{ "arguments": { "data": { "type_value": "Array" }, "lower": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Estimated minimum possible value of the statistic, on integral data. Useful to help bound elapsed time when sampling for the geometric mechanism. Useful for the snapping mechanism." }, "upper": { "type_value": "Array", "default_python": "None", "default_rust": "None", "description": "Estimated maximum possible value of the statistic, on integral data. Useful to help bound elapsed time when sampling for the geometric mechanism. Useful for the snapping mechanism." } }, "id": "DPSum", "name": "dp_sum", "options": { "mechanism": { "type_proto": "string", "type_rust": "String", "default_python": "\"Automatic\"", "default_rust": "String::from(\"Automatic\")", "description": "Privatizing mechanism to use. Value must be one of [`Automatic`, `Laplace`, `Gaussian`, `AnalyticGaussian`, `SimpleGeometric`]. `Automatic` chooses based on the input data type." }, "privacy_usage": { "type_proto": "repeated PrivacyUsage", "type_rust": "Vec", "default_python": "None", "description": "Object describing the type and amount of privacy to be used for the mechanism release. Atomic data type value must be float. Example value: {'epsilon': 0.5}" } }, "return": { "type_value": "Array", "description": "Differentially private sum over elements for each column of the data." }, "description": "Returns differentially private estimates of the sums of each column of the data.", "proto_id": 17 }