/* This program demonstrates how an isomorphism is found between two graphs, using the Moebius graph as an example. This version uses sparse form with dynamic allocation. */ #include "nausparse.h" /* which includes nauty.h */ int main(int argc, char *argv[]) { DYNALLSTAT(int,lab1,lab1_sz); DYNALLSTAT(int,lab2,lab2_sz); DYNALLSTAT(int,ptn,ptn_sz); DYNALLSTAT(int,orbits,orbits_sz); DYNALLSTAT(int,map,map_sz); static DEFAULTOPTIONS_SPARSEGRAPH(options); statsblk stats; /* Declare and initialize sparse graph structures */ SG_DECL(sg1); SG_DECL(sg2); SG_DECL(cg1); SG_DECL(cg2); int n,m,i; /* Select option for canonical labelling */ options.getcanon = TRUE; /* Read the number of vertices and process it */ while (1) { printf("\nenter n : "); if (scanf("%d",&n) == 1 && n > 0) { if (n%2 != 0) { fprintf(stderr,"Sorry, n must be even\n"); continue; } m = SETWORDSNEEDED(n); nauty_check(WORDSIZE,m,n,NAUTYVERSIONID); DYNALLOC1(int,lab1,lab1_sz,n,"malloc"); DYNALLOC1(int,lab2,lab2_sz,n,"malloc"); DYNALLOC1(int,ptn,ptn_sz,n,"malloc"); DYNALLOC1(int,orbits,orbits_sz,n,"malloc"); DYNALLOC1(int,map,map_sz,n,"malloc"); /* Now make the first graph */ SG_ALLOC(sg1,n,3*n,"malloc"); sg1.nv = n; /* Number of vertices */ sg1.nde = 3*n; /* Number of directed edges */ for (i = 0; i < n; ++i) { sg1.v[i] = 3*i; /* Position of vertex i in v array */ sg1.d[i] = 3; /* Degree of vertex i */ } for (i = 0; i < n; i += 2) /* Spokes */ { sg1.e[sg1.v[i]] = i+1; sg1.e[sg1.v[i+1]] = i; } for (i = 0; i < n-2; ++i) /* Clockwise edges */ sg1.e[sg1.v[i]+1] = i+2; sg1.e[sg1.v[n-2]+1] = 1; sg1.e[sg1.v[n-1]+1] = 0; for (i = 2; i < n; ++i) /* Anticlockwise edges */ sg1.e[sg1.v[i]+2] = i-2; sg1.e[sg1.v[1]+2] = n-2; sg1.e[sg1.v[0]+2] = n-1; /* Now make the second graph */ SG_ALLOC(sg2,n,3*n,"malloc"); sg2.nv = n; /* Number of vertices */ sg2.nde = 3*n; /* Number of directed edges */ for (i = 0; i < n; ++i) { sg2.v[i] = 3*i; sg2.d[i] = 3; } for (i = 0; i < n; ++i) { sg2.v[i] = 3*i; sg2.d[i] = 3; sg2.e[sg2.v[i]] = (i+1) % n; /* Clockwise */ sg2.e[sg2.v[i]+1] = (i+n-1) % n; /* Anti-clockwise */ sg2.e[sg2.v[i]+2] = (i+n/2) % n; /* Diagonals */ } /* Label sg1, result in cg1 and labelling in lab1; similarly sg2. It is not necessary to pre-allocate space in cg1 and cg2, but they have to be initialised as we did above. */ sparsenauty(&sg1,lab1,ptn,orbits,&options,&stats,&cg1); sparsenauty(&sg2,lab2,ptn,orbits,&options,&stats,&cg2); /* Compare canonically labelled graphs */ if (aresame_sg(&cg1,&cg2)) { printf("Isomorphic.\n"); if (n <= 1000) { /* Write the isomorphism. For each i, vertex lab1[i] of sg1 maps onto vertex lab2[i] of sg2. We compute the map in order of labelling because it looks better. */ for (i = 0; i < n; ++i) map[lab1[i]] = lab2[i]; for (i = 0; i < n; ++i) printf(" %d-%d",i,map[i]); printf("\n"); } } else printf("Not isomorphic.\n"); } else break; } exit(0); }