

SM9 identity-based cryptographic algorithms

Part 3: Key exchange protocol

 i

Contents

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 1
3.1 key exchange ... 1
3.2 key agreement .. 1
3.3 key confirmation from A to B .. 1
3.4 key derivation function ... 1
3.5 initiator ... 1
3.6 responder ... 2
3.7 encryption master key ... 2
3.8 identity .. 2
3.9 key generation center (KGC) ... 2

4 Symbols ... 2

5 Algorithm parameters and auxiliary functions .. 3
5.1 Overview ... 3
5.2 System parameters ... 4
5.3 Generation of the encryption master key and the user’s encryption private key 4
5.4 Auxiliary functions .. 4
5.4.1 Overview ... 4
5.4.2 Cryptographic hash functions ... 5
5.4.3 Key derivation functions ... 6
5.4.4 Random number generators ... 6

6 Key exchange protocol and its process .. 6
6.1 Key exchange protocol ... 6
6.2 Key exchange process .. 7

 1

SM9 identity-based cryptographic algorithms

Part 3: Key exchange protocol

1 Scope

This part of GM/T 0044‒2016 describes an identity-based key exchange protocol built upon pairings on
elliptic curves, and specifies the corresponding processes. This protocol enables two communication
entities to compute a shared secret key, which is generated from input provided by both entities, as the
result of two or (optionally) three message exchanges over the identity of the peer entity and its own
private key. The shared secret key can be used as the session key of symmetric cryptographic
algorithms. The optional message exchange step in the protocol allows for key confirmation.

This part applies to key management and agreement.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

GM/T 0004‒2012, SM3 cryptographic hash algorithm

GM/T 0044.1‒2016, SM9 identity-based cryptographic algorithms — Part 1: General

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 key exchange

scheme to exchange keys securely between communication entities, enables both entities to exchange
keys securely for transmitting information over an insecure communication channel

3.2 key agreement

process to generate a shared secret key among multiple users, where no user can determinate the value
of the key beforehand

3.3 key confirmation from A to B

assurance for user B that user A is in possession of the correct key

3.4 key derivation function

function that generates one or more shared secret keys from shared secrets and other parameters
known to both entities

3.5 initiator

entity which initiates the first round of message exchange in the protocol

 2

3.6 responder

entity that does not initiate the first round of message exchange in the protocol

3.7 encryption master key

topmost key in the key hierarchy of an identity–based cryptographic system, composed of the
encryption master private key and the encryption master public key. The encryption master public key
is publicly available while the encryption master private key is kept secret by the KGC. The KGC
generates the user’s encryption private key by using the encryption master private key and the user’s
identity. In an identity–based cryptographic system, the encryption master private key is usually
generated by the KGC using random number generators, while the encryption master public key is
generated with the encryption master private key and the system parameters

3.8 identity

information that can be used to confirm the identity of an entity, composed of non-repudiable
information about the entity, such as its distinguished name, email address, identity card number, and
telephone number.

3.9 key generation center (KGC)

trusted authority responsible for the selection of system parameters, generation of the encryption
master keys, and generation of users’ encryption private keys (in this part)

4 Symbols

The following symbols apply to this part.

A, B: two users A and B using the identity-based cryptographic system

𝑐𝑓: cofactor of the order of an elliptic curve relative to 𝑁

𝑐𝑖𝑑 : curve identifier that indicates the type of elliptic curve, denoted by one byte, where
0x10 represents an ordinary curve (a non-supersingular curve) over 𝐹𝑝 (the prime number 𝑝 > 2191),

0x11 represents a supersingular curve over 𝐹𝑝 , and 0x12 represents an ordinary curve and its twisted

curve over 𝐹𝑝

𝑑𝑒𝐴: the encryption private key of the user A

𝑑𝑒𝐵: the encryption private key of the user B

𝑒: a bilinear pairing from 𝔾1 × 𝔾2 to 𝔾𝑇

𝑒𝑖𝑑: bilinear pairing identifier to distinguish the type of the bilinear pairing 𝑒, denoted by one byte,
where 0x01 represents the Tate pairing, 0x02 represents the Weil pairing, 0x03 represents the Ate
pairing, and 0x04 represents the R-Ate pairing

𝔾𝑇: a multiplicative cyclic group of prime order 𝑁

𝔾1: an additive cyclic group of prime order 𝑁

𝔾2: an additive cyclic group of prime order 𝑁

 3

𝑔𝑢: 𝑔 to the power of 𝑢, where 𝑔 is an element in the multiplicative group 𝔾𝑇 and 𝑢 is a positive integer,
that is 𝑔𝑢 = 𝑔 ⋅ 𝑔 ⋅ ⋯ ⋅ 𝑔⏟

𝑢 𝑔′𝑠

𝐻𝑣(): cryptographic hash functions

𝐻1(), 𝐻2(): cryptographic functions derived from the cryptographic hash function

ℎ𝑖𝑑: identifier of the encryption private key generating function, denoted by one byte, selected and
made public by the KGC

𝐼𝐷𝐴: the identity of the user A that uniquely determines the public key of A

𝐼𝐷𝐵: the identity of the user B that uniquely determines the public key of B

𝐾𝐷𝐹(): the key derivation function

𝑁: the order of the cyclic groups 𝔾1, 𝔾2 and 𝔾𝑇 , which is a prime number greater than 2191

𝑃𝑝𝑢𝑏−𝑒: the encryption master public key

𝑃1: a generator of 𝔾1

𝑃2: a generator of 𝔾2

𝑟𝐴: the temporary key generated by the user A during the key exchange

𝑟𝐵: the temporary key generated by the user B during the key exchange

𝑆𝐾𝐴, 𝑆𝐾𝐵: the shared secret key agreed in the key exchange protocol

𝑘𝑒: the encryption master private key

〈𝑃〉: the cyclic group generated by the element 𝑃

[𝑢]𝑃: the 𝑢 multiple of the element 𝑃 in the additive groups 𝔾1 or 𝔾2

⌈𝑥⌉: the ceiling function that maps to the smallest integer not less than 𝑥, for example, ⌈7⌉ = 7, ⌈8.3⌉ = 9

⌊𝑥⌋: the floor function that maps to the largest integer not greater than 𝑥, for example, ⌊7⌋ = 7, ⌊8.3⌋ = 8

𝑥 ∥ 𝑦: the concatenation of 𝑥 and 𝑦, where 𝑥 and 𝑦 are bit strings or byte strings

[𝑥, 𝑦]: the set of integers which are not less than 𝑥 and not greater than 𝑦

𝛽: the twisted curve parameter

5 Algorithm parameters and auxiliary functions

5.1 Overview

This part describes an identity-based key exchange protocol implemented upon pairings of elliptic
curves. Both the initiator, user A, and the responder, user B, participates in the key exchange protocol
with its identity and its corresponding encryption private key, which is generated by the KGC with the

 4

encryption master private key and the user’s identity. A and B can negotiate a secret key only known to
themselves with their identities and encryption private keys through exchanging messages. Both users
can perform key confirmation of its counterpart through an optional message exchange. The shared
secret key is often used in some symmetric cryptographic algorithm. This key exchange protocol can be
used for key management and key agreement.

5.2 System parameters

The system parameters include: the curve identifier 𝑐𝑖𝑑, the parameters of the elliptic curve base field
𝐹𝑞 , the parameters of the elliptic curve equation 𝑎 and 𝑏, the twisted curve parameter 𝛽 (if the least

significant 4 bits of 𝑐𝑖𝑑 is 2), the prime factor 𝑁 of the order of the curve and the cofactor 𝑐𝑓 relative to
𝑁, the embedding degree 𝑘 of the curve 𝐸(𝐹𝑞) relative to 𝑁, a generator 𝑃1 of the cyclic subgroup 𝔾1 of

𝐸(𝐹𝑞𝑑1) of order 𝑁 (where 𝑑1divides 𝑘), a generator 𝑃2 of the cyclic subgroup of 𝐸(𝐹𝑞𝑑2) of order 𝑁

(where 𝑑2 divides 𝑘), the bilinear pairing identifier 𝑒𝑖𝑑 of 𝑒, and optionally the homomorphism 𝛹 from
𝔾2 to 𝔾1.

The range of the bilinear pairing 𝑒 is the multiplicative cyclic group 𝔾𝑇 of order 𝑁.

For detailed descriptions of the system parameters as well as their verification, please refer to Clause 7
of GM/T 0044.1‒2016.

5.3 Generation of the encryption master key and the user’s encryption private key

The KGC generates a random number 𝑘𝑒 ∈ [1, 𝑁 − 1] as the encryption master private key, computes
the element 𝑃𝑝𝑢𝑏−𝑒 = [𝑘𝑒]𝑃1 in 𝔾1 as the encryption master public key, and then the encryption master

key pair is (𝑘𝑒, 𝑃𝑝𝑢𝑏−𝑒). The KGC keeps 𝑘𝑒 secret and makes 𝑃𝑝𝑢𝑏−𝑒 public.

The KGC chooses a one-byte encryption private key generating function identifier ℎ𝑖𝑑 and makes it
public.

Let 𝐼𝐷𝐴 and 𝐼𝐷𝐵 denote the identities of the users A and B respectively. To generate the encryption
private key 𝑑𝑒𝐴 of A, the KGC first computes 𝑡1 = 𝐻1(𝐼𝐷𝐴 ∥ ℎ𝑖𝑑, 𝑁) + 𝑘𝑒 over the finite field 𝐹𝑁. If 𝑡1 = 0,
it regenerates the encryption master private key, computes the encryption master public key and
makes it public, and updates the existing encryption private keys of users. Otherwise, it computes 𝑡2 =
𝑘𝑒 ⋅ 𝑡1

−1, and then computes 𝑑𝑒𝐴 = [𝑡2]𝑃2. To generate the encryption private key 𝑑𝑒𝐵 of B, the KGC first
computes 𝑡3 = 𝐻1(𝐼𝐷𝐵 ∥ ℎ𝑖𝑑, 𝑁) + 𝑘𝑒 over the finite field 𝐹𝑁. If 𝑡3 = 0, it regenerates the encryption
master private key, computes the encryption master public key and makes it public, and updates the
existing encryption private keys of users. Otherwise, it computes 𝑡4 = 𝑘𝑒 ⋅ 𝑡3

−1, and then computes
𝑑𝑒𝐵 = [𝑡4]𝑃2.

5.4 Auxiliary functions

5.4.1 Overview

There are three types of auxiliary functions used in the identity-based key exchange protocol specified
in this part: cryptographic hash functions, key derivation functions and random number generators.
The security of the key exchange protocol is directly impacted by these auxiliary functions.

 5

5.4.2 Cryptographic hash functions

5.4.2.1 Cryptographic hash function 𝑯𝒗()

The output of the cryptographic hash function 𝐻𝑣() is a 𝑣-bit hash value. This part adopts the
cryptographic hash functions approved by the State Cryptography Administration such as the SM3
cryptographic hash algorithm.

5.4.2.2 Cryptographic function 𝑯𝟏()

The input of the cryptographic function 𝐻1(𝑍, 𝑛) is a bit string 𝑍 and an integer 𝑛, and its output is an
integer ℎ1 ∈ [1, 𝑛 − 1] . 𝐻1(𝑍, 𝑛) invokes the cryptographic hash function 𝐻𝑣() internally. 𝐻𝑣() is
specified in 5.4.2.1.

Cryptographic function 𝑯𝟏(𝒁, 𝒏):

Input: a bit string 𝑍 and an integer 𝑛.

Output: an integer ℎ1 ∈ [1, 𝑛 − 1].

Step 1: Initialize a 32-bit counter 𝑐𝑡 = 0x00000001;

Step 2: Compute ℎ𝑙𝑒𝑛 = 8 × ⌈(5 × (log2 𝑛))/32⌉;

Step 3: For 𝑖 = 1 to ⌈ℎ𝑙𝑒𝑛/𝑣⌉:

Step 3.1: Compute 𝐻𝑎𝑖 = 𝐻𝑣(0x01||𝑍||𝑐𝑡);

Step 3.2: 𝑐𝑡++;

Step 4: If ℎ𝑙𝑒𝑛/𝑣 is an integer, set 𝐻𝑎!⌈ℎ𝑙𝑒𝑛/𝑣⌉ = 𝐻𝑎⌈ℎ𝑙𝑒𝑛/𝑣⌉. Otherwise, set 𝐻𝑎!⌈ℎ𝑙𝑒𝑛/𝑣⌉ to be the leftmost

 (ℎ𝑙𝑒𝑛 − (𝑣 × ⌊ℎ𝑙𝑒𝑛/𝑣⌋)) bits of 𝐻𝑎⌈ℎ𝑙𝑒𝑛/𝑣⌉.

Step 5: Set 𝐻𝑎 = 𝐻𝑎1||𝐻𝑎2||⋯ || 𝐻𝑎⌈ℎ𝑙𝑒𝑛/𝑣⌉−1 ||𝐻𝑎!⌈ℎ𝑙𝑒𝑛/𝑣⌉. Convert the data type of 𝐻𝑎 to integer as

specified in Clauses 6.2.4 and 6.2.3 of GM/T 0044.1‒2016.

Step 6: Compute ℎ1 = (𝐻𝑎 mod (𝑛 − 1)) + 1.

5.4.2.3 Cryptographic function 𝑯𝟐()

The input of the cryptographic function 𝐻2(𝑍, 𝑛) is a bit string 𝑍 and an integer 𝑛, and its output is an
integer ℎ2 ∈ [1, 𝑛 − 1] . 𝐻2(𝑍, 𝑛) invokes the cryptographic hash function 𝐻𝑣() internally. 𝐻𝑣() is
specified in 5.4.2.1.

Cryptographic function 𝑯𝟐(𝒁, 𝒏):

Input: a bit string 𝑍, an integer 𝑛.

Output: an integer ℎ2 ∈ [1, 𝑛 − 1].

Step 1: Initialize a 32-bit counter 𝑐𝑡 = 0x00000001;

Step 2: Compute ℎ𝑙𝑒𝑛 = 8 × ⌈(5 × (log2 𝑛))/32⌉;

 6

Step 3: For 𝑖 = 1 to ⌈ℎ𝑙𝑒𝑛/𝑣⌉:

Step 3.1: Compute 𝐻𝑎𝑖 = 𝐻𝑣(0x02||𝑍||𝑐𝑡);

Step 3.2: 𝑐𝑡++;

Step 4: If ℎ𝑙𝑒𝑛/𝑣 is an integer, set 𝐻𝑎!⌈ℎ𝑙𝑒𝑛/𝑣⌉ = 𝐻𝑎⌈ℎ𝑙𝑒𝑛/𝑣⌉. Otherwise, set 𝐻𝑎!⌈ℎ𝑙𝑒𝑛/𝑣⌉ to be the leftmost

 (ℎ𝑙𝑒𝑛 − (𝑣 × ⌊ℎ𝑙𝑒𝑛/𝑣⌋)) bits of 𝐻𝑎⌈ℎ𝑙𝑒𝑛/𝑣⌉.

Step 5: Set 𝐻𝑎 = 𝐻𝑎1||𝐻𝑎2||⋯ || 𝐻𝑎⌈ℎ𝑙𝑒𝑛/𝑣⌉−1 ||𝐻𝑎!⌈ℎ𝑙𝑒𝑛/𝑣⌉ . Convert the data type of 𝐻𝑎 to integer as

specified in Clauses 6.2.4 and 6.2.3 of GM/T 0044.1‒2016.

Step 6: Compute ℎ2 = (𝐻𝑎 mod (𝑛 − 1)) + 1.

5.4.3 Key derivation functions

The key derivation function is used to derive keys from a shared secret bit string. In the key agreement
process, the key derivation function takes the shared secret bit string obtained in the key exchange
process as input, and generates session keys or other secret keys for further encryption.

The key derivation functions invokes cryptographic hash functions specified above.

Let 𝐻𝑣() be a cryptographic hash function and its output is a hash value of length 𝑣.

Key derivation function 𝐾𝐷𝐹(𝑍, 𝑘𝑙𝑒𝑛):

Input: a bit string 𝑍 (shared by both entities) and an integer 𝑘𝑙𝑒𝑛 (denotes the required bit length of
secret keys, and 𝑘𝑙𝑒𝑛 < (232 − 1)𝑣).

Output: a bit string 𝐾 of length 𝑘𝑙𝑒𝑛.

Step 1: Initialize a 32-bit counter 𝑐𝑡 = 0x00000001.

Step 2: For 𝑖 = 1 to ⌈𝑘𝑙𝑒𝑛/𝑣⌉:

Step 2.1: Compute 𝐻𝑎𝑖 = 𝐻𝑣(𝑍 ∥ 𝑐𝑡);

Step 2.2: 𝑐𝑡 + +;

Step 3: If 𝑘𝑙𝑒𝑛/𝑣 is an integer, then set 𝐻𝑎!⌈𝑘𝑙𝑒𝑛/𝑣⌉ = 𝐻𝑎⌈𝑘𝑙𝑒𝑛/𝑣⌉. Otherwise, set 𝐻𝑎!⌈𝑘𝑙𝑒𝑛/𝑣⌉ be the

leftmost (𝑘𝑙𝑒𝑛 − (𝑣 × ⌊𝑘𝑙𝑒𝑛/𝑣⌋)) bits of 𝐻𝑎⌈𝑘𝑙𝑒𝑛/𝑣⌉;

Step 4: Set 𝐾 = 𝐻𝑎1 ∥ 𝐻𝑎2 ∥ ⋯ ∥ 𝐻𝑎⌈𝑘𝑙𝑒𝑛/𝑣⌉−1 ∥ 𝐻𝑎!⌈𝑘𝑙𝑒𝑛/𝑣⌉.

5.4.4 Random number generators

This part adopts random number generators approved by the State Cryptography Administration.

6 Key exchange protocol and its process

6.1 Key exchange protocol

Assume that the users A and B are negotiating a bit string of length 𝑘𝑙𝑒𝑛, where A is the initiator and B
is the responder.

 7

In order to obtain the same keys, both A and B shall perform the following steps.

User A:

A1: Compute the element 𝑄𝐵 = [𝐻1(𝐼𝐷𝐵 ∥ ℎ𝑖𝑑, 𝑁)]𝑃1 + 𝑃𝑝𝑢𝑏−𝑒 over 𝔾1;

A2: Generate a random number 𝑟𝐴 ∈ [1, 𝑁 − 1];

A3: Compute the element 𝑅𝐴 = [𝑟𝐴]𝑄𝐵 over 𝔾1;

A4: Send 𝑅𝐴 to B;

User B:

B1: Compute the element 𝑄𝐴 = [𝐻1(𝐼𝐷𝐴 ∥ ℎ𝑖𝑑, 𝑁)]𝑃1 + 𝑃𝑝𝑢𝑏−𝑒 over 𝔾1;

B2: Generate a random number 𝑟𝐵 ∈ [1, 𝑁 − 1];

B3: Compute the element 𝑅𝐵 = [𝑟𝐵]𝑄𝐴 over 𝔾1;

B4: Verify 𝑅𝐴 ∈ 𝔾1 as specified in Clause 4.5 of GM/T 0044.1‒2016. If not, the protocol fails. Otherwise,

compute over 𝔾𝑇: 𝑔1 = 𝑒(𝑅𝐴, 𝑑𝑒𝐵), 𝑔2 = 𝑒(𝑃𝑝𝑢𝑏−𝑒 , 𝑃2)
𝑟𝐵

, 𝑔3 = 𝑔1
𝑟𝐵 . Convert the data type of 𝑔1, 𝑔2, 𝑔3 to

bit string as specified in Clauses 6.2.8 and 6.2.5 of GM/T 0044.1‒2016.

B5: Convert the data type of 𝑅𝐴 and 𝑅𝐵 to bit string as specified in Clauses 6.2.6 and 6.2.5 of GM/T
0044.1‒2016, and compute 𝑆𝐾𝐵 = 𝐾𝐷𝐹(𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵 ∥ 𝑔1 ∥ 𝑔2 ∥ 𝑔3, 𝑘𝑙𝑒𝑛).

B6: (Optional) Compute 𝑆𝐵 = 𝐻𝑣(0x82 ∥ 𝑔1 ∥ 𝐻𝑣(𝑔2 ∥ 𝑔3 ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵)).

B7: Send 𝑅𝐵 and (optionally) 𝑆𝐵 to A.

User A:

A5: Verify 𝑅𝐵 ∈ 𝔾1 as specified in Clause 4.5 of GM/T 0044.1‒2016. If not, the protocol fails. Otherwise,

compute over 𝔾𝑇: 𝑔1
′ = 𝑒(𝑃𝑝𝑢𝑏−𝑒 , 𝑃2)

𝑟𝐴 , 𝑔2
′ = 𝑒(𝑅𝐵, 𝑑𝑒𝐴), 𝑔3

′ = (𝑔2
′)𝑟𝐴 . Convert the data type of 𝑔1

′ , 𝑔2
′ , 𝑔3

′

to bit string as specified in Clauses 6.2.6 and 6.2.5 of GM/T 0044.1‒2016.

A6: Convert the data type of 𝑅𝐴 and 𝑅𝐵 to bit string as specified in Clauses 6.2.8 and 6.2.5 of GM/T

0044.1‒2016, and (optionally) compute 𝑆1 = 𝐻𝑣(0x82 ∥ 𝑔1
′ ∥ 𝐻𝑣(𝑔2

′ ∥ 𝑔3
′ ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵)), and

verify if 𝑆1 = 𝑆𝐵, if not, the key confirmation from B to A fails.

A7: Compute 𝑆𝐾𝐴 = 𝐾𝐷𝐹(𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵 ∥ 𝑔1
′ ∥ 𝑔2

′ ∥ 𝑔3
′ , 𝑘𝑙𝑒𝑛).

A8: (Optional) Compute 𝑆𝐴 = 𝐻𝑣(0x83 ∥ 𝑔1
′ ∥ 𝐻𝑣(𝑔2

′ ∥ 𝑔3
′ ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵)) and send 𝑆𝐴 to B.

User B:

B8: (Optional) Compute 𝑆2 = 𝐻𝑣(0x83 ∥ 𝑔1 ∥ 𝐻𝑣(𝑔2 ∥ 𝑔3 ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵)), and verify if 𝑆2 = 𝑆𝐴,

if not, the key confirmation from A to B fails.

6.2 Key exchange process

The process of the key exchange protocol is shown in Figure 1.

 8

No

No

No

No

Figure 1: Key exchange protocol process

𝑆2 = 𝑆𝐴?

Yes

Yes

Yes

Yes

The initial data of the initiator A

(parameters of the system, the master public
key 𝑃𝑝𝑢𝑏−𝑒, the identifier ℎ𝑖𝑑, the private key

𝑑𝑒𝐴 and the identities 𝐼𝐷𝐴, 𝐼𝐷𝐵)

Step 1: compute
𝑄𝐵 = [𝐻1(𝐼𝐷𝐵 ∥ ℎ𝑖𝑑, 𝑁)]𝑃1 + 𝑃𝑝𝑢𝑏−𝑒

Step 2: generate a random number
𝑟𝐴 ∈ [1, 𝑁 − 1]

Step 3: compute 𝑅𝐴 = [𝑟𝐴]𝑄𝐵

Step 4: send 𝑅𝐴 to B

𝑅𝐵 ∈ 𝔾1?

Step 5: compute

𝑔1
′ = 𝑒(𝑃𝑝𝑢𝑏−𝑒 , 𝑃2)

𝑟𝐴 , 𝑔2
′ = 𝑒(𝑅𝐵, 𝑑𝑒𝐴) , 𝑔3

′ =

(𝑔2
′)𝑟𝐴

Step 6: (optional) compute
𝑆1 = 𝐻𝑣(0x82 ∥ 𝑔1

′ ∥ 𝐻𝑣(𝑔2
′ ∥ 𝑔3

′ ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥

𝑅𝐴 ∥ 𝑅𝐵))

𝑆1 = 𝑆𝐵?

The key confirmation from B to A
succeeds.

Step 7: compute
𝑆𝐾𝐴 = 𝐾𝐷𝐹(𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵 ∥ 𝑔1

′ ∥ 𝑔2
′ ∥

𝑔3
′ , 𝑘𝑙𝑒𝑛)

Step 8: (optional) compute 𝑆𝐴, and send it to B,

𝑆𝐴 = 𝐻𝑣(0x83 ∥ 𝑔1
′ ∥ 𝐻𝑣(𝑔2

′ ∥ 𝑔3
′ ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥

𝑅𝐴 ∥ 𝑅𝐵))

The key confirmation from B to A fails.

The protocol fails.

The initial data of the responder B

(parameters of the system, the master public
key 𝑃𝑝𝑢𝑏−𝑒, the identifier ℎ𝑖𝑑, the private key

𝑑𝑒𝐵 and the identities 𝐼𝐷𝐴, 𝐼𝐷𝐵)

Step 1: compute
𝑄𝐴 = [𝐻1(𝐼𝐷𝐴 ∥ ℎ𝑖𝑑, 𝑁)]𝑃1 + 𝑃𝑝𝑢𝑏−𝑒

Step 2: generate a random number
𝑟𝐵 ∈ [1, 𝑁 − 1]

Step 3: compute 𝑅𝐵 = [𝑟𝐵]𝑄𝐴

𝑅𝐴 ∈ 𝔾1?

Step 4: compute

𝑔1 = 𝑒(𝑅𝐴, 𝑑𝑒𝐵) , 𝑔2 = 𝑒(𝑃𝑝𝑢𝑏−𝑒 , 𝑃2)
𝑟𝐵 , 𝑔3 =

𝑔1
𝑟𝐵

Step 5: compute
𝑆𝐾𝐵 = 𝐾𝐷𝐹(𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑅𝐴 ∥ 𝑅𝐵 ∥ 𝑔1 ∥ 𝑔2 ∥
𝑔3, 𝑘𝑙𝑒𝑛)

Step 6: (optional) compute

𝑆𝐵 = 𝐻𝑣(0x82 ∥ 𝑔1 ∥ 𝐻𝑣(𝑔2 ∥ 𝑔3 ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥

𝑅𝐴 ∥ 𝑅𝐵))

Step 7: send 𝑅𝐵 and (optionally) 𝑆𝐵 to A.

The key confirmation from A to B
succeeds.

Step 8: (optional) compute

𝑆2 = 𝐻𝑣(0x83 ∥ 𝑔1 ∥ 𝐻𝑣(𝑔2 ∥ 𝑔3 ∥ 𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥

𝑅𝐴 ∥ 𝑅𝐵))

The key confirmation from A to B fails.

