SM9 identity-based cryptographic algorithms

Part 4: Key encapsulation mechanism and public key
encryption algorithm

Contents

1
2

3
31
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

5.1
5.2
5.3
5.4
54.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

6.1
6.1.1
6.1.2
6.2
6.2.1
6.2.2

7.1
7.1.1
7.1.2
7.2
7.2.1
7.2.2

Y6 0 1
I\ V0D @ 002 ol) o) o L 1
Terms and definitions...... i ————————————————————_————_————— 1
LT 0] o3, 1
00 LTy 1
0] T4)¢ 1
L 0] 0] 1 1
13 1 100 5074 0110 L 2
[0 0T 0 74 01000) o 2
32700 T a7 L (00 0T 0) o 2
message authentication code (MAQ).....commmmmmmssssssssssssssssssssss s sassssss 2
(23 1007 01000 0 10 B T 1) (S 2
0) 0L 1 2
Kkey generation Center (KGC) ... ssasassssssess 2
L 71 010) 1 2
Algorithm parameters and auxiliary funcCtions ... ———————————— 4
L0 0] 7 4
SYSEEIN PATAINELET'S ..ucureresesssssesssssissssmsssssssssssssssssssss s s s asas s AR AR A AR E R R AR AR A AR AR AR AR R R s R RS 4
Generation of the encryption master key and the user’s encryption private keyccucvusus 4
AUXIHArY fUNCHIONS ... e e R R RS R AR AR e 5
L0 8723 g4 T 5
Cryptographic hash fUNCHIONS ... ——————— 5
Key derivation funNCHONS. ... sssssssssasssasasassssnss 6
BlocK cipher algOTrithms ... s s s 6
Message authentication code fUNCHONS ... ——————————— 6
Random NUMDET SENETators ... s asss s aes 7
Key encapsulation mechanism and itS ProcCesscummmsssss—————s 7
Key encapsulation algorithm and itS ProCess ... —————————————— 7
Key encapsulation al@orithm ... 7
Key encapsulation ProCeSS.....mmmmmmmmsisisisssssssssssssssssssssssassssssssssssssssssssssssssasassssssssssssssssssasasasssssss 7
Key decapsulation algorithm and itS ProCess ... ———————————— 8
Decapsulation algOTrithm ... 8
Key decapsulation PrOCESS.....mmmmsmmsmssssisssssssssssssssssssssssssasassssssssssssssssssssssssasasassssssssssssssssasasasssssss 8
Public key encryption algorithm and itS ProcCess.......—————— 9
Encryption algorithm and itS ProCess ... ————————— 9
200708 3374 010 10 1 P11 o0 L 1) o 0 9
ENCIYPUiON PIOCESS cuviiiuismsmisssmsmssasssssssssesssassssssss sesssasssssssssssssassssnssssssssassenass 10
Decryption algorithm and itS ProCessS...... s ———————————— 12
Decryption algorithm... s 12
D ECTYPUION PIOCESS .uciieisismssssssmssssssssssssssssssssssssssssssesssssssms s s s s e RS S AR AR R AR RS EE AR R AR ERRR R R AR R AR R AR R R R AR R AR ER RS 12

SM9 identity-based cryptographic algorithms

Part 4: Key encapsulation mechanism and public key
encryption algorithm

1 Scope

This part specifies an identity-based key encapsulation mechanism and a public key encryption and
decryption algorithm built upon pairings on elliptic curves and specifies the corresponding processes.
The key encapsulation mechanism can be used to encapsulate a secret key to a specific entity. The
public key encryption and decryption algorithms are identity-based asymmetric cryptographic
algorithms, which allow the sender to encrypt the message using the identity of a receiver, and only the

receiver can decrypt the encrypted message using its corresponding private key.

This part applies to the key encapsulation and the encryption and decryption of a message.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
GM/T 0004-2012, SM3 cryptographic hash algorithm

GM/T 0002-2012, SM4 block cipher algorithm

GM/T 0044.1-2016, SM9 identity-based cryptographic algorithms — Part 1: General

GM/T 0044.3-2016, SM9 identity-based cryptographic algorithms — Part 3: Key exchange protocol

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 secret key

key shared by both the sender and the receiver in a cryptographic system, unknown to any third party
3.2 message

bit string of finite length

3.3 plaintext

unencrypted information

3.4 ciphertext

data which has been transformed to hide its information content

3.5 encryption

(invertible) transformation of data by a cryptographic algorithm to generate ciphertext, i.e. to hide the
information content of the data

3.6 decryption
the inverse process of the corresponding encryption
3.7 key derivation function

function that generates one or more shared private keys from shared secrets and other parameters
known to both entities

3.8 message authentication code (MAC)

authentication algorithm which is used to identify the source and check the integrity of the data by
generating a section of code from a specific key and the message, where the function used to obtain the
message authentication code is called the message authentication code function

3.9 encryption master key

topmost key in the key hierarchy of an identity-based cryptographic system, composed of the
encryption master private key and the encryption master public key. The encryption master public key
is publicly available while the encryption master private key is kept secret by the KGC. The KGC
generates the user’s encryption private key by using the encryption master private key and the user’s
identity. In an identity-based cryptographic system, the encryption master private key is usually
generated by the KGC using random number generator while the encryption master public key is
generated with the encryption master private key and the system parameters

3.10 identity

information that can be used to confirm the identity of an entity, composed of non-repudiable
information about the entity, such as its distinguished name, email address, identity card number, and
telephone number.

3.11 key generation center (KGC)

trusted authority responsible for the selection of system parameters, generation of the encryption
master keys, and generation of users’ encryption private keys (in this part)

4 Symbols

The following symbols apply to this part.

A, B: two users A and B using the identity-based cryptographic system
cf: the cofactor of the order of an elliptic curve relative to N

cid: curve identifier that indicates the type of elliptic curve, denoted by one byte, where 0x10
represents an ordinary curve (the non-supersingular curve) over F, (the prime number p > 2191, 0x11

represents a supersingular curve over E,, and 0x12 represents an ordinary curve and its twisted curve
over Fp

Dec(): block cipher decryption algorithm
deg: encryption private key of the user B
Enc(): block cipher encryption algorithm
e: a bilinear pairing from G; X G, to Gy
eid: bilinear pairing identifier to distinguish the type of the bilinear pairing e, denoted by one byte,
where 0x01 represents the Tate pairing, 0x02 represents the Weil pairing, 0x03 represents the Ate
pairing, and 0x04 represents the R-Ate pairing
Gr: a multiplicative cyclic group of prime order N
G4: an additive cyclic group of prime order N
G,: an additive cyclic group of prime order N
g*: g to the power of u, where g is an element in the multiplicative group Gy and u is a positive integer,
thatisg*=g-g---g

N ———

ugrs

H,(): a cryptographic hash function

H,(), H,(): cryptographic functions derived from the cryptographic hash function

hid: identifier of the encryption private key generating function, denoted by one byte, selected and
made public by the KGC

IDg: the identity of user B that uniquely determines the public key of B
KDF ():the key derivation function

M: the message to be encrypted

M': the message obtained by decryption

MAC (): the message authentication code function

N: the order of the cyclic groups G;, G, and Gy, which is a prime number greater than 2191
Ppup-e: the encryption master public key

P;: a generator of G,

P,: a generator of G,

ke: the encryption master private key

(P): the cyclic group generated by the element P

[u]P : the u multiple of the element P in the additive groups G; or G,

x||y: the concatenation of x and y, where x and y are bit strings or byte strings

[x, y]: the set of integers which are not less than x and not greater than y
@: the bitwise XOR operator that operates on two bit strings of the same length

B: the twisted curve parameter

5 Algorithm parameters and auxiliary functions
5.1 Overview

The key is a crucial parameter in the control of cryptographic transformations in modern cryptography,
and the security of cryptographic output greatly depends on the security of the key. The key
encapsulation mechanism enables a user to generate and encrypt a secret key to a target user, such as
only the target user can decrypt the secret key, which can be used further as a basis for session keys.

This part specifies an identity-based key encapsulation mechanism realized with elliptic curve pairings.
The decapsulating user holds an identity and the corresponding private key, which is generated by the
KGC using the master private key and the user's identity. The encapsulating user generates a secret key
and uses the decapsulating user's identity to encrypt the secret key to the decapsulating user, and the
decapsulating user obtains the secret key by the decapsulation process with the private key.

This part also describes an identity-based public key encryption algorithm built upon pairings on
elliptic curves. The public key encryption algorithm is constructed from the combination of the key
encapsulation mechanism described above together with a data encapsulation mechanism to provide
data confidentiality. There are two types of data encapsulation mechanisms: stream ciphers based on a
key derivation function, and block ciphers combined with a key derivation function. For the identity-
based encryption algorithm, the decrypting entity holds an identity and the corresponding private key,
which is generated by the KGC using the master private key and the identity of decrypting entity. The
encrypting entity encrypts data with the decrypting entity's identity, and the decrypting entity decrypts
the data with its private key.

5.2 System parameters

The system parameters include: the curve identifier cid, the parameters of the elliptic curve base field
F,, the parameters of the elliptic curve equation a and b, the twisted curve parameter 8 (if the least
significant 4 bits of cid is 2), the prime factor N of the order of the curve and the cofactor cf relative to
N, the embedding degree k of the curve E(F,) relative to N, a generator P; of the cyclic subgroup G, of
E(qul) of order N (where d,divides k), a generator P, of the cyclic subgroup ofE(quz) of order N

(where d, divides k), the bilinear pairing identifier eid of e, and optionally the homomorphism ¥ from
G, to G;.

The range of the bilinear pairing e is the multiplicative cyclic group G of order N.

For detailed descriptions of the system parameters as well as their verification, please refer to Clause 7
of GM/T 0044.1-2016.

5.3 Generation of the encryption master key and the user’s encryption private key

The KGC generates a random number ke € [1, N — 1] as the encryption master private key, computes
the element Py,,;,_, = [ke]P; in G, as the encryption master public key, and then the encryption master

key pair is (ke, Ppub_e). The KGC keeps ke secret and makes Py, public.

The KGC selects a one-byte encryption private key generating function identified by the identifier hid,
and makes it public.

Let IDg denote the identity of user B. To generate the encryption private key deg of B, the KGC first
computes t; = H;(IDg||hid, N) + ke over the finite field Fy. Ift; = 0, it regenerates the encryption
master private key, computes the encryption master public key and makes it public, and updates the
existing encryption private keys of users. Otherwise, it computest, = ke - t;1, and then computes

dep = [t2]Po.
5.4 Auxiliary functions

5.4.1 Overview

Five types of auxiliary functions are used in the identity-based key encapsulation mechanism and the
public key encryption algorithm specified in this part: cryptographic hash functions, key derivation
functions, message authentication code functions, random number generators and block cipher
algorithms. The security of the key encapsulation mechanism and the public key encryption algorithm is
directly impacted by these auxiliary functions.

5.4.2 Cryptographic hash functions
5.4.2.1 Cryptographic hash function H,,()
The output of the cryptographic hash function H,() is av-bit hash value. This part adopts the
cryptographic hash functions approved by the State Cryptography Administration such as the SM3
cryptographic hash algorithm.
5.4.2.2 Cryptographic function H{ ()
The input of the cryptographic function H;(Z, n) is a bit string Z and an integer n, and its output is an
integer hy € [1,n — 1] . H;(Z,n) invokes the cryptographic hash function H,() internally. H,() is
specified in 5.4.2.1.
Cryptographic function H,(Z,n):
Input: a bit string Z and an integer n.
Output: an integer h; € [1,n — 1].
Step 1: Initialize a 32-bit counter ct = 0x00000001;
Step 2: Compute hlen = 8 X [(5 X (log, n))/32];
Step 3: For i =1 to [hlen/v]:
Step 3.1: Compute Ha; = H,(0x01]|Z]|ct);

Step 3.2: ct++;

Step 4: If hlen/v is an integer, set Ha![pien/v] = HQjpien/v)- Otherwise, set Haljpen y) to be the leftmost
(hlen — (v X |hlen/v])) bits of Hapien -

Step 5: Set Ha = Haq||Ha,|| -+ || Hajnien w11 ||HA![hien/v]- Convert the data type of Ha to integer as
specified in Clauses 6.2.4 and 6.2.3 of GM/T 0044.1-2016.

Step 6: Compute h; = (Hamod (n — 1)) + 1.
5.4.2.3 Cryptographic function H;()

The input of the cryptographic function H,(Z, n) is a bit string Z and an integer n, and its output is an
integer h, € [1,n —1]. H,(Z,n) invokes the cryptographic hash function H,() internally. H,() is
specified in 5.4.2.1.

Cryptographic function H,(Z,n):
Input: a bit string Z, an integer n.
Output: aninteger h, € [1,n —1].
Step 1: Initialize a 32-bit counter ct = 0x00000001;
Step 2: Compute hlen = 8 X [(5 X (log, n))/32];
Step 3: Fori = 1to [hlen/v]:

Step 3.1: Compute Ha; = H,(0x02]||Z]|ct);

Step 3.2: ct++;

Step 4: If hlen/v is an integer, set Ha![pien/v] = HA[nien/v)- Otherwise, set Hal[pien v) to be the leftmost
(hlen — (v X |hlen/v))) bits of Hajpien/v-

Step 5: Set Ha = Haq||Ha,|| -+ || Hajpien/vi-1 ||H Al hien/v) - Convert the data type of Ha to integer as
specified in Clauses 6.2.4 and 6.2.3 of GM/T 0044.1-2016.

Step 6: Compute h, = (Hamod (n—1)) + 1.

5.4.3 Key derivation functions

The key derivation functions adopted in this part are specified in Clause 5.4.3 of GM/T 0044.3-2016.
5.4.4 Block cipher algorithms

A block cipher algorithm is comprised of an encryption algorithm Enc(K;,m)and a decryption
algorithm Dec(K;, c). Enc(K;,m) uses the secret key K; to encrypt the plaintextm and outputs the
ciphertext c. Dec(Kj, ¢) uses the secret key K; to decrypt the ciphertext ¢ and outputs the plaintext m or
reports an error. The bit length of K; is denoted by K;_len .

This part adopts the block cipher algorithms approved by the State Cryptography Administration, e.g.,
the SM4 block cipher algorithm.

5.4.5 Message authentication code functions

The aim of the message authentication code function MAC(K,,Z) is to protect the message Z from
unauthorized modifications. The message authentication code of message Z is generated under the
control of K,. The bit length of K, is denoted by K,_len. For the identity-based encryption algorithm in
this part, the message authentication code function uses the key generated by the key derivation
function to obtain the message authentication code of the ciphertext, allowing the decrypting entity to
identify the message source and verify integrity of the message.

The message authentication code functions invoke the cryptographic hash functions.
Let H, () be a cryptographic hash function and its output is a hash value of length v bits long.
Message authentication code function MAC(K,, Z):

Input: a bit string K, (a key of length K,_len bits) and a bit string Z (the message to be processed to
obtain MAC).

Output: a bit string K of length v (the MAC of the message Z).

Step 1: K = H,(Z]|K>3).

5.4.6 Random number generators

This part adopts the random number generators approved by the State Cryptography Administration.
6 Key encapsulation mechanism and its process

6.1 Key encapsulation algorithm and its process

6.1.1 Key encapsulation algorithm

In order to encapsulate a key of length klen to user B, the encapsulating entity user A shall perform the
following steps.

Al: Compute QB = [Hl(IDB”hld, N)]Pl + Ppub—e € Gl'
A2: Generate a random integerr € [1,N — 1].

A3: Compute C = [r]Qp of G4, and convert the data type of C to bit string as specified in Clauses 6.2.8
and 6.2.5 of GM/T 0044.1-2016.

A4: Compute g = e(Ppyp—e, P2) of Gr.

A5: Compute w = g" of Gr, and convert the data type of w to bit string as specified in Clauses 6.2.6 and
6.2.5 of GM/T 0044.1-2016.

A6: Compute K = KDF(C||w||IDg, klen),if K = 0, go to A2.
A7: Output (K, C), where K is the encapsulated key, C is the encapsulated ciphertext.
6.1.2 Key encapsulation process

The key encapsulation process is shown in Figure 1.

A’s initial data
(system parameters, encryption master public key Pp,;,_, identifier hid, and identity /Dg)

v

Step 1: compute Qg = [H,(IDg |l hid, N)]P1 + Ppyup_e

A 4

A 4

Step 2: generate a random numberr € [1, N — 1]

A 4

Step 3: compute C = [r]Qp

A 4

Step 4: compute g = e(P,yp—e, P2)

A 4

Step 5: computew = g”

v
Step 6: compute K = KDF(C |l w || IDg, klen)

Is K a zero string?

Step 7: output K and C

Figure 1: Key encapsulation process

6.2 Key decapsulation algorithm and its process

6.2.1 Decapsulation algorithm

After user B receives the ciphertext C, in order to decapsulate K, B shall perform the following steps.
B1: Verify that C € G, as specified in Clause 4.5 of GM/T 0044.1-2016. If not, report an error and exit.

B2: Compute w’ = e(C, deg) of Gy, and convert the data type of w’to bit string as specified in Clauses
6.2.6 and 6.2.5 of GM/T 0044.1-2016.

B3: Convert the data type of C to bit string as specified in Clauses 6.2.6 and 6.2.5 of GM/T 0044.1-2016,
and compute K’ = KDF(C||w'||IDg, klen). If K' = 0, report an error and exit.

B4: Output K'.
6.2.2 Key decapsulation process

The key decapsulation process is shown in Figure 2.

B’s initial data
(system parameters, ciphertext C, identity I Dg, and encryption private key deg)

v
Step 1: checkif C € G,
C € Gy? NO
YES
Step 2: compute w' = e(C, deg)
v
Step 3: compute K' = KDF(C || w' || IDg, klen)
. YES
Is K a zero string? >
NO
v 4
Step 3: output K’ Report error and exit

Figure 2: Key decapsulation process

7 Public key encryption algorithm and its process

7.1 Encryption algorithm and its process
7.1.1 Encryption algorithm

Let M be the message to be sent, mlen the bit length of M. K;_len is the bit length of the key K; used
with the block cipher. K,_len the bit length of the key K, for MAC (K5, Z).

In order to encrypt a message M to user B, user A shall perform the following steps.
Al: Compute QB = [Hl(IDB”hld, N)]Pl + Ppub—e € Gl'
A2: Generate a random integer r € [1,N — 1].

A3: Compute C; = [r]Qp of G4, and convert the data type of C; to bit string as specified in Clauses 6.2.8
and 6.2.5 of GM/T 0044.1-2016.

A4: Compute g = e(Ppyp—e, P2) of Gr.

A5: Compute w = g" of Gr, and convert the data type of w to bit string as specified in Clauses 6.2.6 and
6.2.5 of GM/T 0044.1-2016.

A6: Compute according to the type of encryption algorithm:

a) Stream cipher based on the key derivation function
1) Compute klen = mlen + K, _len, K = KDF(C,||w||IDg, klen). Let K; be the leftmost mlen bits of
K, and K, be the remaining K,_len bits. If K; = 0, go to A2.
2) Compute C; = M @ K;.
b) Block cipher combined with the key derivation function
1) Compute klen = K;_len + K,_len, K = KDF(C;||w||IDg, klen). Let K; be the leftmost K;_len bits
of K, and K, be the remaining K,_len bits. If K; = 0, go to A2.
2) Compute C, = Enc(K,, M).

A7: Compute C3 = MAC(K,, C,).
A8: Output ciphertext C = C;||C3]|Cs.
7.1.2 Encryption process

The encryption process is shown in Figure 3.

10

A’s initial data
(system parameters, encryption master public key Py}, _,, identifier hid, message M of
length mlen, and identity /Dg)

v

Step 1: compute Qg = [H,(IDg Il hid, N)]P1 + Ppyp_e

A 4

A 4

Step 2: generate a random number r € [1, N — 1] <

\ 4

Step 3: compute C; = [r]Qp

A 4

Step 4: compute g = e(Pyyp—e, P2)

A 4

Step 5: computew = g"

A 4

Step 6: compute according to the method of encryption

a) KDF-based stream cipher b) KDF-combined block cipher

1) Compute klen = mlen+ K,_len
and then K = KDF(C,||w||IDg, klen).
Let K; be the left mlen bits of K and K,
be the remaining K,_len bits.

1) Compute klen = K;_len + K,_len,
and then K = KDF(Cy||w||IDg, klen).
Let K; be the left K;_len bits of K and
K, be the remaining K, _len bits.

S
NO

2) Compute C, = M @ K,

Y
NO

2) Compute C, = Enc(K;, M)

i

Step 7: compute C3 = MAC (K, C,)

A 4

Step 8: output C =C; Il G5 Il €,

Figure 3: Encryption process

11

7.2 Decryption algorithm and its process
7.2.1 Decryption algorithm

Let mlen be the bit length of C, of ciphertext C = C;||C3]|C,. K;_len is the bit length of the key K; used
with the block cipher. K,_len is the bit length of the key K, for MAC(K,, Z).

In order to decrypt C, user B needs to perform the following steps.

B1: Extract bit string C; from C. Convert the data type of C; to a point on elliptic curve as specified in
Clauses 6.2.4 and 6.2.9 of GM/T 0044.1-2016. Verify C; € G, as specified in Clause 4.5 of GM/T 0044.;1
—2016; if not, report an error and exit.

B2: Compute w’ = e(C;,deg) of Gr, and convert the data type of w’ to bit string as specified in Clauses
6.2.6 and 6.2.5 of GM/T 0044.1-2016.

B3: Compute according to the type of encryption algorithm:

a) Stream cipher based on the key derivation function
1) Compute klen = mlen + K,_len, K' = KDF(C,||w'||IDg, klen). Let K;' be the leftmost mlen bits
of K', and K,' be the remaining K,_len bits. If K;" = 0, report an error and exit;
2) ComputeM'=C, D K;'.
b) Block cipher combined with the key derivation function
1) Compute klen = K, _len + K,_len, K' = KDF(C;||W'||IDg, klen). LetK, ' be the leftmostK;_len
bits of K', and K,' be the remaining K,_len bits. If K;" = 0, report an error and exit;
2) Compute M' = Dec(K;',C,).

B4: Compute u = MAC(K,', C,). Extract bit string C3 from C; if u # C3, report an error and exit;

B5: Output plaintext M'.
7.2.2 Decryption process

The decryption process is shown in Figure 4.

12

B’s initial data

(system parameters, ciphertext C = C; || C5 || C,, identity I Dy, and encryption
private key deg)

'

Step 1: extract C; from C

C, € Gy?

YES

NO

Step 2: compute w’ = e(C;,deg)

A

Step 3: compute according to the method of encryption

a) KDF-based stream cipher b) KDF-combined block cipher

then K' = KDF(C,||w'||IDg, klen)

be the remaining K,_len bits.

1) Compute klen = mlen + K,_len, and
. Let then
K,' be the left K;_len bits of K’ and K, be

K,'be the leftmlenbits of K’ and K,'
the remaining K,_len bits.

1) Compute klen = K;_len + K, _len, and

K' = KDF(C,||W'||IDg, klen) . Let

NO

NO

2) Compute M' = C, @ K;'

2) Compute M’ = Dec(K;',C3)

i

Step 4: compute u = MAC(K,', C,)

u=C3?

YES

NO

\ 4

Report error and exit

Step 5: output M’

Report error and exit

Figure 4: Decryption process

13

