𝑉0 = 2, 𝑉1 = 𝑋, if 𝑘 ≥ 2, 𝑉𝑘 = 𝑋 ⋅ 𝑉𝑘−1–𝑌 ⋅ 𝑉𝑘−2. 

The recurrences above are suitable for calculating the 𝑈𝑘  and 𝑉𝑘 for small 𝑘's. For large integers 𝑘, the 
following algorithm is efficient in the calculation of 𝑈𝑘  mod 𝑞 and 𝑉𝑘 mod 𝑞. 

Input: an odd prime 𝑝, integers 𝑋 and 𝑌, a positive integer 𝑘. 

Output: 𝑈𝑘  mod 𝑞 and 𝑉𝑘 mod 𝑞. 

a) Set ∆= 𝑋2 – 4𝑌; 

b) The binary representation of 𝑘 is 𝑘𝑟𝑘𝑟−1…𝑘1𝑘0, and the most significant bit 𝑘𝑟 is 1; 

c) Set 𝑈 = 1, 𝑉 = 𝑋; 

d) For 𝑖 = 𝑟 − 1 to 0: 

d.1) Set (𝑈, 𝑉) = ((𝑈 ⋅ 𝑉) mod 𝑝, (𝑉2 + ∆ ⋅ 𝑈2)/2) mod 𝑝); 

d.2) If 𝑘𝑖 = 1, set (𝑈, 𝑉) = (((𝑈 ⋅ 𝑋 + 𝑉)/2) mod 𝑝, (𝑋 ⋅ 𝑉 + ∆ ⋅ 𝑈)/2) mod 𝑝); 

e) Output 𝑈 and 𝑉. 

C.1.4 Solving square root 

C.1.4.1 Solving square root on 𝑭𝒒 

Let 𝑞 be an odd prime, 𝑔 be an integer satisfying 0 ≤ 𝑔 < 𝑞, then the square root (mod 𝑞) of 𝑔 is the 
integer 𝑦, where 0 ≤ 𝑦 < 𝑞, such that 𝑦2 = 𝑔 (mod 𝑞). 

If 𝑔 = 0, then there is only one square root, 𝑦 = 0; if 𝑔 ≠ 0, then there are zero or two square roots 
(mod 𝑞), and if 𝑦 is one root, then the other root is 𝑞 − 𝑦. 

The following algorithm can determine whether the square roots of 𝑔 exist. If it exists, then the 
algorithm will compute one root. 

Input: an odd prime 𝑞, an integer 𝑔, 0 < 𝑔 < 𝑞. 

Output: if the square roots exist, output a square root mod 𝑞; otherwise output "no square root". 

Algorithm 1: For 𝑞 = 3 (mod 4), there is a positive integer 𝑢 satisfying 𝑞 =  4𝑢 +  3. 

a) Compute 𝑦 = 𝑔𝑢+1 mod 𝑞 (see C.1.1); 

b) Compute 𝑧 = 𝑦2 mod 𝑞; 

c) If 𝑧 = 𝑔, then output 𝑦; otherwise output "no square root". 
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Algorithm 2: For 𝑞 = 5 (mod 8), there is a positive integer 𝑢 satisfying 𝑞 =  8𝑢 +  5. 

a) Compute 𝑧 = 𝑔2𝑢+1 mod 𝑞 (see C.1.1); 

b) If 𝑧 = 1 (mod 𝑞), compute 𝑦 = 𝑔𝑢+1 mod 𝑞, output 𝑦 and stop the algorithm; 

c) If 𝑧 = −1 (mod 𝑞), compute 𝑦 = (2𝑔 ⋅ (4𝑔)𝑢 ) mod 𝑞, output 𝑦 and stop the algorithm; 

d) Output "no square root". 

Algorithm 3: For 𝑞 = 1 (mod 8), there is a positive integer 𝑢 satisfying 𝑞 = 8𝑢 +  1. 

a) Set 𝑌 =  𝑔; 

b) Generate the random value 𝑋, 0 < 𝑋 < 𝑞; 

c) Compute the Lucas sequences (see B.1.3): 𝑈 = 𝑈4𝑢+1 mod 𝑞 and 𝑉 = 𝑉4𝑢+1 mod 𝑞; 

d) If 𝑉2 = 4𝑌 (mod 𝑞), then output 𝑦 = (𝑉/2) mod 𝑞 and stop the algorithm; 

e) If 𝑈 mod 𝑞 ≠ 1 and 𝑈 mod 𝑞 ≠ 𝑞 − 1, output "no square root" and stop the algorithm; 

f) Go to b). 

C.1.4.2 Solving square root on 𝑭𝒒𝟐
 

Let 𝑞 be an odd prime, for a quadratic field extension 𝐹𝑞2 , let the reduced polynomial be 𝑓(𝑥) = 𝑥2 −

𝑛, 𝑛 ∈ 𝐹𝑞 , then element 𝛽 of 𝐹𝑞2  can be represented as 𝑎 + 𝑏𝑥, 𝑎, 𝑏 ∈ 𝐹𝑞 , then the square root of 𝛽 is: 

√𝛽 = √𝑎 + 𝑏𝑥 = ±(√
𝑎+√𝑎2−𝑛𝑏2

2
+ 

𝑥𝑏

2√
𝑎+√𝑎2−𝑛𝑏2

2

), or ±(√
𝑎−√𝑎2−𝑛𝑏2

2
+ 

𝑥𝑏

2√
𝑎−√𝑎2−𝑛𝑏2

2

). 

The algorithm below can determine if 𝛽 has square roots, if yes, calculate one of the roots. 

Input: 𝛽 = 𝑎 + 𝑏𝑥 ∈ 𝐹𝑞2 ,𝛽 ≠ 0, an odd prime number 𝑞. 

Output: if square roots of 𝛽 exists, output one square root 𝑧, otherwise output "The square root does 
not exist". 

a) Compute 𝑈 = 𝑎2 − 𝑛𝑏2; 

b) Compute the square root of 𝑈 mod 𝑞 (see C.1.4.1), if the square root of 𝑈 mod 𝑞 exists, denoted by 
𝑤𝑖, the equality 𝑤𝑖

2 = 𝑈 mod 𝑞 , 𝑖 = 1,2 holds, go to c); otherwise output "no square root" and stop. 

c) For 𝑖 = 1 to 2: 

c.1) Compute V=(a+𝑤𝑖)/2; 

c.2) Compute the square root of 𝑈 mod 𝑞 (see C.1.4.1). If they exist, choose one square root 𝑦 
randomly, then the equality 𝑦2 = 𝑈 mod 𝑞 holds, go to d); if the square roots of 𝑈 mod 𝑞 do not exist 
and 𝑖 = 2, output "no square root", then stop. 

d) Compute 𝑧1 = 𝑏/2𝑦(mod 𝑞), let 𝑧0 = 𝑦; 
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e) Output 𝑧 = 𝑧0 + 𝑧1𝑥. 

C.1.4.3 Solving square root on 𝑭𝒒𝒎  

C.1.4.3.1 Checking square elements on 𝑭𝒒𝒎 

Let 𝑞 be an odd prime number, 𝑚 > 2, 𝑔 a nonzero element on 𝐹𝑞𝑚 , the algorithm below can be used to 

check if 𝑔 is a square element. 

Input: an element 𝑔 of the field. 

Output: if 𝑔 is a square element then output "square", else output "no square". 

a) Compute 𝐵 = 𝑔(𝑞
𝑚−1)/2 (see C.1.1); 

b) If 𝐵 = 1, output "square"; 

𝑐) If 𝐵 = −1, output "no square". 

C.1.4.3.2 Solving square root on 𝑭𝒒𝒎 

Let 𝑞 be an odd prime number, 𝑚 ≥ 2. 

Input: an element 𝑔 of the field. 

Output: if 𝑔 is a square element, output its square root 𝐵; otherwise, output "no square root" 

a) Randomly choose a non-square element 𝑌; 

b) Compute 𝑞𝑚 − 1 = 2𝑢 × 𝑘, 𝑘 is an odd integer. 

c) Compute 𝑌 = 𝑌𝑘 . 

d) Compute 𝐶 = 𝑔𝑘. 

e) Compute 𝐵 = 𝑔(𝑘+1)/2. 

f) If 𝐶2
𝑢−1

≠ 1, then output "no square root" and stop. 

g) As long as 𝐶 ≠ 1: 

g.1) Let 𝐼 is the smallest positive integer such that 𝐶2
𝑖
= 1; 

g.2) Compute 𝐶 = 𝐶 × 𝑌2
𝑢−𝑖

; 

g.3) Compute 𝐵 = 𝐵 × 𝑌2
𝑢−𝑖−1

; 

h) Output 𝐵. 

C.1.5 Probabilistic primality testing 

Let 𝑢 be a large positive integer, the following probabilistic algorithm (Miller-Rabin test) can decide 
whether 𝑢 is a prime or a composite. 
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Input: a large odd 𝑢 and a large positive integer 𝑇. 

Output: "probably prime" or "composite". 

a) Compute 𝑣 and the odd 𝑤 satisfying 𝑢 − 1 = 2𝑣 ⋅ 𝑤; 

b) For 𝑗 = 1 to 𝑇: 

b.1) Select a random value 𝑎 in the range [2, 𝑢 − 1]; 

b.2) Set 𝑏 = 𝑎𝑤  mod 𝑢; 

b.3) If 𝑏 = 1 or 𝑢 − 1, go to b.6); 

b.4) For 𝑖 = 1 to 𝑣 − 1: 

b.4.1) Set 𝑏 = 𝑏2 mod 𝑢; 

b.4.2) If 𝑏 = 𝑢 − 1, go to b.6); 

b.4.3) If 𝑏 = 1, output "composite" and stop the algorithm; 

b.4.4) The next 𝑖; 

b.5) Output "composite" and stop the algorithm; 

b.6) The next 𝑗; 

c) Output "probably prime". 

If the algorithm outputs "composite", then 𝑢 is a composite. If the algorithm outputs "probably prime", 
then the probability of a composite 𝑢 is less than 2−2𝑇. Thus, by selecting a 𝑇 large enough, then the 
probability is negligible. 

C.2 Polynomials over finite fields 

C.2.1 Greatest common divisor 

If 𝑓(𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0 are two polynomials whose coefficients are in the field 𝐹𝑞 , there is only one 

monic polynomial 𝑑(𝑥) (its coefficients are also in the field 𝐹𝑞) with the largest degree, and it divides 

𝑓(𝑥) and 𝑔(𝑥) simultaneously. The polynomial 𝑑(𝑥) is called the greatest common divisor of 𝑓(𝑥) and 
𝑔(𝑥), which is denoted by gcd(𝑓(𝑥), 𝑔(𝑥)). The following algorithm (the Euclidean algorithm) is used to 
compute the greatest common divisor of two polynomials. 

Input: a finite field 𝐹𝑞 , and two nonzero polynomials 𝑓(𝑥) ≠ 0 and 𝑔(𝑥) ≠ 0 in 𝐹𝑞 . 

Output: 𝑑(𝑥) = gcd(𝑓(𝑥), 𝑔(𝑥)). 

a) Set 𝑎(𝑥)  =  𝑓(𝑥), 𝑏(𝑥)  =  𝑔(𝑥); 

b) When 𝑏(𝑡) ≠ 0, execute the loop: 

b.1) Set 𝑐(𝑥) = 𝑎(𝑥) mod 𝑏(𝑥); 
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b.2) Set 𝑎(𝑥) = 𝑏(𝑥); 

b.3) Set 𝑏(𝑥) = 𝑐(𝑥); 

c) Let 𝛼 be the coefficient of the first term in 𝑎(𝑥) and output 𝛼−1𝑎(𝑥). 

C.2.2 Checking irreducibility of polynomial over 𝑭𝒒 

Let 𝑓(𝑥) be the polynomial on 𝐹𝑞 , the following algorithm can be used to check the irreducibility of 𝑓(𝑥) 

efficiently. 

Input: the monic polynomial 𝑓(𝑥) and a prime 𝑞. 

Output: if 𝑓(𝑥) is irreducible over 𝐹𝑞 , output “yes”; otherwise output “no”. 

a) Set 𝑢(𝑥) = 𝑥, 𝑚 = deg(𝑓(𝑥)); 

b) For 𝑖 = 1 to ⌊𝑚/2⌋: 

b.1) Set 𝑢(𝑥) = 𝑢(𝑥)𝑞 mod 𝑓(𝑥); 

b.2) Set 𝑑(𝑥) = gcd(𝑓(𝑥), 𝑢(𝑥) − 𝑥); 

b.3) If 𝑑(𝑥) ≠ 1, output “no” and stop the algorithm; 

c) Output “yes”. 

C.3 Elliptic curve algorithms 

C.3.1 Finding points on elliptic curves 

Given an elliptic curve over finite field, the following algorithm can be used to find a point which is not 
the zero point on the elliptic curve efficiently. 

C.3.1.1 Finding points on 𝑬(𝑭𝒑). 

Input: a prime 𝑝, the parameters 𝑎 and 𝑏 of an elliptic curve 𝐸 over 𝐹𝑝. 

Output: a nonzero point on 𝐸. 

a) Select a random integer 𝑥, 0 ≤ 𝑥 ≤ 𝑝; 

b) Set 𝛼 = (𝑥3 + 𝑎𝑥 + 𝑏) mod 𝑝; 

c) If 𝛼 = 0, then output (𝑥, 0) and stop the algorithm; 

d) Compute the square root of 𝛼 mod 𝑝 (see C.1.4.1); 

e) If d) outputs "no square root", then go to a); 

f) Output (𝑥, 𝑦). 
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C.3.1.2 Finding points on 𝑬(𝑭𝒒𝒎) (𝒎 ≥ 𝟐) 

Input: finite field 𝐹𝑞𝑚  (𝑞 is an odd prime), the parameters 𝑎 and 𝑏 of an elliptic curve 𝐸 over 𝐹𝑞𝑚 

Output: a nonzero point on 𝐸. 

a) Select a random element 𝑥 in 𝐹𝑞𝑚 . 

b) Compute 𝛼 = (𝑥3 + 𝑎𝑥 + 𝑏) over 𝐹𝑞𝑚 . 

c) If 𝛼 = 0, then output (𝑥, 0) and stop the algorithm. 

d) Compute the square root of 𝛼 over 𝐹𝑞𝑚 , denoted by 𝑦 (see C.1.4.3); 

e) If the output of d) is "no square root", then go to a); 

f) Output (𝑥, 𝑦). 

C.3.2 Finding 𝒍-order points on elliptic curves 

This algorithm can be used to compute the generator of 𝑙-torsion subgroup of elliptic curves. 

Input: the parameters 𝑎 and 𝑏 of an elliptic curve 𝐸 over 𝐹𝑞 , the order of the curve #𝐸(𝐹𝑞) = 𝑙𝑟, where 𝑙 

is a prime number. 

Output: an 𝑙-order point on 𝐸(𝐹𝑞). 

a) Use the method of C.3.1 to select a point 𝑄 on the curve randomly. 

b) Compute 𝑃 = [𝑟]𝑄; 

c) If 𝑃 = 𝑂 then go to a); 

d) Output 𝑃. 

C.3.3 Finding 𝒍-torsion points on twisted elliptic curves 

Let 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 be the function of the elliptic curve 𝐸 over 𝐹𝑞𝑚 , the order #𝐸(𝐹𝑞𝑚) = 𝑞
𝑚 + 1 − 𝑡. 

Let the equation of its twisted curve 𝐸′ is 𝑦2 = 𝑥3 + 𝛽2𝑎𝑥 + 𝛽3𝑏, 𝛽 is a non-square element of 𝐹𝑞𝑚 , 

#𝐸′(𝐹𝑞𝑚) = 𝑞
𝑚 + 1 + 𝑡. 

Input: the parameters 𝑎, 𝑏, 𝛽 of the twisted curve 𝐸′(𝐹𝑞𝑚) of an elliptic curve 𝐸(𝐹𝑞𝑚), the order 

#𝐸(𝐹𝑞𝑚) = 𝑛
′ = 𝑙 ⋅ 𝑟, where 𝑙 is prime. 

Output: an 𝑙-order point on 𝐸′(𝐹𝑞𝑚). 

a) Use the method of C.3.1 to select a point 𝑄 on 𝐸′(𝐹𝑞𝑚) randomly. 

b) Compute 𝑃 = [𝑟]𝑄; 

c) If 𝑃 = 𝑄 then go to a); else 𝑃 is an 𝑙-torsion point. 

d) Output 𝑃. 
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