/* gutil2.c: Some more graph utilities. */ #include "gtools.h" #include "gutils.h" /**************************************************************************/ int loopcount(graph *g, int m, int n) /* Number of loops */ { set *gi; int i,nl; nl = 0; for (i = 0, gi = g; i < n; ++i, gi += m) if (ISELEMENT(gi,i)) ++nl; return nl; } /**************************************************************************/ long pathcount1(graph *g, int start, setword body, setword last) /* Number of paths in g starting at start, lying within body and ending in last. {start} and last should be disjoint subsets of body. */ { long count; setword gs,w; int i; gs = g[start]; w = gs & last; count = POPCOUNT(w); body &= ~bit[start]; w = gs & body; while (w) { TAKEBIT(i,w); count += pathcount1(g,i,body,last&~bit[i]); } return count; } /**************************************************************************/ long cyclecount1(graph *g, int n) /* The total number of cycles in g (assumed no loops), m=1 only */ { setword body,nbhd; long total; int i,j; body = ALLMASK(n); total = 0; for (i = 0; i < n-2; ++i) { body ^= bit[i]; nbhd = g[i] & body; while (nbhd) { TAKEBIT(j,nbhd); total += pathcount1(g,j,body,nbhd); } } return total; } /**************************************************************************/ long cyclecount(graph *g, int m, int n) /* The total number of cycles in g (assumed no loops) */ { if (n == 0) return 0; if (m == 1) return cyclecount1(g,n); gt_abort(">E cycle counting is only implemented for n <= WORDSIZE\n"); return 0; } /**************************************************************************/ long indpathcount1(graph *g, int start, setword body, setword last) /* Number of induced paths in g starting at start, extravertices within * body and ending in last. * {start}, body and last should be disjoint. */ { long count; setword gs,w; int i; gs = g[start]; w = gs & last; count = POPCOUNT(w); w = gs & body; while (w) { TAKEBIT(i,w); count += indpathcount1(g,i,body&~gs,last&~bit[i]&~gs); } return count; } /**************************************************************************/ long indcyclecount1(graph *g, int n) /* The total number of induced cycles in g (assumed no loops), m=1 only */ { setword body,last,cni; long total; int i,j; body = ALLMASK(n); total = 0; for (i = 0; i < n-2; ++i) { body ^= bit[i]; last = g[i] & body; cni = g[i] | bit[i]; while (last) { TAKEBIT(j,last); total += indpathcount1(g,j,body&~cni,last); } } return total; } /**************************************************************************/ long indcyclecount(graph *g, int m, int n) /* The total number of induced cycles in g (assumed no loops) */ { if (n == 0) return 0; if (m == 1) return indcyclecount1(g,n); gt_abort( ">E induced cycle counting is only implemented for n <= WORDSIZE\n"); return 0; } /**************************************************************************/ long numtriangles1(graph *g, int n) /* The number of triangles in g; undirected only */ { int i,j; setword gi,w; long total; total = 0; for (i = 0; i < n-2; ++i) { gi = g[i] & BITMASK(i); while (gi) { TAKEBIT(j,gi); w = g[j] & gi; if (w) total += POPCOUNT(w); } } return total; } /**************************************************************************/ long numtriangles(graph *g, int m, int n) /* The number of triangles in g; undirected only */ { int i,j,k,kw; setword *gi,*gj,w; long total; if (m == 1) return numtriangles1(g,n); total = 0; for (i = 0, gi = g; i < n-2; ++i, gi += m) for (j = i; (j = nextelement(gi,m,j)) > 0; ) { gj = GRAPHROW(g,j,m); kw = SETWD(j); w = gi[kw] & gj[kw] & BITMASK(SETBT(j)); if (w) total += POPCOUNT(w); for (k = kw+1; k < m; ++k) { w = gi[k] & gj[k]; if (w) total += POPCOUNT(w); } } return total; } /**************************************************************************/ long numdirtriangles(graph *g, int m, int n) /* The number of directed triangles in g */ { long total; int i,j,k; set *gi,*gj; total = 0; for (i = 0, gi = g; i < n-2; ++i, gi += m) for (j = i; (j = nextelement(gi,m,j)) >= 0;) { gj = GRAPHROW(g,j,m); for (k = i; (k = nextelement(gj,m,k)) >= 0; ) if (k != j && ISELEMENT(GRAPHROW(g,k,m),i)) ++total; } return total; } /**************************************************************************/ void commonnbrs(graph *g, int *minadj, int *maxadj, int *minnon, int *maxnon, int m, int n) /* Count the common neighbours of pairs of vertices, and give the minimum and maximum for adjacent and non-adjacent vertices. Undirected only. Null minimums are n+1 and null maximums are -1. */ { int j,k; int mina,maxa,minn,maxn; int cn; set *gi,*gj; setword w; if (n == 0) { *minadj = *maxadj = *minnon = *maxnon = 0; return; } mina = minn = n+1; maxa = maxn = -1; for (j = 0, gj = g; j < n; ++j, gj += m) for (gi = g; gi != gj; gi += m) { cn = 0; for (k = 0; k < m; ++k) { w = gi[k] & gj[k]; if (w) cn += POPCOUNT(w); } if (ISELEMENT(gi,j)) { if (cn < mina) mina = cn; if (cn > maxa) maxa = cn; } else { if (cn < minn) minn = cn; if (cn > maxn) maxn = cn; } } *minadj = mina; *maxadj = maxa; *minnon = minn; *maxnon = maxn; } /**************************************************************************/ void delete1(graph *g, graph *h, int v, int n) /* Delete vertex v from g, result in h */ { setword mask1,mask2,gi; int i; mask1 = ALLMASK(v); mask2 = BITMASK(v); for (i = 0; i < v; ++i) { gi = g[i]; h[i] = (gi & mask1) | ((gi & mask2) << 1); } for (i = v; i < n-1; ++i) { gi = g[i+1]; h[i] = (gi & mask1) | ((gi & mask2) << 1); } } /**************************************************************************/ void contract1(graph *g, graph *h, int v, int w, int n) /* Contract distinct vertices v and w (not necessarily adjacent) with result in h. No loops are created. */ { int x,y; setword bitx,bity,mask1,mask2; int i; if (w < v) { x = w; y = v; } else { x = v; y = w; } bitx = bit[x]; bity = bit[y]; mask1 = ALLMASK(y); mask2 = BITMASK(y); for (i = 0; i < n; ++i) if (g[i] & bity) h[i] = (g[i] & mask1) | bitx | ((g[i] & mask2) << 1); else h[i] = (g[i] & mask1) | ((g[i] & mask2) << 1); h[x] |= h[y]; for (i = y+1; i < n; ++i) h[i-1] = h[i]; h[x] &= ~bitx; } /**************************************************************************/ static TLS_ATTR int knm[18][16]; /* knm[n,m] = conncontent(K_n - m*K_2) */ static TLS_ATTR boolean knm_computed = FALSE; int conncontent(graph *g, int m, int n) /* number of connected spanning subgraphs with an even number of edges minus the number with an odd number of edges */ { graph h[WORDSIZE]; setword gj; int i,j,v1,v2,x,y; int minv,mindeg,deg,goodv; long ne; if (m > 1) ABORT("conncontent only implemented for m=1"); /* First handle tiny graphs */ if (n <= 3) { if (n == 1) return 1; if (n == 2) return (g[0] ? -1 : 0); if (!g[0] || !g[1] || !g[2]) return 0; /* disconnected */ if (g[0]^g[1]^g[2]) return 1; /* path */ return 2; /* triangle */ } /* Now compute ne = number of edges mindeg = minimum degree minv = a vertex of minimum degree goodv = a vertex with a clique neighbourhood (-1 if none) */ mindeg = n; ne = 0; goodv = -1; for (j = 0; j < n; ++j) { gj = g[j]; deg = POPCOUNT(gj); ne += deg; if (deg < mindeg) { mindeg = deg; minv = j; if (deg == 1) goodv = j; } if (deg >= 3 && deg <= 4 && goodv < 0) { while (gj) { TAKEBIT(i,gj); if (gj & ~g[i]) break; } if (!gj) goodv = j; } } ne /= 2; /* Cases of isolated vertex or tree */ if (mindeg == 0) return 0; #if 0 if (mindeg == 1 && ne == n-1) { if (isconnected1(g,n)) return ((n&1) ? 1 : -1); else return 0; } #endif /* Cases of clique and near-clique */ if (mindeg == n-1) { j = -1; for (i = 2; i < n; ++i) j *= -i; return j; } if (mindeg == n-2 && n < 16) { if (!knm_computed) { knm_computed = TRUE; knm[1][0] = 1; for (i = 2; i < 16; ++i) { knm[i][0] = -knm[i-1][0] * (i-1); for (j = 1; j+j <= i; ++j) knm[i][j] = knm[i][j-1] + knm[i-1][j-1]; } } return knm[n][(n*n-n)/2-ne]; } /* Case of vertex with clique neighbourhood */ if (goodv >= 0) { delete1(g,h,goodv,n); return -POPCOUNT(g[goodv]) * conncontent(h,m,n-1); } /* Case of minimum degree 2 */ if (mindeg == 2) { x = FIRSTBITNZ(g[minv]); y = FIRSTBITNZ(g[minv]^bit[x]); if (x > minv) --x; if (y > minv) --y; delete1(g,h,minv,n); v1 = conncontent(h,m,n-1); if (h[x] & bit[y]) return -2*v1; /* adjacent neighbours */ h[x] |= bit[y]; h[y] |= bit[x]; v2 = conncontent(h,m,n-1); return -v1 - v2; } /* Case of more than 2/3 dense but not complete */ if (3*ne > n*n-n) { j = FIRSTBITNZ(g[minv] ^ bit[minv] ^ ALLMASK(n)); /* non-neighbour */ g[minv] ^= bit[j]; g[j] ^= bit[minv]; v1 = conncontent(g,m,n); g[minv] ^= bit[j]; g[j] ^= bit[minv]; contract1(g,h,minv,j,n); v2 = conncontent(h,m,n-1); return v1 + v2; } /* All remaining cases */ j = FIRSTBITNZ(g[minv]); /* neighbour */ g[minv] ^= bit[j]; g[j] ^= bit[minv]; v1 = conncontent(g,m,n); g[minv] ^= bit[j]; g[j] ^= bit[minv]; contract1(g,h,minv,j,n); v2 = conncontent(h,m,n-1); return v1 - v2; } boolean stronglyconnected(graph *g, int m, int n) /* test if digraph g is strongly connected */ { int sp,v,vc; int numvis; set *gv; #if MAXN int num[MAXN],lowlink[MAXN],stack[MAXN]; #else DYNALLSTAT(int,num,num_sz); DYNALLSTAT(int,lowlink,lowlink_sz); DYNALLSTAT(int,stack,stack_sz); #endif #if !MAXN DYNALLOC1(int,num,num_sz,n,"stronglyconnected"); DYNALLOC1(int,lowlink,lowlink_sz,n,"stronglyconnected"); DYNALLOC1(int,stack,stack_sz,n,"stronglyconnected"); #endif if (n == 0) return FALSE; num[0] = 0; for (v = 1; v < n; ++v) num[v] = -1; lowlink[0] = 0; numvis = 1; sp = 0; v = 0; vc = -1; gv = (set*)g; for (;;) { vc = nextelement(gv,m,vc); if (vc < 0) { if (sp == 0) break; if (lowlink[v] == num[v]) return FALSE; vc = v; v = stack[--sp]; gv = GRAPHROW(g,v,m); if (lowlink[vc] < lowlink[v]) lowlink[v] = lowlink[vc]; } else if (num[vc] < 0) { stack[++sp] = vc; v = vc; gv = GRAPHROW(g,v,m); vc = -1; lowlink[v] = num[v] = numvis++; } else if (vc != v) { if (num[vc] < lowlink[v]) lowlink[v] = num[vc]; } } return numvis == n; }