SORT ALGORITHMS

Obs:. This just a briefing of the algorithm!!!

SELECTION SORT

Selection Sort is an algorithm that use order by selection.
Worst, Medium and Best Case Complexity: O(n²)
https://en.wikipedia.org/wiki/Selection_sort
extern crate sort_algorithms; use sort_algorithms::selection_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); selection_sort(&mut arr, |a, b| a < b); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

BUBBLE SORT

Bubble sort is an algorithm that use order by comapare values.
Worst, Medium Case Complexity: O(n²)
Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Bubble_sort
extern crate sort_algorithms; use sort_algorithms::bubble_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); bubble_sort(&mut arr, |a, b| a < b); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

QUICK SORT

Quick sort is an algorithm that use strategy divide to conquer.
Worst Case Complexity: O(n²)
Medium Case Complexity: O(n)
Best Case Complexity: O(n log n)
https://en.wikipedia.org/wiki/Quicksort
extern crate sort_algorithms; use sort_algorithms::quick_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); quick_sort(&mut arr, |a, b| a < b); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

HEAP SORT

Heap sort is an generalist algorithm that use the strategy order by selecion.
Worst Case Complexity: O(n log n)
Medium Case Complexity: O(n log n)
Best Case Complexity: O(n log n)
https://en.wikipedia.org/wiki/Heapsort
extern crate sort_algorithms; use sort_algorithms::heapsort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); heapsort(&mut arr); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

MERGE SORT

Merge sort is an algorithm that use the strategy order by comparation and divide to conquer.
Worst Case Complexity: O(n log n)
Medium Case Complexity: O(n log n)
Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Merge_sort
extern crate sort_algorithms; use sort_algorithms::merge_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); merge_sort(&mut arr, |a, b| a < b); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

RADIX SORT

Radix sort is an algorithm that use the strategy non-comparative.
Worst Case Complexity: O(n)
Medium Case Complexity: O(n)
Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Radix_sort

Can only be used to sort lists of positive integers as key


extern crate sort_algorithms; use sort_algorithms::radix_sort; fn main() { let mut arr = vec![7, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); radix_sort(&mut arr, |&a| a); println!("{:?}", &arr); assert_eq!(arr, [ 0, 1, 2, 3, 4, 5, 6, 7]); }

INSERTION SORT

Insertion sort is an algorithm that use strategy where catch one element and compare against orthers.
Worst, Medium Case Complexity: O(n²)
Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Insertion_sort
extern crate sort_algorithms; use sort_algorithms::insertion_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); insertion_sort(&mut arr, |a, b| a < b); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

COCKTAIL SHAKER SORT


Cocktail Shaker Sort is an algorithm is a derivation from bubble sort.
Worst, Medium Case Complexity: O(n²)
Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Cocktail_shaker_sort
extern crate sort_algorithms; use sort_algorithms::cocktail_shaker_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); cocktail_shaker_sort(&mut arr, |a, b| a < b); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }

GRAVITY SORT / BEAD SORT


Gravity Sort is an algorithm that use the strategy of Natural Sorting.
Worst, Medium and Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Bead_sort

Can only be used to sort lists of positive integers as key


extern crate sort_algorithms; use sort_algorithms::gravity_sort; fn main() { let mut arr = vec![9, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); gravity_sort(&mut arr, |&a| a); println!("{:?}", &arr); assert_eq!(arr, [ 0, 1, 2, 3, 4, 5, 6, 9]); }

COUNTING SORT

Counting Sort is an algorithm that use the strategy of it uses key values as indexes into an array and the Ω(n log n) lower bound for comparison sorting will not apply.
Worst, Medium and Best Case Complexity: O(n)
https://en.wikipedia.org/wiki/Counting_sort

Can only be used to sort lists of positive integers as key


extern crate sort_algorithms; use sort_algorithms::counting_sort; fn main() { let mut arr = vec![7, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); counting_sort(&mut arr, |&a| a); println!("{:?}", &arr); assert_eq!(arr, [0, 1, 2, 3, 4, 5, 6, 7]); }

FLASH SORT

Flash Sort is an algorithm that use the strategy that you can compute the approximate final position directly from the element value, with no comparisons.
Worst, Medium and Best Case Complexity: O(n) http://www.neubert.net/Flapaper/9802n.htm extern crate sort_algorithms; use sort_algorithms::flash_sort; fn main() { let mut arr = vec![-1, 6, 5, 2, 4, 3, 1, 0]; println!("{:?}", &arr); flash_sort(&mut arr, |&a| a); println!("{:?}", &arr); assert_eq!(arr, [-1, 0, 1, 2, 3, 4, 5, 6]); }