{ "arguments": { "data": { "type_value": "Array" }, "candidates": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Set from which the Exponential mechanism will return an element. Type must match with atomic type of data. This value must be column-conformable with data. Only useful for Exponential mechanism." }, "lower": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Estimated minimum possible value of the statistic. Only useful for the snapping mechanism." }, "upper": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Estimated maximum possible value of the statistic. Only useful for the snapping mechanism." } }, "id": "DPMaximum", "name": "dp_maximum", "options": { "mechanism": { "type_proto": "string", "type_rust": "String", "default_python": "\"Automatic\"", "default_rust": "String::from(\"Automatic\")", "description": "Privatizing mechanism to use. Value must be one of [`Automatic`, `Laplace`, `Snapping`, `Gaussian`, `AnalyticGaussian`]" }, "privacy_usage": { "type_proto": "repeated PrivacyUsage", "type_rust": "Vec", "default_python": "None", "description": "Object describing the type and amount of privacy to be used for the mechanism release. Atomic data type value must be float. Example value: {'epsilon': 0.5}" } }, "return": { "type_value": "Array", "description": "Differentially private estimates of the maximum elements of the data." }, "description": "Returns differentially private estimates of the maximum elements of each column of the data.", "proto_id": 11 }