/* This program demonstrates how an isomorphism is found between two graphs, using the Moebius graph as an example. This version uses Traces and demonstrates how to compute the automorphism group separately before computing the canonical labelling. Although this is slower for easy graphs like those here, it can be faster for some very difficult graphs. */ #include "traces.h" int main(int argc, char *argv[]) { DYNALLSTAT(int,lab1,lab1_sz); DYNALLSTAT(int,lab2,lab2_sz); DYNALLSTAT(int,ptn,ptn_sz); DYNALLSTAT(int,orbits,orbits_sz); DYNALLSTAT(int,map,map_sz); static DEFAULTOPTIONS_TRACES(options); TracesStats stats; permnode *generators; /* Declare and initialize sparse graph structures */ SG_DECL(sg1); SG_DECL(sg2); SG_DECL(cg1); SG_DECL(cg2); int n,m,i; /* Read a number of vertices and process */ while (1) { printf("\nenter n : "); if (scanf("%d",&n) == 1 && n > 0) { if (n%2 != 0) { fprintf(stderr,"Sorry, n must be even\n"); continue; } m = SETWORDSNEEDED(n); nauty_check(WORDSIZE,m,n,NAUTYVERSIONID); DYNALLOC1(int,lab1,lab1_sz,n,"malloc"); DYNALLOC1(int,lab2,lab2_sz,n,"malloc"); DYNALLOC1(int,ptn,ptn_sz,n,"malloc"); DYNALLOC1(int,orbits,orbits_sz,n,"malloc"); DYNALLOC1(int,map,map_sz,n,"malloc"); /* Now make the first graph */ SG_ALLOC(sg1,n,3*n,"malloc"); sg1.nv = n; /* Number of vertices */ sg1.nde = 3*n; /* Number of directed edges */ for (i = 0; i < n; ++i) { sg1.v[i] = 3*i; /* Position of vertex i in v array */ sg1.d[i] = 3; /* Degree of vertex i */ } for (i = 0; i < n; i += 2) /* Spokes */ { sg1.e[sg1.v[i]] = i+1; sg1.e[sg1.v[i+1]] = i; } for (i = 0; i < n-2; ++i) /* Clockwise edges */ sg1.e[sg1.v[i]+1] = i+2; sg1.e[sg1.v[n-2]+1] = 1; sg1.e[sg1.v[n-1]+1] = 0; for (i = 2; i < n; ++i) /* Anticlockwise edges */ sg1.e[sg1.v[i]+2] = i-2; sg1.e[sg1.v[1]+2] = n-2; sg1.e[sg1.v[0]+2] = n-1; /* Now make the second graph */ SG_ALLOC(sg2,n,3*n,"malloc"); sg2.nv = n; /* Number of vertices */ sg2.nde = 3*n; /* Number of directed edges */ for (i = 0; i < n; ++i) { sg2.v[i] = 3*i; sg2.d[i] = 3; } for (i = 0; i < n; ++i) { sg2.v[i] = 3*i; sg2.d[i] = 3; sg2.e[sg2.v[i]] = (i+1) % n; /* Clockwise */ sg2.e[sg2.v[i]+1] = (i+n-1) % n; /* Anti-clockwise */ sg2.e[sg2.v[i]+2] = (i+n/2) % n; /* Diagonals */ } /* Now we make the canonically labelled graphs by a two-step process. The first call to Traces computes the automorphism group. The second call computes the canonical labelling, using the automorphism group from the first call. We have declared a variable "generators" that will be used to hold the group generators between the two calls. It has to be initialised to NULL and its address has to be given to Traces using options.generators. After the second call, we need to discard the generators with a call to freeschreier(), which also initializes it again. */ generators = NULL; options.generators = &generators; options.getcanon = FALSE; Traces(&sg1,lab1,ptn,orbits,&options,&stats,NULL); options.getcanon = TRUE; Traces(&sg1,lab1,ptn,orbits,&options,&stats,&cg1); freeschreier(NULL,&generators); options.getcanon = FALSE; Traces(&sg2,lab1,ptn,orbits,&options,&stats,NULL); options.getcanon = TRUE; Traces(&sg2,lab1,ptn,orbits,&options,&stats,&cg2); freeschreier(NULL,&generators); /* Compare canonically labelled graphs */ if (aresame_sg(&cg1,&cg2)) { printf("Isomorphic.\n"); if (n <= 1000) { /* Write the isomorphism. For each i, vertex lab1[i] of sg1 maps onto vertex lab2[i] of sg2. We compute the map in order of labelling because it looks better. */ for (i = 0; i < n; ++i) map[lab1[i]] = lab2[i]; for (i = 0; i < n; ++i) printf(" %d-%d",i,map[i]); printf("\n"); } } else printf("Not isomorphic.\n"); } else break; } exit(0); }