/***************************************************************************** * * * Vertex-invariants source file for nauty 2.7. * * * * Copyright (1989-2013) Brendan McKay. All rights reserved. * * Subject to waivers and disclaimers in nauty.h. * * * * CHANGE HISTORY * * 13-Mar-90 : initial release for version 1.5 * * 10-Nov-90 : changes for version 1.6 : * * - added dummy routine nautinv_null() * * 27-Aug-92 : renamed to version 1.7, no changes to this file * * 5-Jun-93 : renamed to version 1.7+, no changes to this file * * 18-Aug-93 : renamed to version 1.8, no changes to this file * * 17-Sep-93 : changes for version 1.9 : * * - added invariant routine adjacencies() * * 20-Jun-96 : changes for version 2.0 : * * - added invariants cellfano() and cellfano2() * * 11-Jul-96 - added dynamic allocation * * 21-Oct-98 - use shortish in place of short for BIGNAUTY * * 9-Jan-00 - added nautinv_check() * * 12-Feb-00 - minor code formatting * * 16-Nov-00 - made changes listed in nauty.h * * 22-Apr-01 : changes for version 2.1 : * * - made all large dynamic memory external to routines * * - added nautinv_freedyn() to free all such memory * * - include nautinv.h rather than naututil.h * * - removed nautinv_null() * * - added code to facilitate compilation into Magma * * - removed EXTDEFS * * 12-Jul-01 - use invararg in distances() * * - fixed comments in ind and cliq routines * * 21-Nov-01 : use NAUTYREQUIRED in nautinv_check() * * 10-Dec-06 : remove BIGNAUTY * * 10-Nov-09 : remove types shortish and permutation * * 23-Nov-09 : add refinvar() * * 12-Jun-10 : fixed identical errors in cellcliq() and cellind() * * 15-Jan-12 : add TLS_ATTR attributes * * 23-Aug-12 : fix getbigcells(), thanks to Fatih Demirkale * * 23-Jan-13 : add some parens to satisfy icc * * * *****************************************************************************/ #define ONE_WORD_SETS #include "nautinv.h" #if MAXM==1 #define M 1 #else #define M m #endif #define MASH(l,i) ((((l) ^ 056345) + (i)) & 077777) /* : expression whose long value depends only on long l and int/long i. Anything goes, preferably non-commutative. */ #define CLEANUP(l) ((int)((l) % 077777)) /* : expression whose value depends on long l and is less than 077777 when converted to int then short. Anything goes. */ #define ACCUM(x,y) x = (((x) + (y)) & 077777) /* : must be commutative. */ static const int fuzz1[] = {037541,061532,005257,026416}; static const int fuzz2[] = {006532,070236,035523,062437}; #define FUZZ1(x) ((x) ^ fuzz1[(x)&3]) #define FUZZ2(x) ((x) ^ fuzz2[(x)&3]) #define MAXCLIQUE 10 /* max clique size for cliques() and maxindset() */ #if MAXN static TLS_ATTR int workshort[MAXN+2]; static TLS_ATTR int vv[MAXN],ww[MAXN]; static TLS_ATTR int workperm[MAXN]; static TLS_ATTR int bucket[MAXN+2]; static TLS_ATTR int count[MAXN]; static TLS_ATTR set workset[MAXM]; static TLS_ATTR set w01[MAXM],w02[MAXM],w03[MAXM],w12[MAXM],w13[MAXM],w23[MAXM]; static TLS_ATTR set pt0[MAXM],pt1[MAXM],pt2[MAXM]; static TLS_ATTR set wss[MAXCLIQUE-1][MAXM]; static TLS_ATTR set ws1[MAXM],ws2[MAXM]; #else DYNALLSTAT(int,workshort,workshort_sz); DYNALLSTAT(int,vv,vv_sz); DYNALLSTAT(int,ww,ww_sz); DYNALLSTAT(int,workperm,workperm_sz); DYNALLSTAT(int,bucket,bucket_sz); DYNALLSTAT(int,count,count_sz); DYNALLSTAT(set,ws1,ws1_sz); DYNALLSTAT(set,ws2,ws2_sz); DYNALLSTAT(set,workset,workset_sz); DYNALLSTAT(set,w01,w01_sz); DYNALLSTAT(set,w02,w02_sz); DYNALLSTAT(set,w03,w03_sz); DYNALLSTAT(set,w12,w12_sz); DYNALLSTAT(set,w13,w13_sz); DYNALLSTAT(set,w23,w23_sz); DYNALLSTAT(set,pt0,pt0_sz); DYNALLSTAT(set,pt1,pt1_sz); DYNALLSTAT(set,pt2,pt2_sz); DYNALLSTAT(set,wss,wss_sz); #endif /* aproto: header new_nauty_protos.h */ /***************************************************************************** * * * This file contains a number of procedures which compute vertex-invariants * * for stronger partition refinement. Since entirely different * * vertex-invariants seem to work better for different types of graph, we * * cannot do more than give a small collection of representative examples. * * Any serious computations with difficult graphs may well need to use * * specially-written vertex-invariants. The use of vertex-invariants * * procedures is supported by nauty from version 1.5 onwards, via the * * options userinvarproc, mininvarlevel, maxinvarlevel and invararg. * * The meaning of these fields in detail are as follows: * * userinvarproc is the address of the vertex-invariant procedure. If * * no vertex-invariants is required, this field should * * have the value NULL. * * maxinvarlevel The absolute value of this is the maximum level in the * * search tree at which the vertex-invariant will be * * computed. The root of the tree is at level 1, so the * * vertex-invariant will not be invoked at all if * * maxinvarlevel==0. Negative values of maxinvarlevel * * request nauty to not compute the vertex-invariant at * * a level greater than that of the earliest node (if any) * * on the path to the first leaf of the search tree at * * which the vertex-invariant refines the partition. * * mininvarlevel The absolute value of this is the minimum level in the * * search tree at which the vertex-invariant will be * * computed. The root of the tree is at level 1, so there * * is no effective limit if mininvarlevel is -1, 0 or 1. * * Negative values of mininvarlevel request nauty to not * * compute the vertex-invariant at a level less than * * that of the earliest node (if any) on the path to the * * first leaf of the search tree at which the * * vertex-invariant refines the partition. * * invararg is passed to the vertex-invariant procedure via the * * argument of the same name. It can be used by the * * procedure for any purpose. * * Note that negative values of maxinvarlevel and mininvarlevel make the * * canonical labelling invalid, but can speed automorphism group finding. * * Nauty already knows this and takes their absolute values. * * * * A vertex-invariant must be declared thus: * * void invarproc(g,lab,ptn,level,numcells,tvpos,invar,invararg,digraph,m,n) * * All of these arguments must be treated as read-only except for invar. * * g : the graph, exactly as passed to nauty() * * lab,ptn : the current partition nest (see nauty.h for the format) * * level : the level of this node in the search tree. * * numcells : the number of cells in the partition at this node. * * tvpos : the index in (lab,ptn) of one cell in the partition. * * If level <= 1, the cell will be the first fragment of the * * first active cell (as provided by the initial call to nauty), * * or the first cell, if there were no active cells. * * If level > 1, the cell will be the singleton cell which was * * created to make this node of the search tree from its parent. * * invararg : a copy of options.invararg * * digraph : a copy of options.digraph * * m,n : size parameters as passed to nauty() * * invar : an array to return the answer in. The procedure must put in * * each invar[i] (0 <= i < n) an invariant of the 6-tuple * * (,g,,level, * * invararg,digraph) * * Note that invar[] is declared as an int array. Since the * * absolute value of the invariant is irrelevant, only the * * comparative values, any short, int or long value can be * * assigned to the entries of invar[] without fear. However, * * you should assign a value less than 077777 to ensure machine- * * independence of the canonical labelling. * * * * The refinement procedure has already been called before the invariant * * procedure is called. That means that the partition is equitable if * * digraph==FALSE. * * * *****************************************************************************/ /***************************************************************************** * * * twopaths() assigns to each vertex v the sum of the weights of each vertex * * which can be reached from v along a walk of length two (including itself * * usually). The weight of each vertex w is defined as the ordinal number * * of the cell containing w, starting at 1 for the first cell. * * * *****************************************************************************/ void twopaths(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,v,w; int wt; set *gv,*gw; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"twopaths"); DYNALLOC1(int,workshort,workshort_sz,n+2,"twopaths"); #endif wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = wt; if (ptn[i] <= level) ++wt; } for (v = 0, gv = (set*)g; v < n; ++v, gv += M) { EMPTYSET(workset,m); w = -1; while ((w = nextelement(gv,M,w)) >= 0) { gw = GRAPHROW(g,w,m); for (i = M; --i >= 0;) UNION(workset[i],gw[i]); } wt = 0; w = -1; while ((w = nextelement(workset,M,w)) >= 0) ACCUM(wt,workshort[w]); invar[v] = wt; } } /***************************************************************************** * * * quadruples() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2,v3), where w(v,v1,v2,v3) depends on the number of * * vertices adjacent to an odd number of {v,v1,v2,v3}, and to the cells * * that v,v1,v2,v3 belong to. {v,v1,v2,v3} are permitted to range over all * * distinct 4-tuples which contain at least one member in the cell tvpos. * * * *****************************************************************************/ void quadruples(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; set *gw; int wt; int v,iv,v1,v2,v3; set *gv; long wv,wv1,wv2,wv3; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"quadruples"); DYNALLOC1(set,ws1,ws1_sz,m,"quadruples"); DYNALLOC1(set,workset,workset_sz,m,"quadruples"); #endif for (i = n; --i >= 0;) invar[i] = 0; wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = FUZZ2(wt); if (ptn[i] <= level) ++wt; } iv = tvpos - 1; do { v = lab[++iv]; gv = GRAPHROW(g,v,m); wv = workshort[v]; for (v1 = 0; v1 < n-2; ++v1) { wv1 = workshort[v1]; if (wv1 == wv && v1 <= v) continue; wv1 += wv; gw = GRAPHROW(g,v1,m); for (i = M; --i >= 0;) workset[i] = gv[i] ^ gw[i]; for (v2 = v1+1; v2 < n-1; ++v2) { wv2 = workshort[v2]; if (wv2 == wv && v2 <= v) continue; wv2 += wv1; gw = GRAPHROW(g,v2,m); for (i = M; --i >= 0;) ws1[i] = workset[i] ^ gw[i]; for (v3 = v2+1; v3 < n; ++v3) { wv3 = workshort[v3]; if (wv3 == wv && v3 <= v) continue; wv3 += wv2; gw = GRAPHROW(g,v3,m); pc = 0; for (i = M; --i >= 0;) if ((sw = ws1[i] ^ gw[i]) != 0) pc += POPCOUNT(sw); wt = (FUZZ1(pc)+wv3) & 077777; wt = FUZZ2(wt); ACCUM(invar[v],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); ACCUM(invar[v3],wt); } } } } while (ptn[iv] > level); } /***************************************************************************** * * * triples() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2), where w(v,v1,v2) depends on the number of vertices * * adjacent to an odd number of {v,v1,v2}, and to the cells that * * v,v1,v2 belong to. {v,v1,v2} are permitted to range over all distinct * * triples which contain at least one member in the cell tvpos. * * * *****************************************************************************/ void triples(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; set *gw; int wt; int v,iv,v1,v2; set *gv; long wv,wv1,wv2; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"triples"); DYNALLOC1(int,workshort,workshort_sz,n+2,"triples"); #endif for (i = n; --i >= 0;) invar[i] = 0; wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = FUZZ1(wt); if (ptn[i] <= level) ++wt; } iv = tvpos - 1; do { v = lab[++iv]; gv = GRAPHROW(g,v,m); wv = workshort[v]; for (v1 = 0; v1 < n-1; ++v1) { wv1 = workshort[v1]; if (wv1 == wv && v1 <= v) continue; wv1 += wv; gw = GRAPHROW(g,v1,m); for (i = M; --i >= 0;) workset[i] = gv[i] ^ gw[i]; for (v2 = v1+1; v2 < n; ++v2) { wv2 = workshort[v2]; if (wv2 == wv && v2 <= v) continue; wv2 += wv1; gw = GRAPHROW(g,v2,m); pc = 0; for (i = M; --i >= 0;) if ((sw = workset[i] ^ gw[i]) != 0) pc += POPCOUNT(sw); wt = (FUZZ1(pc)+wv2) & 077777; wt = FUZZ2(wt); ACCUM(invar[v],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); } } } while (ptn[iv] > level); } /***************************************************************************** * * * adjtriang() assigns to each vertex v a value depending on the numbers * * of common neighbours between each pair {v1,v2} of neighbours of v, and * * which cells v1 and v2 lie in. The vertices v1 and v2 must be adjacent * * if invararg == 0 and not adjacent if invararg == 1. * * * *****************************************************************************/ void adjtriang(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int j,pc; setword sw; set *gi; int wt; int i,v1,v2; boolean v1v2; set *gv1,*gv2; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"adjtriang"); DYNALLOC1(int,workshort,workshort_sz,n+2,"adjtriang"); #endif for (i = n; --i >= 0;) invar[i] = 0; wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = FUZZ1(wt); if (ptn[i] <= level) ++wt; } for (v1 = 0, gv1 = g; v1 < n; ++v1, gv1 += M) { for (v2 = (digraph ? 0 : v1+1); v2 < n; ++v2) { if (v2 == v1) continue; v1v2 = (ISELEMENT(gv1,v2) != 0); if ((invararg == 0 && !v1v2) || (invararg == 1 && v1v2)) continue; wt = workshort[v1]; ACCUM(wt,workshort[v2]); ACCUM(wt,v1v2); gv2 = GRAPHROW(g,v2,m); for (i = M; --i >= 0;) workset[i] = gv1[i] & gv2[i]; i = -1; while ((i = nextelement(workset,M,i)) >= 0) { pc = 0; gi = GRAPHROW(g,i,m); for (j = M; --j >= 0;) if ((sw = workset[j] & gi[j]) != 0) pc += POPCOUNT(sw); pc = (pc + wt) & 077777; ACCUM(invar[i],pc); } } } } /***************************************************************************** * * * getbigcells(ptn,level,minsize,bigcells,cellstart,cellsize,n) is an * * auxiliary procedure to make a list of all the large cells in the current * * partition. On entry, ptn, level and n have their usual meanings, * * while minsize is the smallest size of an interesting cell. On return, * * bigcells is the number of cells of size at least minsize, cellstart[0...] * * contains their starting positions in ptn, and cellsize[0...] contain * * their sizes. These two arrays are in increasing order of cell size, * * then position. * * * *****************************************************************************/ void getbigcells(int *ptn, int level, int minsize, int *bigcells, int *cellstart, int *cellsize, int n) { int cell1,cell2,j; int si,st; int bc,i,h; bc = 0; for (cell1 = 0; cell1 < n; cell1 = cell2 + 1) { for (cell2 = cell1; ptn[cell2] > level; ++cell2) {} if (cell2 >= cell1 + minsize - 1) { cellstart[bc] = cell1; cellsize[bc] = cell2 - cell1 + 1; ++bc; } } *bigcells = bc; j = bc / 3; h = 1; do h = 3 * h + 1; while (h < j); do /* shell sort */ { for (i = h; i < bc; ++i) { st = cellstart[i]; si = cellsize[i]; for (j = i; cellsize[j-h] > si || (cellsize[j-h] == si && cellstart[j-h] > st); ) { cellsize[j] = cellsize[j-h]; cellstart[j] = cellstart[j-h]; if ((j -= h) < h) break; } cellsize[j] = si; cellstart[j] = st; } h /= 3; } while (h > 0); } /***************************************************************************** * * * celltrips() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2), where w(v,v1,v2) depends on the number of vertices * * adjacent to an odd number of {v,v1,v2}. {v,v1,v2} are constrained to * * belong to the same cell. We try the cells in increasing order of size, * * and stop as soon as any cell splits. * * * *****************************************************************************/ void celltrips(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; set *gw; int wt; int v,iv,v1,iv1,v2,iv2; int icell,bigcells,cell1,cell2; int *cellstart,*cellsize; set *gv; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"celltrips"); DYNALLOC1(int,workshort,workshort_sz,n+2,"celltrips"); #endif for (i = n; --i >= 0;) invar[i] = 0; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,3,&bigcells,cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; for (iv = cell1; iv <= cell2 - 2; ++iv) { v = lab[iv]; gv = GRAPHROW(g,v,m); for (iv1 = iv + 1; iv1 <= cell2 - 1; ++iv1) { v1 = lab[iv1]; gw = GRAPHROW(g,v1,m); for (i = M; --i >= 0;) workset[i] = gv[i] ^ gw[i]; for (iv2 = iv1 + 1; iv2 <= cell2; ++iv2) { v2 = lab[iv2]; gw = GRAPHROW(g,v2,m); pc = 0; for (i = M; --i >= 0;) if ((sw = workset[i] ^ gw[i]) != 0) pc += POPCOUNT(sw); wt = FUZZ1(pc); ACCUM(invar[v],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); } } } wt = invar[lab[cell1]]; for (i = cell1 + 1; i <= cell2; ++i) if (invar[lab[i]] != wt) return; } } /***************************************************************************** * * * cellquads() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2,v3), where w(v,v1,v2,v3) depends on the number of * * vertices adjacent to an odd number of {v,v1,v2,v3}. {v,v1,v2,v3} are * * constrained to belong to the same cell. We try the cells in increasing * * order of size, and stop as soon as any cell splits. * * * *****************************************************************************/ void cellquads(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; set *gw; int wt; int v,iv,v1,iv1,v2,iv2,v3,iv3; int icell,bigcells,cell1,cell2; int *cellstart,*cellsize; set *gv; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"cellquads"); DYNALLOC1(int,workshort,workshort_sz,n+2,"cellquads"); DYNALLOC1(set,ws1,ws1_sz,m,"cellquads"); #endif for (i = n; --i >= 0;) invar[i] = 0; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,4,&bigcells,cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; for (iv = cell1; iv <= cell2 - 3; ++iv) { v = lab[iv]; gv = GRAPHROW(g,v,m); for (iv1 = iv + 1; iv1 <= cell2 - 2; ++iv1) { v1 = lab[iv1]; gw = GRAPHROW(g,v1,m); for (i = M; --i >= 0;) workset[i] = gv[i] ^ gw[i]; for (iv2 = iv1 + 1; iv2 <= cell2 - 1; ++iv2) { v2 = lab[iv2]; gw = GRAPHROW(g,v2,m); for (i = M; --i >= 0;) ws1[i] = workset[i] ^ gw[i]; for (iv3 = iv2 + 1; iv3 <= cell2; ++iv3) { v3 = lab[iv3]; gw = GRAPHROW(g,v3,m); pc = 0; for (i = M; --i >= 0;) if ((sw = ws1[i] ^ gw[i]) != 0) pc += POPCOUNT(sw); wt = FUZZ1(pc); ACCUM(invar[v],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); ACCUM(invar[v3],wt); } } } } wt = invar[lab[cell1]]; for (i = cell1 + 1; i <= cell2; ++i) if (invar[lab[i]] != wt) return; } } /***************************************************************************** * * * cellquins() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2,v3,v4), where w(v,v1,v2,v3,v4) depends on the number * * of vertices adjacent to an odd number of {v,v1,v2,v3,v4}. * * {v,v1,v2,v3,v4} are constrained to belong to the same cell. We try the * * cells in increasing order of size, and stop as soon as any cell splits. * * * *****************************************************************************/ void cellquins(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; set *gw; int wt; int v,iv,v1,iv1,v2,iv2,v3,iv3,v4,iv4; int icell,bigcells,cell1,cell2; int *cellstart,*cellsize; set *gv; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"cellquins"); DYNALLOC1(int,workshort,workshort_sz,n+2,"cellquins"); DYNALLOC1(set,ws1,ws1_sz,m,"cellquins"); DYNALLOC1(set,ws2,ws2_sz,m,"cellquins"); #endif for (i = n; --i >= 0;) invar[i] = 0; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,5,&bigcells,cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; for (iv = cell1; iv <= cell2 - 4; ++iv) { v = lab[iv]; gv = GRAPHROW(g,v,m); for (iv1 = iv + 1; iv1 <= cell2 - 3; ++iv1) { v1 = lab[iv1]; gw = GRAPHROW(g,v1,m); for (i = M; --i >= 0;) workset[i] = gv[i] ^ gw[i]; for (iv2 = iv1 + 1; iv2 <= cell2 - 2; ++iv2) { v2 = lab[iv2]; gw = GRAPHROW(g,v2,m); for (i = M; --i >= 0;) ws1[i] = workset[i] ^ gw[i]; for (iv3 = iv2 + 1; iv3 <= cell2 - 1; ++iv3) { v3 = lab[iv3]; gw = GRAPHROW(g,v3,m); for (i = M; --i >= 0;) ws2[i] = ws1[i] ^ gw[i]; for (iv4 = iv3 + 1; iv4 <= cell2; ++iv4) { v4 = lab[iv4]; gw = GRAPHROW(g,v4,m); pc = 0; for (i = M; --i >= 0;) if ((sw = ws2[i] ^ gw[i]) != 0) pc += POPCOUNT(sw); wt = FUZZ1(pc); ACCUM(invar[v],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); ACCUM(invar[v3],wt); ACCUM(invar[v4],wt); } } } } } wt = invar[lab[cell1]]; for (i = cell1 + 1; i <= cell2; ++i) if (invar[lab[i]] != wt) return; } } /***************************************************************************** * * * uniqinter(s1,s2,m) returns the number in both sets if it is unique, * * or -1 if there is none or it is not unique. * *****************************************************************************/ static int uniqinter(set *s1, set *s2, int m) { int i,j; setword w; for (i = 0; i < M; ++i) { if ((w = s1[i] & s2[i]) != 0) { j = FIRSTBITNZ(w); if (w != BITT[j]) return -1; j += TIMESWORDSIZE(i); for (++i; i < M; ++i) if (s1[i] & s2[i]) return -1; return j; } } return -1; } /***************************************************************************** * * * cellfano2() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2,v3), where w(v,v1,v2,v3) depends on the number of * * fano-plane analogues containing {v,v1,v2,v3}. {v,v1,v2,v3} are * * constrained to belong to the same cell and being independent and * * non-collinear. We try the cells in increasing order of size, and stop * * as soon as any cell splits. * * * *****************************************************************************/ void cellfano2(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; int wt; int v0,v1,v2,v3,iv0,iv1,iv2,iv3; int icell,bigcells,cell1,cell2; int *cellstart,*cellsize; int nw,x01,x02,x03,x12,x13,x23; int pnt0,pnt1,pnt2; set *gv0,*gv1,*gv2,*gv3; set *gp0,*gp1,*gp2; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"cellfano2"); DYNALLOC1(int,vv,vv_sz,n,"cellfano2"); DYNALLOC1(int,ww,ww_sz,n,"cellfano2"); #endif for (i = n; --i >= 0;) invar[i] = 0; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,4,&bigcells,cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; for (iv0 = cell1; iv0 <= cell2 - 3; ++iv0) { v0 = lab[iv0]; gv0 = GRAPHROW(g,v0,m); nw = 0; for (iv1 = iv0 + 1; iv1 <= cell2; ++iv1) { v1 = lab[iv1]; if (ISELEMENT(gv0,v1)) continue; if ((x01 = uniqinter(gv0,GRAPHROW(g,v1,m),m)) < 0) continue; vv[nw] = v1; ww[nw] = x01; ++nw; } for (iv1 = 0; iv1 < nw-2; ++iv1) { v1 = vv[iv1]; gv1 = GRAPHROW(g,v1,m); x01 = ww[iv1]; for (iv2 = iv1 + 1; iv2 < nw-1; ++iv2) { x02 = ww[iv2]; if (x02 == x01) continue; v2 = vv[iv2]; if (ISELEMENT(gv1,v2)) continue; gv2 = GRAPHROW(g,v2,m); if ((x12 = uniqinter(gv1,gv2,m)) < 0) continue; for (iv3 = iv2 + 1; iv3 < nw; ++iv3) { x03 = ww[iv3]; if (x03 == x01 || x03 == x02) continue; v3 = vv[iv3]; if (ISELEMENT(gv1,v3) || ISELEMENT(gv2,v3)) continue; gv3 = GRAPHROW(g,v3,m); if ((x13 = uniqinter(gv1,gv3,m)) < 0) continue; if ((x23 = uniqinter(gv2,gv3,m)) < 0 || x23 == x13) continue; if ((pnt0 = uniqinter(GRAPHROW(g,x01,m), GRAPHROW(g,x23,m),m)) < 0) continue; if ((pnt1 = uniqinter(GRAPHROW(g,x02,m), GRAPHROW(g,x13,m),m)) < 0) continue; if ((pnt2 = uniqinter(GRAPHROW(g,x03,m), GRAPHROW(g,x12,m),m)) < 0) continue; gp0 = GRAPHROW(g,pnt0,m); gp1 = GRAPHROW(g,pnt1,m); gp2 = GRAPHROW(g,pnt2,m); pc = 0; for (i = M; --i >= 0;) { sw = gp0[i] & gp1[i] & gp2[i]; if (sw) pc += POPCOUNT(sw); } wt = FUZZ1(pc); ACCUM(invar[v0],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); ACCUM(invar[v3],wt); } } } } wt = invar[lab[cell1]]; for (i = cell1 + 1; i <= cell2; ++i) if (invar[lab[i]] != wt) return; } } /***************************************************************************** * * * setnbhd(g,m,n,w,wn) is an auxiliary routine that sets wn to the union * * of the neighbours of the vertices in w. * * * *****************************************************************************/ void setnbhd(graph *g, int m, int n, set *w, set *wn) { int i,j; set *gi; i = nextelement(w,M,-1); if (i < 0) { EMPTYSET(wn,M); return; } gi = GRAPHROW(g,i,M); for (j = M; --j >= 0;) wn[j] = gi[j]; while ((i = nextelement(w,M,i)) >= 0) { gi = GRAPHROW(g,i,M); for (j = M; --j >= 0;) wn[j] |= gi[j]; } } /***************************************************************************** * * * cellfano() assigns to each vertex v a value depending on the set of * * weights w(v,v1,v2,v3), where w(v,v1,v2,v3) depends on the number of * * fano-plane analogues containing {v,v1,v2,v3}. {v,v1,v2,v3} are * * constrained to belong to the same cell and being independent. We try * * the cells in increasing order of size, and stop as soon as any cell * * splits. * * * *****************************************************************************/ void cellfano(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,pc; setword sw; int wt; int v0,v1,v2,v3,iv0,iv1,iv2,iv3; int icell,bigcells,cell1,cell2; int *cellstart,*cellsize; set *gv0,*gv1,*gv2,*gv3; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"cellfano"); DYNALLOC1(set,w01,w01_sz,m,"cellfano"); DYNALLOC1(set,w02,w02_sz,m,"cellfano"); DYNALLOC1(set,w03,w03_sz,m,"cellfano"); DYNALLOC1(set,w12,w12_sz,m,"cellfano"); DYNALLOC1(set,w13,w13_sz,m,"cellfano"); DYNALLOC1(set,w23,w23_sz,m,"cellfano"); DYNALLOC1(set,pt0,pt0_sz,m,"cellfano"); DYNALLOC1(set,pt1,pt1_sz,m,"cellfano"); DYNALLOC1(set,pt2,pt2_sz,m,"cellfano"); DYNALLOC1(set,workset,workset_sz,m,"cellfano"); #else #endif for (i = n; --i >= 0;) invar[i] = 0; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,4,&bigcells,cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; for (iv0 = cell1; iv0 <= cell2 - 3; ++iv0) { v0 = lab[iv0]; gv0 = GRAPHROW(g,v0,m); for (iv1 = iv0 + 1; iv1 <= cell2 - 2; ++iv1) { v1 = lab[iv1]; if (ISELEMENT(gv0,v1)) continue; gv1 = GRAPHROW(g,v1,m); for (i = M; --i >= 0;) workset[i] = gv0[i] & gv1[i]; setnbhd(g,m,n,workset,w01); for (iv2 = iv1 + 1; iv2 <= cell2 - 1; ++iv2) { v2 = lab[iv2]; if (ISELEMENT(gv0,v2) || ISELEMENT(gv1,v2)) continue; gv2 = GRAPHROW(g,v2,m); for (i = M; --i >= 0;) workset[i] = gv0[i] & gv2[i]; setnbhd(g,m,n,workset,w02); for (i = M; --i >= 0;) workset[i] = gv1[i] & gv2[i]; setnbhd(g,m,n,workset,w12); for (iv3 = iv2 + 1; iv3 <= cell2; ++iv3) { v3 = lab[iv3]; if (ISELEMENT(gv0,v3) || ISELEMENT(gv1,v3) || ISELEMENT(gv2,v3)) continue; gv3 = GRAPHROW(g,v3,m); for (i = M; --i >= 0;) workset[i] = gv0[i] & gv3[i]; setnbhd(g,m,n,workset,w03); for (i = M; --i >= 0;) workset[i] = gv1[i] & gv3[i]; setnbhd(g,m,n,workset,w13); for (i = M; --i >= 0;) workset[i] = gv2[i] & gv3[i]; setnbhd(g,m,n,workset,w23); for (i = M; --i >= 0;) workset[i] = w01[i] & w23[i]; setnbhd(g,m,n,workset,pt0); for (i = M; --i >= 0;) workset[i] = w03[i] & w12[i]; setnbhd(g,m,n,workset,pt1); for (i = M; --i >= 0;) workset[i] = w02[i] & w13[i]; setnbhd(g,m,n,workset,pt2); pc = 0; for (i = M; --i >= 0;) { sw = pt0[i] & pt1[i] & pt2[i]; if (sw) pc += POPCOUNT(sw); } wt = FUZZ1(pc); ACCUM(invar[v0],wt); ACCUM(invar[v1],wt); ACCUM(invar[v2],wt); ACCUM(invar[v3],wt); } } } } wt = invar[lab[cell1]]; for (i = cell1 + 1; i <= cell2; ++i) if (invar[lab[i]] != wt) return; } } /***************************************************************************** * * * distances() assigns to each vertex v a value depending on the number of * * vertices at each distance from v, and what cells they lie in. * * If we find any cell which is split in this manner, we don't try any * * further cells. * * * *****************************************************************************/ void distances(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i; set *gw; int wt; int d,dlim,cell1,cell2,iv,v,w; boolean success; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"distances"); DYNALLOC1(int,workshort,workshort_sz,n+2,"distances"); DYNALLOC1(set,ws1,ws1_sz,m,"distances"); DYNALLOC1(set,ws2,ws2_sz,m,"distances"); #endif for (i = n; --i >= 0;) invar[i] = 0; wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = FUZZ1(wt); if (ptn[i] <= level) ++wt; } if (invararg > n || invararg == 0) dlim = n; else dlim = invararg+1; success = FALSE; for (cell1 = 0; cell1 < n; cell1 = cell2 + 1) { for (cell2 = cell1; ptn[cell2] > level; ++cell2) {} if (cell2 == cell1) continue; for (iv = cell1; iv <= cell2; ++iv) { v = lab[iv]; EMPTYSET(ws1,m); ADDELEMENT(ws1,v); EMPTYSET(ws2,m); ADDELEMENT(ws2,v); for (d = 1; d < dlim; ++d) { EMPTYSET(workset,m); wt = 0; w = -1; while ((w = nextelement(ws2,M,w)) >= 0) { gw = GRAPHROW(g,w,m); ACCUM(wt,workshort[w]); for (i = M; --i >= 0;) workset[i] |= gw[i]; } if (wt == 0) break; ACCUM(wt,d); wt = FUZZ2(wt); ACCUM(invar[v],wt); for (i = M; --i >= 0;) { ws2[i] = workset[i] & ~ws1[i]; ws1[i] |= ws2[i]; } } if (invar[v] != invar[lab[cell1]]) success = TRUE; } if (success) break; } } /***************************************************************************** * * * indsets() assigns to each vertex v a value depending on which cells the * * vertices which join v in an independent set lie in. The size of the * * independent sets which are used is the smallest of invararg and MAXCLIQUE.* * * *****************************************************************************/ void indsets(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i; int wt; set *gv; int ss,setsize; int v[MAXCLIQUE]; long wv[MAXCLIQUE]; set *s0,*s1; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"indsets"); DYNALLOC2(set,wss,wss_sz,m,MAXCLIQUE-1,"indsets"); #endif for (i = n; --i >= 0;) invar[i] = 0; if (invararg <= 1 || digraph) return; if (invararg > MAXCLIQUE) setsize = MAXCLIQUE; else setsize = invararg; wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = FUZZ2(wt); if (ptn[i] <= level) ++wt; } for (v[0] = 0; v[0] < n; ++v[0]) { wv[0] = workshort[v[0]]; s0 = (set*)wss; EMPTYSET(s0,m); for (i = v[0]+1; i < n; ++i) ADDELEMENT(s0,i); gv = GRAPHROW(g,v[0],m); for (i = M; --i >= 0;) s0[i] &= ~gv[i]; ss = 1; v[1] = v[0]; while (ss > 0) { if (ss == setsize) { wt = FUZZ1(wv[ss-1]); for (i = ss; --i >= 0;) ACCUM(invar[v[i]],wt); --ss; } else if ((v[ss] = nextelement((set*)wss+M*(ss-1),M,v[ss])) < 0) --ss; else { wv[ss] = wv[ss-1] + workshort[v[ss]]; ++ss; if (ss < setsize) { gv = GRAPHROW(g,v[ss-1],m); s1 = (set*)wss + M*(ss-2); for (i = M; --i >= 0;) s1[i+M] = s1[i] & ~gv[i]; v[ss] = v[ss-1]; } } } } } /***************************************************************************** * * * cliques() assigns to each vertex v a value depending on which cells the * * vertices which join v in a clique lie in. The size of the cliques used * * is the smallest of invararg and MAXCLIQUE. * * * *****************************************************************************/ void cliques(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i; int wt; set *gv; int ss,setsize; int v[MAXCLIQUE]; long wv[MAXCLIQUE]; set *ns; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"cliques"); DYNALLOC2(set,wss,wss_sz,m,MAXCLIQUE-1,"cliques"); #else set wss[MAXCLIQUE-1][MAXM]; #endif for (i = n; --i >= 0;) invar[i] = 0; if (invararg <= 1 || digraph) return; if (invararg > MAXCLIQUE) setsize = MAXCLIQUE; else setsize = invararg; wt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = FUZZ2(wt); if (ptn[i] <= level) ++wt; } for (v[0] = 0; v[0] < n; ++v[0]) { wv[0] = workshort[v[0]]; gv = GRAPHROW(g,v[0],m); ns = (set*)wss; for (i = M; --i >= 0;) ns[i] = gv[i]; ss = 1; v[1] = v[0]; while (ss > 0) { if (ss == setsize) { wt = FUZZ1(wv[ss-1]); for (i = ss; --i >= 0;) ACCUM(invar[v[i]],wt); --ss; } else if ((v[ss] = nextelement((set*)wss+M*(ss-1),M,v[ss])) < 0) --ss; else { wv[ss] = wv[ss-1] + workshort[v[ss]]; ++ss; if (ss < setsize) { gv = GRAPHROW(g,v[ss-1],m); ns = (set*)wss + M*(ss-2); for (i = M; --i >= 0;) ns[i+M] = ns[i] & gv[i]; v[ss] = v[ss-1]; } } } } } /***************************************************************************** * * * cellcliq() assigns to each vertex v a value depending on the number of * * cliques which v lies in and which lie in the same cell as v. The size * * of clique counted is the smallest of invararg and MAXCLIQUE. We try the * * cells in increasing order of size and stop as soon as any cell splits. * * * *****************************************************************************/ void cellcliq(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i; int wt; set *gv; int ss,setsize; int v[MAXCLIQUE]; set *ns; int *cellstart,*cellsize; int iv,icell,bigcells,cell1,cell2; int pc; setword sw; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"cellcliq"); DYNALLOC1(int,workshort,workshort_sz,n+2,"cellcliq"); DYNALLOC2(set,wss,wss_sz,m,MAXCLIQUE-1,"cellcliq"); #endif for (i = n; --i >= 0;) invar[i] = 0; if (invararg <= 1 || digraph) return; if (invararg > MAXCLIQUE) setsize = MAXCLIQUE; else setsize = invararg; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,setsize > 6 ? setsize : 6,&bigcells, cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; EMPTYSET(workset,m); for (iv = cell1; iv <= cell2; ++iv) ADDELEMENT(workset,lab[iv]); for (iv = cell1; iv <= cell2; ++iv) { v[0] = lab[iv]; gv = GRAPHROW(g,v[0],m); ns = (set*)wss; pc = 0; for (i = M; --i >= 0;) { ns[i] = gv[i] & workset[i]; if ((sw = ns[i]) != 0) pc += POPCOUNT(sw); } if (pc <= 1 || pc >= cellsize[icell] - 2) continue; ss = 1; v[1] = v[0]; while (ss > 0) { if (ss == setsize) { for (i = ss; --i >= 0;) ++invar[v[i]]; --ss; } else if ((v[ss] = nextelement((set*)wss+M*(ss-1),M,v[ss])) < 0) --ss; else { ++ss; if (ss < setsize) { gv = GRAPHROW(g,v[ss-1],m); ns = (set*)wss + M*(ss-2); for (i = M; --i >= 0;) ns[i+M] = ns[i] & gv[i]; v[ss] = v[ss-1]; } } } } wt = invar[lab[cell1]]; for (iv = cell1 + 1; iv <= cell2; ++iv) if (invar[lab[iv]] != wt) return; } } /***************************************************************************** * * * cellind() assigns to each vertex v a value depending on the number of * * independent sets which v lies in and which lie in the same cell as v. * * The size of clique counted is the smallest of invararg and MAXCLIQUE. * * We try the cells in increasing order of size and stop as soon as any * * cell splits. * * * *****************************************************************************/ void cellind(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i; int wt; set *gv; int ss,setsize; int v[MAXCLIQUE]; set *ns; int *cellstart,*cellsize; int iv,icell,bigcells,cell1,cell2; int pc; setword sw; #if !MAXN DYNALLOC1(set,workset,workset_sz,m,"cellind"); DYNALLOC1(int,workshort,workshort_sz,n+2,"cellind"); DYNALLOC2(set,wss,wss_sz,m,MAXCLIQUE-1,"cellind"); #endif for (i = n; --i >= 0;) invar[i] = 0; if (invararg <= 1 || digraph) return; if (invararg > MAXCLIQUE) setsize = MAXCLIQUE; else setsize = invararg; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,setsize > 6 ? setsize : 6,&bigcells, cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; EMPTYSET(workset,m); for (iv = cell1; iv <= cell2; ++iv) ADDELEMENT(workset,lab[iv]); for (iv = cell1; iv <= cell2; ++iv) { v[0] = lab[iv]; gv = GRAPHROW(g,v[0],m); ns = (set*)wss; pc = 0; for (i = M; --i >= 0;) { ns[i] = ~gv[i] & workset[i]; if ((sw = ns[i]) != 0) pc += POPCOUNT(sw); } if (pc <= 1 || pc >= cellsize[icell] - 2) continue; ss = 1; v[1] = v[0]; while (ss > 0) { if (ss == setsize) { for (i = ss; --i >= 0;) ++invar[v[i]]; --ss; } else if ((v[ss] = nextelement((set*)wss+M*(ss-1),M,v[ss])) < 0) --ss; else { ++ss; if (ss < setsize) { gv = GRAPHROW(g,v[ss-1],m); ns = (set*)wss + M*(ss-2); for (i = M; --i >= 0;) ns[i+M] = ns[i] & ~gv[i]; v[ss] = v[ss-1]; } } } } wt = invar[lab[cell1]]; for (iv = cell1 + 1; iv <= cell2; ++iv) if (invar[lab[iv]] != wt) return; } } /***************************************************************************** * * * adjacencies() assigns to each vertex v a code depending on which cells * * it is joined to and from, and how many times. It is intended to provide * * better partitioning that the normal refinement routine for digraphs. * * It will not help with undirected graphs in nauty at all. * * * *****************************************************************************/ void adjacencies(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,v,w; int vwt,wwt; set *gv; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"adjacencies"); #endif vwt = 1; for (i = 0; i < n; ++i) { workshort[lab[i]] = vwt; if (ptn[i] <= level) ++vwt; invar[i] = 0; } for (v = 0, gv = (set*)g; v < n; ++v, gv += M) { vwt = FUZZ1(workshort[v]); wwt = 0; w = -1; while ((w = nextelement(gv,M,w)) >= 0) { ACCUM(wwt,FUZZ2(workshort[w])); ACCUM(invar[w],vwt); } ACCUM(invar[v],wwt); } } /***************************************************************************** * * * nautinv_check() checks that this file is compiled compatibly with the * * given parameters. If not, call exit(1). * * * *****************************************************************************/ void nautinv_check(int wordsize, int m, int n, int version) { if (wordsize != WORDSIZE) { fprintf(ERRFILE,"Error: WORDSIZE mismatch in nautinv.c\n"); exit(1); } #if MAXN if (m > MAXM) { fprintf(ERRFILE,"Error: MAXM inadequate in nautinv.c\n"); exit(1); } if (n > MAXN) { fprintf(ERRFILE,"Error: MAXN inadequate in nautinv.c\n"); exit(1); } #endif if (version < NAUTYREQUIRED) { fprintf(ERRFILE,"Error: nautinv.c version mismatch\n"); exit(1); } } /***************************************************************************** * * * nautinv_freedyn() - free the dynamic memory in this module * * * *****************************************************************************/ void nautinv_freedyn(void) { #if !MAXN DYNFREE(workset,workset_sz); DYNFREE(workshort,workshort_sz); DYNFREE(ws1,ws1_sz); DYNFREE(ws2,ws2_sz); DYNFREE(vv,vv_sz); DYNFREE(ww,ww_sz); DYNFREE(w01,w01_sz); DYNFREE(w02,w02_sz); DYNFREE(w03,w03_sz); DYNFREE(w12,w12_sz); DYNFREE(w13,w13_sz); DYNFREE(w23,w23_sz); DYNFREE(pt0,pt0_sz); DYNFREE(pt1,pt1_sz); DYNFREE(pt2,pt2_sz); DYNFREE(wss,wss_sz); #endif } /*===================================================================*/ /***************************************************************************** * * * semirefine(g,lab,ptn,level,numcells,strength,active,m,n) performs a * * refinement operation on the partition at the specified level of the * * partition nest (lab,ptn). *numcells is assumed to contain the number of * * cells on input, and is updated. The initial set of active cells (alpha * * in the paper) is specified in the set active. Precisely, x is in active * * iff the cell starting at index x in lab is active. * * *code is set to a value which depends on the fine detail of the * * algorithm, but which is independent of the labelling of the graph. * * * *****************************************************************************/ static int semirefine(graph *g, int *lab, int *ptn, int level, int *numcells, int strength, set *active, int m, int n) { int i,c1,c2,labc1; setword x; set *set1,*set2; int split1,split2,cell1,cell2; int cnt,bmin,bmax; long longcode; set *gptr; int maxcell,maxpos,hint; #if !MAXN DYNALLOC1(int,workperm,workperm_sz,n,"refine"); DYNALLOC1(set,workset,workset_sz,m,"refine"); DYNALLOC1(int,bucket,bucket_sz,n+2,"refine"); DYNALLOC1(int,count,count_sz,n,"refine"); #endif longcode = *numcells; split1 = -1; hint = 0; while (*numcells < n && ((split1 = hint, ISELEMENT(active,split1)) || (split1 = nextelement(active,M,split1)) >= 0 || (split1 = nextelement(active,M,-1)) >= 0)) { DELELEMENT(active,split1); for (split2 = split1; ptn[split2] > level; ++split2) {} longcode = MASH(longcode,split1+split2); if (split1 == split2) /* trivial splitting cell */ { gptr = GRAPHROW(g,lab[split1],M); for (cell1 = 0; cell1 < n; cell1 = cell2 + 1) { for (cell2 = cell1; ptn[cell2] > level; ++cell2) {} if (cell1 == cell2) continue; c1 = cell1; c2 = cell2; while (c1 <= c2) { labc1 = lab[c1]; if (ISELEMENT(gptr,labc1)) ++c1; else { lab[c1] = lab[c2]; lab[c2] = labc1; --c2; } } if (c2 >= cell1 && c1 <= cell2) { ptn[c2] = level; longcode = MASH(longcode,FUZZ1(c2)); ++*numcells; if (ISELEMENT(active,cell1) || c2-cell1 >= cell2-c1) { ADDELEMENT(active,c1); if (c1 == cell2) hint = c1; } else { ADDELEMENT(active,cell1); if (c2 == cell1) hint = cell1; } } } } else /* nontrivial splitting cell */ { EMPTYSET(workset,m); for (i = split1; i <= split2; ++i) ADDELEMENT(workset,lab[i]); longcode = MASH(longcode,FUZZ2(split2-split1+1)); for (cell1 = 0; cell1 < n; cell1 = cell2 + 1) { for (cell2 = cell1; ptn[cell2] > level; ++cell2) {} if (cell1 == cell2) continue; i = cell1; set1 = workset; set2 = GRAPHROW(g,lab[i],m); cnt = 0; for (c1 = m; --c1 >= 0;) if ((x = ((*set1++) & (*set2++))) != 0) cnt += POPCOUNT(x); count[i] = bmin = bmax = cnt; bucket[cnt] = 1; while (++i <= cell2) { set1 = workset; set2 = GRAPHROW(g,lab[i],m); cnt = 0; for (c1 = m; --c1 >= 0;) if ((x = ((*set1++) & (*set2++))) != 0) cnt += POPCOUNT(x); while (bmin > cnt) bucket[--bmin] = 0; while (bmax < cnt) bucket[++bmax] = 0; ++bucket[cnt]; count[i] = cnt; } if (bmin == bmax) { longcode = MASH(longcode,FUZZ1(bmin+cell1)); continue; } c1 = cell1; maxcell = -1; for (i = bmin; i <= bmax; ++i) if (bucket[i]) { c2 = c1 + bucket[i]; bucket[i] = c1; longcode = MASH(longcode,i+c1); if (c2-c1 > maxcell) { maxcell = c2-c1; maxpos = c1; } if (c1 != cell1) { ADDELEMENT(active,c1); if (c2-c1 == 1) hint = c1; ++*numcells; } if (c2 <= cell2) ptn[c2-1] = level; c1 = c2; } for (i = cell1; i <= cell2; ++i) workperm[bucket[count[i]]++] = lab[i]; for (i = cell1; i <= cell2; ++i) lab[i] = workperm[i]; if (!ISELEMENT(active,cell1)) { ADDELEMENT(active,cell1); DELELEMENT(active,maxpos); /* check maxpos is alwas defined */ } } } if (--strength == 0) break; /* negative is fine! */ } longcode = MASH(longcode,FUZZ2(*numcells)); return CLEANUP(longcode); } void refinvar(graph *g, int *lab, int *ptn, int level, int numcells, int tvpos, int *invar, int invararg, boolean digraph, int m, int n) { int i,j; int wt; int icell,bigcells,cell1,cell2; int *cellstart,*cellsize; int newnumcells; #if !MAXN DYNALLOC1(int,workshort,workshort_sz,n+2,"refinvar"); DYNALLOC1(int,vv,vv_sz,n,"refinvar"); DYNALLOC1(int,ww,ww_sz,n,"refinvar"); DYNALLOC1(set,ws1,ws1_sz,n,"refinvar"); #endif for (i = n; --i >= 0;) invar[i] = 0; cellstart = workshort; cellsize = workshort + (n/2); getbigcells(ptn,level,2,&bigcells,cellstart,cellsize,n); for (icell = 0; icell < bigcells; ++icell) { cell1 = cellstart[icell]; cell2 = cell1 + cellsize[icell] - 1; for (i = cell1; i <= cell2; ++i) { for (j = 0; j < n; ++j) { vv[j] = lab[j]; ww[j] = ptn[j]; } newnumcells = numcells + 1; ww[cell1] = level; EMPTYSET(ws1,m); ADDELEMENT(ws1,cell1); vv[i] = lab[cell1]; vv[cell1] = lab[i]; invar[lab[i]] = semirefine(g,vv,ww,level,&newnumcells, invararg,ws1,m,n); } wt = invar[lab[cell1]]; for (i = cell1 + 1; i <= cell2; ++i) if (invar[lab[i]] != wt) return; } }